
CSCI 8260 – Spring 2016
Network Attacks and Defenses

Instructor: Prof. Roberto Perdisci
perdisci@cs.uga.edu

source: computer-networks-webdesign.com

These slides are adapted from the textbook slides by J.F. Kurose and K.W. Ross

Chapter 2: Application Layer

Our goals:
}  conceptual,

implementation aspects
of network application
protocols
}  transport-layer service

models
}  client-server paradigm
}  peer-to-peer paradigm

}  learn about protocols by
examining popular
application-level
protocols
}  HTTP
}  FTP
}  SMTP / POP3 / IMAP
}  DNS

}  programming network
applications
}  socket API

Application 2-2

Some network apps
}  e-mail
}  web
}  instant messaging
}  remote login
}  P2P file sharing
}  multi-user network games
}  streaming stored video

(YouTube)

}  voice over IP
}  real-time video conferencing
}  cloud computing
}  …
}  …
} 

Application 2-3

Creating a network app

write programs that
}  run on (different) end systems
}  communicate over network
}  e.g., web server software

communicates with browser
software

No need to write software for
network-core devices
}  network-core devices do not run

user applications
}  applications on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application 2-4

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-5

Application architectures
}  client-server
}  peer-to-peer (P2P)
}  hybrid of client-server and P2P

Application 2-6

Client-server architecture

server:
}  always-on host
}  permanent IP address
}  server farms for scaling

clients:
}  communicate with server
}  may be intermittently connected
}  may have dynamic IP addresses
}  do not communicate directly

with each other

client/server

Application 2-7

Pure P2P architecture

}  no always-on server
}  arbitrary end systems

directly communicate
}  peers are intermittently

connected and change IP
addresses

highly scalable but difficult to
manage

peer-peer

Application 2-8

Hybrid of client-server and P2P

Skype
}  voice-over-IP P2P application
}  centralized server: finding address of remote party:
}  client-client connection: direct (not through server)

Instant messaging
}  chatting between two users is P2P
}  centralized service: client presence detection/location

}  user registers its IP address with central server when
it comes online

}  user contacts central server to find IP addresses of
buddies

Application 2-9

Processes communicating

process: program running
within a host.

}  within same host, two
processes communicate
using inter-process
communication (defined by
OS).

}  processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

v  aside: applications with
P2P architectures have
client processes &
server processes

Application 2-10

Sockets
}  process sends/receives

messages to/from its socket
}  socket analogous to door

}  sending process shoves message
out door

}  sending process relies on
transport infrastructure on other
side of door which brings
message to socket at receiving
process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

v  API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

Application 2-11

Addressing processes
}  to receive messages, process

must have identifier
}  host device has unique 32-bit

IP address
}  Q: does IP address of host on

which process runs suffice for
identifying the process?

Application 2-12

Addressing processes
}  identifier includes both IP

address and port numbers
associated with process on
host.

}  example port numbers:
}  HTTP server: 80
}  Mail server: 25

}  to send HTTP message to
gaia.cs.umass.edu web server:
}  IP address: 128.119.245.12
}  Port number: 80

}  more shortly…

}  to receive messages, process
must have identifier

}  host device has unique 32-
bit IP address

}  Q: does IP address of host
on which process runs
suffice for identifying the
process?
}  A: No, many processes can

be running on same host

Application 2-13

Internet transport protocols services

TCP service:
}  connection-oriented: setup required

between client and server
processes

}  reliable transport between sending
and receiving process

}  flow control: sender won’t
overwhelm receiver

}  congestion control: throttle sender
when network overloaded

}  does not provide: timing, minimum
throughput guarantees, security

UDP service:
}  unreliable data transfer

between sending and receiving
process

}  does not provide: connection
setup, reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is there a
UDP?

