Scalable, Behavior-Based
Malware Clustering

U. Bayer, P. Comparetti,
C. Hlauschek, E. Kirda, C. Krigel
NDSS 2009

Motivation

Everyday thousands of new malware sample appear
and need to be analyzed

Systems that automatically analyze samples
generate thousands of behavior reports on these
new malware, but people are the ones who have to
read and use these malware reports to combat
malware

Thus, there is a need to group or cluster malware
based on behavior reports that are similar

Why cluster?

Save time and effort by ignoring reports of malware
that have similar behavior

Prioritize which malware families need to be worked
on first

We would like to concentrate on creating signatures for
malware that targets a wide spread vulnerability and does
lots of damage

Generalize signature generation and patches that
work on a family of malware instead of just a few
instances of malware

Clustering vs Classification

CLUSTERING CLASSIFICATION
Datais nO_t labeled Labeled data points
Group points that are “close” to Want a “rule” that assigns labels
each other to new points
Identify structure or patterns in Supervised learning
data

Unsupervised learning

>

>

Slide adapted from www.broadinstitute.org/annotation/winter_course_2006/index_files/Classification_and_Clustering.ppt
4

Scalable, Behavior Based Malware Clustering

Scalable

The system can process large and larger sets of
malware samples in a reasonable amount of time

Behavior Based

Malware samples are represented by their actions
when they execute, and their actions are
described with a behavior profile

Malware Clustering

Find subsets (groups or families) of malware that
are similar

Overview

- -

Divnanuc Result |Execution Trace angmented
Analvsis of r11 with taint-information and | |Ei®
Sample network analvsis results
Input
ANUEBIS

/ Extraction \\ Result

of the _*.. Behavioral Profile
"\E ehavioral Pmﬁy

— Input

Ve

f
|
II

\“'

Image adapted from http://www.iseclab.org/people/pmilani/ndssog-clustering-slides.pdf

usterin

\ /

Dynamic Analysis

Based on the authors’ previous work ANUBIS

ANUBIS is an OS emulator that generates execution traces for
system calls

Additions to ANUBIS

Tainting for locating system call dependencies
Their dynamic data tainting is based on previous work from others

Control flow dependencies

Network analysis from low level socket system calls

Uses an existing tool called Bro to identify and parse HTTP, IRC, SMTP,
and FTP protocols

Output

Behavior execution trace that contains system call
dependencies, control flow dependencies, and network analysis
results

Feature Extraction

Execution traces creates lots of data, but how much of this data is actual
information?

We can tackle this problem with feature extraction
Feature extraction is a type of dimensionality reduction that involves
transforming your dataset into relevant feature sets that capture
important information.

Face Analysis

Image from http://www.seestorm.com/technologies/cv/ffe_sdk/

Behavior profile feature extraction

Process the behavior execution trace from ANUBIS

Goal: generalize the system call traces

System calls can vary significantly even between programs that
behavior in the same way

Remove execution specific artifacts from the trace

Extract a relevant set of features, the behavior profile, from
the execution trace that captures key pieces of information
to model the behavior of malware

The usefulness of general features

Example: Different ways to read from a file

f = fopen(“C:\\test"); f = fopen(“C:\\test");
read(f, 1); read(f, 3);

read(f, 1);

read(f, 1);

Different system calls with similar semantics
i.e. NtCreateProcess and NtCreateProcessEx

By generalizing, they can easily interleave the trace with
unrelated calls

f = fopen(“C:\\test"”);
read(f, 1);
readRegValue(..);
read(f, 1);

10

Main elements of a behavior profile

OS objects: aresource such as afile that can accessed by a system
call

Has a name and type
OS operations: generalizations of a system call

Operations on OS Objects

Order is not relevant

Number of operations on a certain OS Object is not relevant
Object dependencies: models dependencies (relationships)
between objects and their operations

Generalizes system call dependencies

i.e. copy a file from source to destination

Reflects the “true” order of operations
Control flow dependencies: represents how tainted data is used
by the malware

11

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”) ;

