CSCI 8260 – Spring 2016

Computer Network Attacks and Defenses

Syllabus

Prof. Roberto Perdisci perdisci@cs.uga.edu

Who is this course for?

- Open to graduate students only
- Students who complete this course successfully will receive 8000-level credit (4 credit hours)
- This is an advanced, research-oriented course
- Prerequisites
 - Operating Systems
 - Computer Networks
 - Programming (e.g., C/C++, Java, Python)
 - Basics of Computer Security + Crypto will help!

Goals of this course

- Analyze computer security systems
- Learn to identify vulnerabilities
- Analyze recent attacks
- Learn to design better defenses
- Find and address open research problems
- Learn to read, analyze, and write academic papers

How will we get there?

- Brief introduction to security concepts
- Quick intro to ML concepts (later in the course)
- Seminar-style lectures
- We'll read papers (mainly) from top security and systems conferences
 - IEEE S&P, USENIX Security, ACM CCS, NDSS, SIGCOMM, NSDI, etc...
- Papers will be assigned in advance
- Students are responsible for
 - Presenting one or more papers during the semester
 - Writing short reviews for some of the papers
 - Reading all assigned papers!

Topics

- Malware: analysis, packing/obfuscation, detection, behavioral clustering
- Worms: propagation and mitigation
- Botnets: measurement and detection
- Spam: content analysis, network-level spammer behavior
- Vulnerabilities: Buffer-overflows, returnoriented programming
- IDS: Anomaly detectors, evasion attacks

Topics

- Web Security: browser-side and server-side vulnerabilities
- Privacy: de-anonymizing data, self-destructive data
- DNS security: poisoning attacks, domain reputation and blacklisting
- Physical security: hardware-assisted security primitives, audio-visual attacks

Grading

- 10% Class Participation
- 15% Paper Reviews
- 35% Paper Presentations
- 40% Research Project

Class Participation (10%)

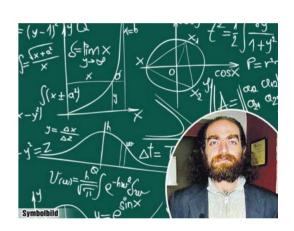
 We will discuss one paper per lecture (refer to course schedule)

 You will need to read all papers, unless I indicated a paper is "optional"

 Reading the papers is fundamental to be able to actively participate to discussions during class

Paper Reviews (15%)

- You are responsible to write a short peer-style review for some of the papers (one paper per week, in average)
- I will indicate what papers you need to review
- Reviews need to be short (max 1 or 2 pages) and yet meaningful
 - What is the paper about?
 - What are the main contributions?
 - Are the contributions novel or incremental?
 - Is the paper technically correct
 - Is the experimental setup realistic?
 - What are the main experimental results?
 - Are they over-optimistic? Are they satisfying?
 - Pros/Cons and open problems


Paper Presentations (35%)

- You will be asked to present one or more papers during the semester
- Presentation guidelines
 - 40-50 min presentation + 15-20 min discussion
 - introduce the problem
 - explain motivations for the work
 - differences with previous work
 - describe approach
 - experimental setup/results
 - limitations
 - pros/cons and points for discussion

Research Project (40%)

- I will suggest possible projects, but feel free to propose your own relevant topic
- Clearly state
 - motivation, approach, results
- Choose early!
- Be realistic!
 - Don't try to solve a *Millennium Prize Problem* in one semester!
- I prefer simplicity+completeness to nice ideas but incomplete results
 - unless you really have a super cool idea that has a chance to be published in IEEE S&P!

Research Project

- it does not necessarily have to be related to your long-term research plans, but...
- try to find something that is close to your research area, if possible
 - You will likely enjoy it more!
 - You will probably do better!
 - e.g., if you do research in DBs, try to find something related to DB security
 - If you do research in mobile computing, choose something related to security in mobile devices
 - etc.

Research Project

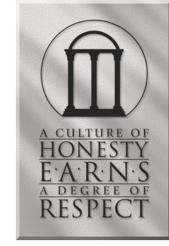
Advice

- read as many papers as you can on the topic you are interested in
- make sure you are not re-inventing the wheel
- can we overcome limitations of previous work?

PERFERENCES

- look at the problem from a different angle
- measurement papers are ok, in particular when you can draw unexpected or non-

obvious conclusions


Research Project

- Things to consider
 - data is fundamental!
 - what data have you got access to?
 - what data would you be able to get?
 - can you perform experiments on a meaningful amount of data?

- if you have doubts
 - talk to me...

Academic Integrity

- Every student must abide by UGA's academic honesty policy
- Dishonest behavior including cheating, copying, or forging experimental results will not be tolerated!

Ethical Learning

 In this class we will learn about vulnerabilities in computer systems and attacks that may exploit them

 Such information must never be used for unethical purposes

First Assignment

Learn LaTeX, please!

http://en.wikibooks.org/wiki/LaTeX

and plenty of other tutorials online...

Logistics

- Course website
 - http://www.cs.uga.edu/~perdisci/CSCI8260-S16/
 - official reference for all details regarding the course (check it regularly!)
- You can email me for questions
 - perdisci@cs.uga.edu
 - please use [CSCl8260] in the subject!
- If you need to talk to me
 - right after class
 - office hours (to be announced)

Next

- Introduction to Computer Security
- Brief overview of research topics in security
- Intro to ML
- Tips on how to choose a research project
- Tips on how to write a paper (maybe later in the course...)
- Start choosing what papers you would like to present (I will make a list available soon)

Before you leave...

• Questions?

 Introduce yourself and your research interests!