Application 2-14

Chapter 2: Application layer
2.1 Principles of network

applications
}  app architectures
}  app requirements

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-15

Web and HTTP
First, a review…
}  web page consists of objects
}  object can be HTML file, JPEG image, Java applet, audio file,…
}  web page consists of base HTML-file which includes several

referenced objects
}  each object is addressable by a URL
}  example URL:

www.someschool.edu/someDept/pic.gif

host name path name

Application 2-16

HTTP overview
HTTP: hypertext transfer

protocol
}  Web’s application layer protocol
}  client/server model

}  client: browser that requests,
receives, “displays” Web objects

}  server: Web server sends
objects in response to requests

PC running
Firefox

Server
running

Apache Web
server

Mac running
Chrome

Application 2-17

HTTP overview (continued)

Uses TCP:
}  client initiates TCP connection

(creates socket) to server, port
80

}  server accepts TCP connection
from client

}  HTTP messages (application-layer
protocol messages) exchanged
between browser (HTTP client)
and Web server (HTTP server)

}  TCP connection closed

HTTP is “stateless”
}  server maintains no

information about past
client requests

protocols that maintain
“state” are complex!

v  past history (state) must
be maintained

v  if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

Application 2-18

HTTP connections
non-persistent HTTP
}  at most one object sent over

TCP connection.

persistent HTTP
}  multiple objects can be sent

over single TCP connection
between client, server.

Application 2-19

Nonpersistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu
on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

Application 2-20

www.someSchool.edu/someDepartment/home.index

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application 2-21

Non-Persistent HTTP: Response time

definition of RTT: time for a
small packet to travel from
client to server and back.

response time:
}  one RTT to initiate TCP

connection
}  one RTT for HTTP request

and first few bytes of HTTP
response to return

}  file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application 2-22

Persistent HTTP

non-persistent HTTP issues:
}  requires 2 RTTs per object
}  OS overhead for each TCP

connection

persistent HTTP
}  server leaves connection open

after sending response
}  subsequent HTTP messages

between same client/server sent
over open connection

}  client sends requests as soon as
it encounters a referenced
object

}  as little as one RTT for all the
referenced objects

Application 2-23

Advantage of non-persistent HTTP

non-persistent HTTP:
}  browsers can open parallel TCP

connections to fetch referenced
objects “at the same time”
}  Has advantages and disadvantages

Application 2-24

HTTP request message

}  two types of HTTP messages: request, response
}  HTTP request message:

}  ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

Application 2-25

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

http://www-net.cs.umass.edu:8080/index.html

HTTP request message: general format

Application 2-26

request
line

header
lines

body

A simple test… ****

2: Application Layer 27

}  $ nc –l 12345
}  Point your browser to http://127.0.0.1:12345/testme

}  If your user-agent looks strange and you curious to know
why, read this:
}  http://webaim.org/blog/user-agent-string-history/

Uploading form input

POST method:
}  web page often includes form

input

}  input is uploaded to server
in entity body

URL method:
}  uses GET method
}  input is uploaded in URL

field of request line:
 www.somesite.com/animalsearch?monkeys&banana

www.example.com/animalsearch.php?name=monkeys&age=10

Application 2-28

Method types
HTTP/1.0
}  GET
}  POST
}  HEAD

}  asks server to leave requested
object out of response

HTTP/1.1
}  GET, POST, HEAD
}  PUT

}  uploads file in entity body to
path specified in URL field

}  DELETE
}  deletes file specified in the URL

field

Application 2-29

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

Application 2-30

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT

\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html;

charset=ISO-8859-1\r\n
\r\n
data data data data data ...

HTTP response status codes

200 OK
}  request succeeded, requested object later in this msg

301 Moved Permanently
}  requested object moved, new location specified later in this msg

(Location:)

400 Bad Request
}  request msg not understood by server

404 Not Found
}  requested document not found on this server

505 HTTP Version Not Supported

v  status code appears in 1st line in server->client
response message.

v  some sample codes:

Application 2-31

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
 opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet www.uga.edu 80

2. type in a GET HTTP request:

GET /profile/mission HTTP/1.1
Host: www.uga.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

Application 2-32

(or use wireshark!)