// memory map the target file

dst = NtCreateFile (“"C:\\Windows\\” + GetTempFilename());
dst section = NtCreateSection (dst);

char *base = NtMapViewOfSection (dst section);

while (len < length(src)) {

* (baset+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1l, read:1

Op|File |RANDOM 1

create:1l

Op|Section|RANDOM 1

open:1, map:1, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

12

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile (“C:\\Windows\\” + GetTempFilename ())
dst section = NtCreateSection (dst);

char *base = NtMapViewOfSection (dst section);

while (len < length(src)) {

* (baset+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM 1

create:1

Op|Section|RANDOM 1

open:1, map:1, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

13

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile (“"C:\\Windows\\” + GetTempFilename());
dst section = NtCreateSection(dst) ;

char *base = NtMapViewOfSection (dst section);

while (len < length(src)) {

* (baset+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM 1

create:1l

Op|Section|RANDOM 1

open:1l, map:1, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

14

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile (“"C:\\Windows\\” + GetTempFilename());
dst section = NtCreateSection (dst);

char *base = NtMapViewOfSection(dst section);

while (len < length(src)) {

* (baset+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File |RANDOM 1

create:1l

Op|Section|RANDOM 1

open:1, map:1l, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

15

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile (“"C:\\Windows\\” + GetTempFilename());
dst section = NtCreateSection (dst);

char *base = NtMapViewOfSection (dst section);

while (len < length(src)) {

* (base+len)=NtReadFile(src, 1), len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM 1

create:1l

Op|Section|RANDOM 1

open:1, map:1, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

16

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile (“"C:\\Windows\\” + GetTempFilename());
dst section = NtCreateSection (dst);

char *base = NtMapViewOfSection (dst section);

while (len < length(src)) {

* (base+len)=NtReadFile (src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File |RANDOM 1

create:1l

Op|Section|RANDOM 1

open:l, map:1, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

17

Behavior profile example

src = NtOpenFile (“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile (“"C:\\Windows\\” + GetTempFilename());
dst section = NtCreateSection (dst);

char *base = NtMapViewOfSection (dst section);

while (len < length(src)) {

* (baset+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File |RANDOM 1

create:1l

Op|Section|RANDOM 1

open:1, map:1, mem write: 1
Dep|File|C:\sample.exe -> Section|RANDOM 1
read — mem write

18

Scalable LSH clustering

Many clustering algorithms compute all pair wise distances
with takes O(n?) evaluations

Even with modern processors and parallelism, O(n?)
algorithms do not scale well for large datasets

The authors use LSH (locality sensitive hashing), a technique
introduced by Indyk and Motwani, to compute an
approximate clustering that requires less than O(n?)distance
computations

The idea behind LSH is to hash a set of points in such a way
that near or similar points have a much higher collision
probability than points that are distant

They use the Jaccard Index for a measuring similarity:

J@a,b)=]aNb|/|aUub]

19

Scalable LSH clustering (cont)

To cluster, they do the following
Transform the behavior profile into a feature set

Use LSH on the feature set to map it to an approximation set of all near
pairs of similar features

Remove pairs of samples that aren’t similar by using the Jaccard Index

Sort the remaining pairs based on similarity to produce an approximate

single-linkage, hierarchical clustering based on some threshold value t,
where J(a,b) < t.

For large datasets, the dominate computationsinvolved in LSH
clustering are for computing similarity computations which is
O(ncd)

n is the number of samples, c is the max cluster size for a given threshold
t, and d is the average number of features in a sample

In practice, nc << n?, so LSCH clustering is less than O(n?), but in the worst
case c = n for identical sample sets, and it is O(n?)

20

Reference cluster

Assessing the quality of the results of a clustering algorithm is
inherently difficult

Thus, the authors created a reference cluster to measure the
results of their LSH clustering experiments
The reference cluster was created by

A random sampling of 14,212 malware samples that were submitted to
Anubis from Oct. 27t" 2007 to Jan. 315t 2008

Each malware sample was scanned with 6 different AV programs

They selected 2,658 samples out of the 14,212 that were reported to be in
the same malware family by the majority of the AV programs

For each sample, they examined the corresponding ANUBIS report and
manually corrected classification problems
Why select samples reported to be in the same malware family by the majority of AV
programs, and then manually correct their classification based on the ANUBIS report?

