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The language of cryptography 
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m plaintext message 
KA(m) ciphertext, encrypted with key KA 
m = KB(KA(m)) 

plaintext plaintext ciphertext 

K A 

encryption 
algorithm 

decryption  
algorithm 

Alice’s  
encryption 
key 

Bob’s  
decryption 
key 

K B 



Basics 

  Alternative Notation 
  Secret key K 
  Encryption function EK(P) 
  Decryption function DK(C)  
  Plaintext length typically the same as ciphertext length 
  Encryption and decryption are permutation functions 

(bijections) on the set of all n-bit arrays 
  Efficiency 

  functions EK and DK should have efficient algorithms 
  Consistency 

  Decrypting the ciphertext yields the plaintext 
  DK(EK(P)) = P 
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Simple encryption scheme (Ceasar cipher) 
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substitution cipher: substituting one thing for another 
  monoalphabetic cipher: substitute one letter for another 

plaintext:  abcdefghijklmnopqrstuvwxyz 

ciphertext:  mnbvcxzasdfghjklpoiuytrewq 

Plaintext: bob. i love you. alice 
ciphertext: nkn. s gktc wky. mgsbc 

E.g.: 

Key: the mapping from the set of 26 letters to the  
set of 26 letters 



Substitution Ciphers 
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  Each letter is uniquely 
replaced by another. 

  ROT13 examaple: 
  CIAO  PVNB 

  One popular substitution 
“cipher” for some 
Internet posts is ROT13. 

Public domain image from http://en.wikipedia.org/wiki/File:ROT13.png 



Polyalphabetic encryption 
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  n monoalphabetic cyphers, M1,M2,…,Mn 

  Cycling pattern: 
  e.g., n=4    M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;  

  For each new plaintext symbol, use subsequent 
monoalphabetic pattern in cyclic pattern 
  dog: d from M1, o from M3, g from M4 

  Key: the n ciphers and the cyclic pattern 

  Example:  
  Vigenere cipher 



Vigenere cipher 
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  Plaintext 
  ATTACKATDAWN 

  Key 
  LEMON 

  Keystream 
  LEMONLEMONLE… 

  Ciphertext 
  LXFOPVEFRNHR 

Example from Wikipedia 
http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher 



Cryptography vs. Cryptanalysis 
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  Cryptographers invent new clever cryptographic schemes 
  Objective: make it infeasible to recover the plaintext 

  Computational difficulty: efficient to compute cipher-text, but hard to 
“reverse” without the key 

  Cryptanalysis studies cryptographic schemes 
  Objective: try to find flaws in the schemes 

  E.g., recover some info about the plaintext, or recover the key 

   Fundamental Tenet of Cryptography 
  “If lots of smart people have failed to solve a problem, then it 

probably won’t be solved (soon)” 



Breaking an encryption scheme 
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  Cipher-text only attack: 
Trudy has ciphertext that 
she can analyze 

  Two approaches: 
  Search through all keys: must be 

able to differentiate resulting 
plaintext from gibberish 

  Statistical analysis 

  Known-plaintext attack: 
trudy has some plaintext 
corresponding to some 
ciphertext 
  eg, in monoalphabetic cipher, 

trudy determines pairings for 
a,l,i,c,e,b,o, 

  Chosen-plaintext attack: 
trudy can get the cyphertext 
for some chosen plaintext The crypto algorithms is 

typically public. Only thing that 
is assumed to be secret is the key. 



Attacks 

  Attacker may have 
a)  collection of ciphertexts 

(ciphertext only attack) 
b)  collection of plaintext/

ciphertext pairs (known 
plaintext attack) 

c)  collection of plaintext/
ciphertext pairs for plaintexts 
selected by the attacker 
(chosen plaintext attack) 

d)  collection of plaintext/
ciphertext pairs for 
ciphertexts selected by the 
attacker (chosen ciphertext 
attack) 
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Hi, Bob. 
Don’t 
invite Eve 
to the 
party!  
Love, Alice 

Encryption 
Algorithm 

Plaintext Ciphertext 

key 

Eve 

Hi, Bob. 
Don’t 
invite Eve 
to the 
party!  
Love, Alice 

Plaintext Ciphertext 

key 

ABCDEFG 
HIJKLMN
O 
PQRSTUV 
WXYZ. 

Plaintext Ciphertext 

key 

IJCGA, 
CAN DO 
HIFFA 
GOT 
TIME. 

Plaintext Ciphertext 

key 

Eve 

001101 
110111 

(a) 

(b) 

(c) 

(d) 

Eve 

Eve 

Eve 

Encryption 
Algorithm 

Encryption 
Algorithm 

Encryption 
Algorithm 
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Frequency Analysis 
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  Letters in a natural language, like English, are not uniformly 
distributed. 