User-server state: cookies
many Web sites use cookies
four components:

1) cookie header line of HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

example:
}  Susan always access Internet

from PC
}  visits specific e-commerce

site for first time
}  when initial HTTP requests

arrives at site, site creates:
}  unique ID
}  entry in backend database

for ID

Application 2-33

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application 2-34

Cookies (continued)

what cookies can bring:
}  authorization
}  shopping carts
}  recommendations
}  user session state (Web e-

mail)

cookies and privacy:
v  cookies permit sites to

learn a lot about you
v  you may supply name

and e-mail to sites

aside

how to keep “state”:
v  protocol endpoints: maintain state

at sender/receiver over multiple
transactions

v  cookies: http messages carry state

Application 2-35

Cookies and Privacy

2: Application Layer 36

}  Two types of cookies
}  Session cookies
}  Permanent cookies (tracking cookies)

}  Third-party cookies (see http://tools.ietf.org/html/rfc2965)
}  You visit www.example.com, which contains a banner from ads.clicks-

for-me.net
}  in simple terms ads.clicks-for-me.net is third-party because it does not

match the domain showed on the URL bar
}  third-party sites should be denied setting or reading cookies

}  The browser allows ads.clicks-for-me.net to drop a third-party
cookie

}  Then you visit www.another-example.com , which also loads ads from
ads.clicks-for-me.net

}  ads.clicks-for-me.net can track the fact that you visited both
www.example.com and www.another-example.com !!!

Cookies and Security

2: Application Layer 37

}  Authentication Cookies can be stolen
}  An attacker may be able to “sniff” your authentication cookies
}  The attacker will be able to login as you on a website (e.g.,

Facebook, Twitter, etc…)

}  See FireSheep for a concrete example!
}  http://codebutler.com/firesheep

Session IDs

2: Application Layer 38

}  Cookies are not the only way you can keep state
}  Session IDs are commonly used by web applications

}  http://example.com/index.php?user_id=0F4C26A1&topic=networking

}  What are the main difference between cookies and
Session IDs?
}  Session IDs are typically passed in the URL (added to web app

links)
}  Cookies are passed through HTTP req/resp headers
}  Cookies are stored in the browser’s cache and have an

expiration date
}  Session IDs are volatile: never stored, only used until end of

session

Web caches (proxy server)

}  user sets browser: Web
accesses via cache

}  browser sends all HTTP
requests to cache
}  object in cache: cache

returns object
}  else cache requests object

from origin server, then
returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

Application 2-39

More about Web caching
}  cache acts as both client and

server
}  Splits the TCP connection!

}  typically cache is installed by
ISP (university, company,
residential ISP)

why Web caching?
}  reduce response time for

client request
}  reduce traffic on an

institution’s access link.
}  Internet dense with caches:

enables “poor” content
providers to effectively
deliver content (but so does
P2P file sharing)

Application 2-40

Caching in HTTP
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

HTTP Pipelining and Range

2: Application Layer 41

}  Pipelining
}  The client sends multiple HTTP request without waiting for

server response
}  The server sends the response one after the other

}  Range
}  HTTP allows downloading pieces of objects
}  Example:

}  10MB image to be downloaded
}  We can open 10 different TCP connection and send 10 HTTP requests

in parallel
}  Download 1MB of data from each connection and stitch them back

together

Chapter 2: Application layer
}  2.1 Principles of network

applications
}  2.2 Web and HTTP
}  2.3 FTP
}  2.4 Electronic Mail

}  SMTP, POP3, IMAP

}  2.5 DNS

}  2.6 P2P applications
}  2.7 Socket programming

with TCP
}  2.8 Socket programming

with UDP

Application 2-42

DNS: Domain Name System
people: many identifiers:

}  SSN, name, passport #

Internet hosts, routers:
}  IP address (32 bit) - used for

addressing datagrams
}  “name”, e.g., ww.yahoo.com -

used by humans

Q: map between IP address
and name, and vice versa ?

Domain Name System:
}  distributed database implemented in

hierarchy of many name servers
}  application-layer protocol host,

routers, name servers to
communicate to resolve names
(address/name translation)
}  note: core Internet function,

implemented as application-layer
protocol

}  complexity at network’s “edge”

Application 2-43

DNS
DNS services
}  hostname to IP address

translation
}  host aliasing

}  Canonical, alias names

}  mail server aliasing
}  load distribution

}  replicated Web servers: set of
IP addresses for one
canonical name

Why not centralize DNS?
}  single point of failure
}  traffic volume
}  distant centralized database
}  maintenance

doesn’t scale!

