A Study of the Packer Problem and Its Solutions
Fanglu Guo Peter Ferrie Tzi-cker Chiueh

Presentation by Will Whiteside

What is a packer?

* Not a football player in Green Bay

* Packers are code compression/obfuscation
engines that take arbitrary code as input and
produce an excutable that is obfuscated, yet
still produces the same results when run.

S0, packers are a malware tool?

 No.

« UPX is an open source tool to compress
executables that is used on many valid files.

» Portableapps.com hosts a large number of
executables designed to run from a usb drive,
most of these are compressed with UPX

What do we want to do then?

* \We want to be able to scan the packed
executable and determine if it is malicious.

How?

 Two ways

 Unpack the executable then scan it using standard
scanning tools (static)

 Run the packed executable and interrupt it at some
point to scan the image (dynamic)

Static Analysis

e Steps:
« Recognize the packer — assign it to a packer family.
 |dentify a packer — determine version of packer.

* Create an automated recognizer — create a
program that performs the two above steps.

« Create an unpacker — restore a packed binary to its
unpacked form.

How long does this take

You get a new executable, run your recognizers
against it to see if any of them recognize it.
None of them do. Manually recognize and
identify the packer, packer makers try to make
this difficult. If the previous step is completed
successfully, creating a recognizer is relatively
simple. The packing procedure might well be
irreversible, and even if it's not, producing a
iInverse function for it is likely NP complete.

So, that's like...

* 6 hours to 6 months per unpacker.

 There are 1200 packed samples in the
Symantec backlog.

* That's between 7200 and 1,152,000 work hours
by an experienced engineer, with an expected
average on the order of 100,000 work hours

» Using a thoroughly reasonable average pay of
$40/hr, that's $288,000 to $46,080,000 with an
expected average of $4,000,000

| don't have that much money

 Neither do |.

* And creating a new packer version is not nearly
as hard, and pays about as well as the other
side.

So static analysis is really hard?

* You're a smart one.
e SO let's try dynamic analysis.

So dynamic analysis?

* | et the program run, and at some point stop the
execution and run the av program on the
memory image.

That sounds easy

* That's why packer designers try to avoid letting
you do it.

* You have to monitor the program somehow, and
this monitoring can be detected.

Monitoring”?

* Three ways.

« Debugging (gdb or something similar)

* Image dumping (dump the image regularly during
execution)

 Emulating (the whole environment)

Sounds good

* Packers try to check for these methods and
defeat them.

So what do we need to do?

* Create an algorithm that can detect when we
need to perform an AV scan, and on what.

Thus Justin

 Justin, the just-in-time AV Scanning algorithm.
 Haha
» Justin requires two assumptions:

 The address space layout of the program
embedded within a packed binary after it is
unpacked is the same as that if the program is
directly loaded into memory

* the unpacker in a packed binary completely
unpacks the embedded program before transferring
control to it.

S0, those assumptions

* Are reasonable, violating them requires much
more work than not violating them, and possibly
makes the packer unable to take a generic

binary as input.

 Violating the second assumption is equivalent
to polymorphic code that can evade detection

without packing, so why pack it?

Ok, so how does it work

* Monitor the program through system calls, this

method Is much less detectable than other
methods

» Scan the program image when:

« A control transfer to a dynamically created/modified
page occurs

 The stack is similar to that when a program is just
loaded into memory

 The command-line input arguments are properly set
up on the stack

How?

* Monitor the writable and executable
permissions of the memory pages

« Catch the exceptions here

 Dump the memory image and scan it for viruses

Implementation

 Justin is implemented for Windows only, but
should extend to other architectures.

» Several potential holes are discussed, and they
are plugged to my satisfaction

Results

Packers |Packed| Justin | Justin Justin | SymPack Justin
Unpack|Detection|Detection|Detection| Detection
Failure | Failure Improvement
ASPack 182 4 0 178 182 4
BeroPacker| 178 (4 174 161 13
Exed2Pack| 176 32 0 144 176 -32
Mew 180 1 8 171 171 (
PE-Pack 76 1 0 175 171 4
UPack 181 1 5 175 173 2

That's pretty good

* But there's some failures there, why?

 Well, some of those failures are because the
packed executable no longer runs.

 Oh noes, the virus isn't detected because it can't be
run, wait, it isn't running? I'm totally scared of it.

» Sometimes the packer doesn't do anything

« Wait, your evil plan to obfuscate your program is to
send it to me unmodified? Let's see how that works
out for them, Cotton.

So most of those failures are
harmless?

* |n a word, yes.
* At least, according to the authors.

But that was a lot of work for not
much results

* True, but that was on malware that we already
have an unpacker for. Justin is designed to
operate without an unpacker, and the true
contribution is a scanner for packers that
haven't been solved.

Ok, so what about those packers?

» Justin manages to unpack 12 of 13 packers,
that's pretty good, but mostly relies on the
packers not checking for Justin's API calls, an
easy additional check.

So, Justin can be defeated

* Yes, and if Justin becomes an industry standard
(or Justin like procedures are adopted) then
these defeating measures will become an
industry standard in the malware business.

S0 what else is wrong

» Justin might call for extra AV scans, making it
take a long time to perform those scans.

That sounds bad

* Not really, the delay is minimal

* Their experiments show at worse, a 38%
iIncrease in delay, which on modern computers
IS probably less than a second on almost all
programs

» Also, this only needs to be run once on each
executable, and is usually faster than hard drive
spin up times

Conclusions

 Justin provides a unpacking method that can
unpack a large majority of current packers.

 Justin can be defeated, but provides a solid
base for further research.