  Knowledge of letter frequencies, including pairs and triples 
can be used in cryptologic attacks against substitution 
ciphers. 



Types of Cryptography 
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  Crypto often uses keys: 
  Algorithm is known to everyone 
  Only “keys” are secret 

  Public key cryptography  
  Involves the use of two keys 

  Symmetric key cryptography 
  Involves the use of one key 

  Hash functions 
  Involves the use of no keys 
  Nothing secret: How can this be useful? 



Symmetric key cryptography 
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symmetric key crypto: Bob and Alice share same (symmetric) 
key: K 

  e.g., key is knowing substitution pattern in mono alphabetic 
substitution cipher 

Q: how do Bob and Alice agree on key value? 

plaintext ciphertext 

K S 

encryption 
algorithm 

decryption  
algorithm 

S 

K S 

plaintext 
message, m 

K    (m) S 
m = KS(KS(m)) 



Two types of symmetric ciphers 
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  Stream ciphers 
  encrypt one bit at time 

  Block ciphers 
  Break plaintext message in equal-size blocks 
  Encrypt each block as a unit 



Stream Ciphers 
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  Combine each bit of keystream with bit of plaintext to get bit of 
ciphertext 
  m(i) = ith bit of message 
  ks(i) = ith bit of keystream 
  c(i) = ith bit of ciphertext 
  c(i) = ks(i) ⊕ m(i)   (⊕ = exclusive or) 
  m(i) = ks(i) ⊕ c(i)  

  Problem: 
  If attacker knows portion of plaintext P, she can replace it with desired 

malicious plaintext P’ 

keystream 
generator key keystream 

pseudo random 



RC4 Stream Cipher 
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  RC4 is a popular stream cipher 
  Extensively analyzed and considered good 
  Key can be from 1 to 256 bytes 
  Used in WEP for 802.11 
  Can be used in SSL 



One-Time Pads 
  There is one type of substitution cipher that is absolutely 

unbreakable. 
  The one-time pad was invented in 1917 by Joseph 

Mauborgne and Gilbert Vernam 
  We use a block of shift keys, (k1, k2, . . . , kn), to encrypt a 

plaintext, M, of length n, with each shift key being chosen 
uniformly at random. 

  Since each shift is random, every ciphertext is equally 
likely for any plaintext. 
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One-Time Pads 
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  Key is as long as the message to be sent 
  Stream of bits generated at random (not pseudo-random) 

  Impossible to crack (perfect security?) 
  H(M) = H(M|C) 

  The ciphertext C provides no information about M 
  Given we only know C, every plaintext message is equally possible 

  Proven by Shannon 

  Impractical 
  Keys need to be known to the receiver 
  Transferred through other means (e.g., paper) 
  Never reuse the same key 



Weaknesses of the One-Time Pad 

  In spite of their perfect 
security, one-time pads have 
some weaknesses 

  The key has to be as long as 
the plaintext 

  Keys can never be reused 
  Repeated use of one-time pads 

allowed the U.S. to break some 
of the communications of Soviet 
spies during the Cold War. 
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Block Ciphers 
  In a block cipher: 

  Plaintext and ciphertext have fixed length b (e.g., 128 bits) 

  A plaintext of length n is partitioned into a sequence of m 
blocks, P[0], …, P[m-1], where n ≤ bm < n + b 

  Each message is divided into a sequence of blocks and 
encrypted or decrypted in terms of its blocks. 

9/9/13 Cryptography 20 

Plaintext 

Blocks of 
plaintext 

Requires padding 
with extra bits. 



Padding 
  Block ciphers require the length n of the plaintext to be a multiple 

of the block size b 
  Padding the last block needs to be unambiguous (cannot just add 

zeroes) 
  When the block size and plaintext length are a multiple of 8, a 

common padding method (PKCS5) is a sequence of identical bytes, 
each indicating the length (in bytes) of the padding 

  Example for b = 128 (16 bytes) 
  Plaintext: “Roberto” (7 bytes) 
  Padded plaintext: “Roberto999999999” (16 bytes), where 9 denotes the 

number and not the character 

  We need to always pad the last block, which may consist only of 
padding (http://tools.ietf.org/html/rfc2898) 

9/9/13 Cryptography 21 



Block ciphers 
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  Message to be encrypted is processed in blocks of k 
bits (e.g., 64-bit blocks). 

  1-to-1 mapping is used to map k-bit block of plaintext 
to k-bit block of ciphertext 

Example with k=3: 

input   output 
000      110 
001       111 
010       101 
011       100 

input   output 
100      011 
101       010 
110       000 
111       001 

What is the ciphertext for 010110001111 ? 