Application 2-44

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

client wants IP for www.amazon.com; 1st approx:
}  client queries a root server to find com DNS server
}  client queries com DNS server to get amazon.com DNS server
}  client queries amazon.com DNS server to get IP address for

www.amazon.com

Application 2-45

DNS: Root name servers

}  contacted by local name server that can not resolve name
}  root name server:

}  contacts authoritative name server if name mapping not known
}  gets mapping
}  returns mapping to local name server

 13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

Application 2-46

TLD and Authoritative Servers

Top-level domain (TLD) servers:
}  responsible for com, org, net, edu, aero, jobs, museums, and all

top-level country domains, e.g.: uk, fr, ca, jp.
}  Network Solutions maintains servers for com TLD
}  Educause for edu TLD

Authoritative DNS servers:
}  organization’s DNS servers, providing authoritative hostname

to IP mappings for organization’s servers (e.g., Web, mail).
}  can be maintained by organization or service provider

Application 2-47

Local Name Server
}  does not strictly belong to hierarchy
}  each ISP (residential ISP, company, university) has one.

}  also called “default name server”

}  when host makes DNS query, query is sent to its local
DNS server
}  acts as proxy, forwards query into hierarchy

Application 2-48

gaia.cs.umass.edu

root DNS server

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name ***
resolution example

}  host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v  contacted server

replies with name of
server to contact

v  “I don’t know this
name, but ask this
server”

Application 2-49

Query for
gaia.cs.umass.edu

Local
DNS

DNS: caching and updating records

}  once (any) name server learns mapping, it caches mapping
}  cache entries timeout (disappear) after some time
}  TLD servers typically cached in local name servers

}  Thus root name servers not often visited

Application 2-50

DNS records

DNS: distributed db storing resource records (RR)

Type=NS
}  name is domain (e.g. foo.com)
}  value is hostname of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

Type=A
§  name is hostname
§  value is IP address

Type=CNAME
§  name is alias name for some

“canonical” (the real) name
§  www.ibm.com is really
 servereast.backup2.ibm.com

§  value is canonical name

Type=MX
§  value is name of mailserver

associated with name

Application 2-51

DNS protocol, messages

DNS protocol : query and reply messages, both with same message format

msg header
v  identification: 16 bit #

for query, reply to query
uses same #

v  flags:
§  query or reply
§  recursion desired
§  recursion available
§  reply is authoritative

Application 2-52

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Application 2-53

Inserting records into DNS

}  example: new startup “Network Utopia”
}  register name networkuptopia.com at DNS registrar (e.g.,

Network Solutions)
}  provide names, IP addresses of authoritative name server (primary and

secondary)
}  registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

}  create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

}  How do people get IP address of your Web site?

Application 2-54

DNS Poisoning

2: Application Layer 55

}  DNS uses UDP
}  Source IP address can be spoofed
}  Responses are accepted with a “First Comes First Wins”

policy, subsequent
}  Only check is on TXID

}  What consequences?

requesting host
cis.poly.edu

gaia.cs.umass.edu

local DNS server
dns.poly.edu

authoritative DNS server
dns.cs.umass.edu

DNSSEC

2: Application Layer 56

}  DNS “patches”
}  Port randomization
}  0x20-Bit encoding

}  Better solution: DNSSEC
}  Responses are digitally signed
}  They can be verified by following a chain of trust anchored at

the roots
}  Not yet fully deployed

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-57

Pure P2P architecture
}  no always-on server
}  arbitrary end systems

directly communicate
}  peers are intermittently

connected and change IP
addresses

Three topics:
}  file distribution
}  searching for information
}  case Study: Skype

peer-peer

Application 2-58

File distribution: BitTorrent ****

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

Application 2-59

P2P Case study: Skype

}  inherently P2P: pairs of
users communicate.

}  proprietary application-
layer protocol (inferred via
reverse engineering)

}  hierarchical overlay with
SNs

}  Index maps usernames to
IP addresses; distributed
over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

Application 2-60

Peers as relays

}  problem when both Alice
and Bob are behind
“NATs”.
}  NAT prevents an outside peer

from initiating a call to insider
peer

}  solution:
}  using Alice’s and Bob’s SNs,

relay is chosen
}  each peer initiates session with

relay.
}  peers can now communicate

through NATs via relay

Application 2-61

