Capturing System-Wide Information for Malware Detection and Analysis

The work of:

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda

CCS 07: Proceedings of the 14th ACM conference on Computer and communications security.

Identification vs Detection

- Signatures rely on pattern recognition
- Signature based detection only works once a threat has been detected.
- What about threats that hide themselves?
- Malware is typically analyzed manually
- Need a behavior based malware detection approach
- Other approaches:
 - Don't address kernel attacks
 - Monitor system calls rather than data access

Goals

- Develop an automated process
- Offline analysis
- Identify many different forms of malware

Detection Approach

- Tracking information access
- Generate a directed graph
- Analyze the results

Tracking Approach

- Hardware is used to track the information access
 - OS aware ID what process is doing the accessing
- Track the information as it is accessed (type, value)
 - type ::= taint_source | os_object
 - taint_source ::= text | password | HTTP | HTTPS | FTP | ICMP | document | directory
 - os_object ::= process | module | network | file

Create an info access (taint) graph

Taint Graph ExampleGrabbing a password

Classify Suspicious Behavior

- Categorize three kinds of anomalous behavior
 - Anomalous information access
 - Anomalous information leakage
 - Excessive information access

- Anomalous information access behavior
 - Any secondary access is highly suspicious behavior
 - Keyloggers, password thieves, network sniffers, and stealth backdoors

Information Leakage

- Anomalous information leakage behavior
 - Acceptable for the samples to access them locally, but unacceptable to leak the information to third parties
 - Some secondary access is OK (local only)
 - Trackers, spyware/adware
 - HTTP
 - HTTPS
 - Documents
 - URL

Excessive Access

- Excessive information access behavior
 - Occasional access is typical
 - Malware will access information excessively to achieve their malicious intent
 - Rootkit behavior
 - Privileged hidden access
 - Filesystem request interception
 - File concealment

Test Stimulus

- Honey sources:
 - Keyboard
 - Text, password, and URL
 - Network
 - HTTP, HTTPS, FTP, ICMP, and UDP
 - Disk
 - Document and directory input

Detection Conditions (Policies)

• Text, password, FTP, UDP and ICMP inputs can not be accessed by the samples

• URL, HTTP, HTTPS and document inputs cannot be leaked by the samples

 Directory inputs cannot be accessed excessively by the samples

Taint Graph

- Taint graph will show if the sample has accessed any input information (suspicious behavior)
- Graph will show what the suspect has done with the data
 - How it is intercepted
 - Which process grabs it
 - Where it goes
 - What is done with it

Google Desktop

Evaluation

- Panorama ran on a Linux machine with a dual-core
 3.2 GHz Pentium 4 CPU and 2GB RAM
- On top of Panorama: Windows XP Professional with 512M of allocated RAM
- Malware samples (42)
 - Anit-Virus Company
 - Academia
 - Web (rootkit.com)
- Google Desktop as a case study

Results

- Benign sample source
 - Fresh downloads from www.download.com
 - Freeware, 56 samples
- 3 False Positives
 - 1 Browser accelerator
 - Web page prefetch
 - 2 Firewall programs
 - Network traffic monitor
 - Behave like malware

Category	Total	FINS	FFS
Keyloggers	5	0	-
Password thieves	2	0	-
Network sniffers	2	0	-
Stealth backdoors	3	0	-
Spyware/adware	22	0	-
Rootkits	8	0	-
Browser plugins	16	-	1
Multi-media	9	-	0
Security	10	-	2
System utilities	9	-	0
Office productivity	4	-	0
Games	4	-	0
Others	4	-	0
Sum	98	0	3

- Panorama observes behavior not intent

Cost

- Average slowdown of 20 times
 - Speed was not a design goal
- Suggested performance improvements
 - Different execution technique
 - Virtual & emulation approach
 - Dynamic binary instrumentation
 - Software only approach 4% overhead (qualified)
 - Use of Error Correcting Code memory
 - Data authentication

Evasion

- Info leak concealment
 - Unauthorized info access still detected
- Conditional launch mechanism (unresolved)
 - Timer triggers
 - Application specific
 - Emulation detection
- Interfering malware
 - Fix the malware (bug) exploit

Strengths of this approach

- Implemented outside the subject system
- Captures the info access & processing technique of the malware
- Uses a hardware approach for detection
- Rootkit and hidden file detection

Questions?