Block ciphers 
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  How many possible mappings are there for k=3? 
  How many 3-bit inputs? 
  How many permutations of the 3-bit inputs? 
  Answer: 40,320 ;  not very many! 

  In general, 2k! mappings;   huge for k=64 
  Hard to brute force! 

  Storage Problem:  
  Table approach requires table with 264 entries, each entry with 

64 bits 
  It’s like having a key that is 64 x 264 bits long 

  Table too big: instead use function that simulates a 
randomly permuted table 



Prototype function (Version 1) 
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64-bit input 

S1 

8bits 

8 bits 

S2 

8bits 

8 bits 

S3 

8bits 

8 bits 

S4 

8bits 

8 bits 

S7 

8bits 

8 bits 

S6 

8bits 

8 bits 

S5 

8bits 

8 bits 

S8 

8bits 

8 bits 

64-bit intermediate Loop for  
n rounds 

8-bit to 
8-bit 
mapping 

From Kaufman 
et al 



Prototype function (Version 2) 
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64-bit input 

S1 

8bits 

8 bits 

S2 

8bits 

8 bits 

S3 

8bits 

8 bits 

S4 

8bits 

8 bits 

S7 

8bits 

8 bits 

S6 

8bits 

8 bits 

S5 

8bits 

8 bits 

S8 

8bits 

8 bits 

64-bit intermediate 

64-bit output 
Loop for  
n rounds 

8-bit to 
8-bit 
mapping 

From Kaufman 
et al 



Why rounds? 
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  If only a single round, then one bit of input affects at most 
8 bits of output. 

  In 2nd round, the 8 affected bits get scattered (via 
permutation) and inputted into multiple substitution 
boxes. 

  How many rounds? 
  How many times do you need to shuffle cards 
  Becomes less efficient as n increases 



Symmetric key crypto: DES 
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DES: Data Encryption Standard 
  US encryption standard [NIST 1993] 
  56-bit symmetric key (64 – 8 parity bits) 
  64-bit plaintext input blocks 
  Can be used in a cipher block chaining (CBC) setting to 

encrypt longer messages 



Symmetric key  
crypto: DES 

28 

initial permutation  
16 identical “rounds” of 

function application, 
each using different 48 
bits of key 

final permutation 

DES operation 



DES Rounds 
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1-round Encryption and Decryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



DES Rounds 
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1-round Encryption and Decryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



DES Mangler Function  

31 

Expansion of R from 
32 to 48 bits 

Expanded R and the Key 
are divided into eight 6-bit 
Chunks 

Each 6-bit chunk is mapped 
into a 4-bit block 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



How does the S-box look like? 
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  There are 8 S-boxes (48/6) 



Generating Per-Round Keys 
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  Start with 56-bit key (64 - 8 parity bits) 
  Why 56 bits? Unknown… 

  First divide 56-bit key into two 28-bit chunks 
  Rotate bits for 16 rounds… 

  Some rounds rotate only by one bit, others rotate by two bits 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



Does DES work? 
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DES Security 
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  How secure is DES? 
  DES Challenge: 56-bit-key-encrypted phrase  decrypted (brute 

force) in less than a day 
  No known good analytic attack 

  making DES more secure: 
  3DES: encrypt 3 times with 3 different keys (56*3=168 bits) 
(actually encrypt, decrypt, encrypt) 
  c = Kc(Kb

-1(Ka(m))) 
  m = Ka

-1(Kb(Kc
-1(c))) 



3DES 
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  In practice only 2 keys are used 
  c = Ka(Kb

-1(Ka(m))) 
  m = Ka

-1(Kb(Ka
-1(c))) 

  It has been shown to be sufficiently secure 
  Avoids overhead of sending over 3 keys  

  In DES we can encrypt by decrypting (???) 
  Using c = Ka(Kb

-1(Ka(m))) allows for inter-operation with DES 
  Use Kb = Ka 

  Why 3DES and not 120DES or 2DES? 
  2DES has been proven not secure (takes only twice the time to 

brute-force a single-DES key) 
  120DES would be very expensive from a computational point of view 



37 

  xxx 



Crypto modes 
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  Combining use of basic cipher for practical applications 

  An application may need to 
  Be able to parallelize encryption and decryption 
  Preprocess as much as possible 
  Recover from bit errors/loss in the ciphertext 
  … 

  Different modes provide different characteristics 



Encrypting a large message 
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  Why not just break message in 64-bit blocks, encrypt 
each block separately? 