Their clustering system uses ANUBIS to create a behavior profile and their reference
cluster for evaluating their experiment is also based on ANUBIS and their manual
corrections. Could this reference cluster be biased?

21

Evaluating LSH clustering

Experimented using LSH clustering
with t = 0.7 on the 2,658 samples
and compared it to the reference
cluster

Results

Their system produced 87
clusters, while the reference
cluster consisted of 84 clusters

Precision =0.984

precision measures how well a
clustering algorithm distinguishes
between samples that are different

Recall =0.930

recall measures how well a clustering
algorithm recognizes similar samples

Cluster Metrics

Precision and recall with respect to

various values of threshold t

0.8 |
)

0.6 1 N

0.4

0.2 Precision

Recall -------
U [[[[
0 0.2 0.4 0.6 0.8

Number of clusters

Figure 3. Precision and recall.

The paper has a typo in figure 3.
The horizontal axis should be threshold t.

22

Comparative experiment and results

They compared LSH clustering to Bailey et al. system for clustering and
to clustering based on raw system calls
Bailey et al. clustering system

Uses Normalized Compression Distance, and NCD can be thought of as a way to
approximate similarity between two samples by representing an overlap between the
two samples.

NCD is based on complexity theory that similar data when concatenated compresses
better than data that is not similar.

cluster quality = precision * recall

Behavioral Profile | Similarity Measure | Clustering | Optimal Threshold | Quality | Precision | Recall
Bailey-profile [13] | NCD exact 0.75 0.916 0.979 0.935
Bailey-profile [13] | Jaccard Index exact 0.63 0.801 0.971 0.825
Syscalls [31] Jaccard Index exact 0.19 0.656 0.874 0.750
Our profile Jaccard Index exact 0.61 0.959 0.977 0.981
Our profile Jaccard Index LSH 0.60 0.959 0.979 0.980

Table 2. Comparative evaluation of different clustering methods.
23

Performance experiment and results

Experimented with 75,692 samples from the complete database of
ANUBIS on a XEN VM hosted on a machine with two Quad-Core Xeon
(1.86 GHZ) CPUs and 8 GB of RAM with about 7GB of RAM and one
physical CPU allocated to the XEN VM.
Results

Their system clustered the set of samples in 2 hours and 18 minutes

Their system’s memory requirements never exceeded 3.7 GB

The authors extrapolated that it would take 6 weeks of running time to cluster based on
Bailey et al's system.

Algorithm Step Time | (Virt.) Mem. Used
Loading the samples S8m 1.6 GB
[iterations of LSH hash. 1h Om 3.6 GB
Distance calculation 16m 3.7 GB
Sorting all pairs I'm 3.7 GB
Hierarchical clustering 3m 3.7GB
Total 2h 18m 3.7 GB

Table 3. Runtime for 75K samples.
24

Limitations

Trace Dependence

The malware’s execution trace will only be accurate if it behaves when
being analyzed, and if certain conditions are not met for the malware,
it won't behave, and thus it won't be clustered correctly

Techniques to explore multiple execution paths could overcome this
limitation
Evasion

Craft randomly mutated parts of malware’s behavior so that it will be
classified into different clusters. Difficult to do.

Malware can inject fake data dependencies using a NOP-equivalent
operations to taint clean data without modifying its value. And it
could hide data dependencies from their system using implicit flows
to “clean” tainted data.

25

Conclusions

The paper could be split up into two different papers.

One paper for the feature extraction for the behavior profiles, and
another for the LSH clustering
Both the behavior profiles and leveraging LSH to effectively

cluster in less than quadratic time are novel contributions in
my opinion.

The experiments were realistic and setup well, they showed
the scalability of their system, and they did a good job
comparing themselves with another clustering system.

26

Questions?

27