message 

m1 m2 m3 mn 

c1 c2 c3 cn 

Key 

Electronic Code Book (ECB) Encrypt 

Decrypt 



ECB 
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  Why not just break message in 64-bit blocks, encrypt 
each block separately? 
  The same plaintext always maps to the same ciphertext  

  in theory we can create a precomputed code book (one per key!) 
  Would be useful for random access files 

  ecryption and decryption trivially parallelizable 
  If same block of plaintext appears twice, will give same 

ciphertext 
  May facilitate cryptanalysis 
  we could swap things (e.g., swap salaries) 

t=1 m(1)   = “HTTP/1.1” block 
cipher 

c(1)    = “k329aM02” 

… 
t=17 m(17)   = “HTTP/1.1” block 

cipher 
c(17)    = “k329aM02” 



Strengths and Weaknesses of ECB 

9/9/13 Cryptography 41 

  Strengths: 
  Is very simple 
  Allows for parallel 

encryptions of the blocks 
of a plaintext 

  Can tolerate the loss or 
damage of a block 

  Weakness: 
  Documents and images are not 

suitable for ECB encryption since 
patters in the plaintext are repeated 
in the ciphertext: 



Weaknesses of ECB 
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  Example: Assume attacker knows a block of plaintext 
and wants to modify replace it 

  Jack Webb   $51,000       Jim Cook   $12,000 
      C1             C2               C3           C4 

  Jack Webb   $51,000       Jim Cook   $51,000 
      C1             C2               C3           C2 

   



Encrypting a large message 
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  How about: 
  Generate random 64-bit number r(i) for each plaintext block m(i) 
  Calculate c(i) = KS( m(i) ⊕ r(i) ) 
  Transmit c(i), r(i), i=1,2,… 
  At receiver: m(i) = KS(c(i)) ⊕ r(i)  
  Problems:  

  inefficient, need to send c(i) and r(i) 

message 

m1⊕r1 m2⊕r2 m3⊕r3 mn⊕rn 

c1 c2 c3 cn 

Key 

Electronic Code Book (ECB) 



Cipher Block Chaining (CBC) 
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  CBC generates its own random numbers 
  Have encryption of current block depend on result of previous block 
  c(i) = KS( m(i) ⊕ c(i-1) ) 
  m(i) = KS( c(i) ) ⊕ c(i-1) 

  Forces same plaintext blocks to produce different ciphertext  
  How do we encrypt first block? 

  Initialization vector (IV): random block = c(0) 
  IV does not have to be secret 

  Change IV for each message (or session) 
  Guarantees that even if the same message is sent repeatedly, the 

ciphertext will be completely different each time 



Cipher Block Chaining 

❒  cipher block chaining: 
XOR ith input block, m(i), 
with previous block of 
cipher text, c(i-1) 
❍  c(0) transmitted to 

receiver in clear 
❍  what happens in 

“HTTP/1.1” scenario 
from above? 

+ 

m(i) 

c(i) 

block 
cipher 

c(i-1) 



CBC 
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CBC Encryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



CBC 
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CBC Encryption 

CBC Decryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



CBC: Threats 
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  CBC does not eliminate the possibility of somebody modifying the message in 
transit 

  The attacker cannot swap blocks (e.g., to replace the IT guy’s salary with the 
CEO salary), but can modify the ciphertext 

  Example: Assume attacker knows a block of plaintext and wants to modify it 
   Jack Webb      IT Department      $51,000 
        Ci-1         Ci              Ci+1 

  Changing Ci will modify Mi+1 in a predictable way 
  However, Mi will be most likely garbled  

  The changed may be noticeable or not, the attacker may decide take his chances 
  One possible defense 

  Attach one checksum block to the plaintext before encrypting 
  Changes in the plaintext will be detected with high probability 



Strengths and Weaknesses of CBC 
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  Weaknesses: 
  CBC requires the reliable 

transmission of all the 
blocks sequentially 

  CBC is not suitable for 
applications that allow 
packet losses (e.g., music 
and video streaming) 

  Existence of Threats 

  Strengths: 
  Doesn’t show patterns in 

the plaintext 
  Is the most common 

mode 
  Is fast and relatively simple 



Output Feedback Mode 
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  Use Block Cipher to generate key-stream (ks) 
  K(IV) = [b0…bn] 
  K([b0…bn]) = bn+1…b2n 

  etc. 

  Keystream can be generated in advance, before message to be sent arrives 
  Destination knows IV and K, therefore can generate same keystream 

  Ciphertext generated as usual 
  Encryption: c = m ⊕ ks 
  Decryption: m = c ⊕ ks 

  Potential problem 
  If somebody knows a portion P or the plaintext, that can be replaced with 

another “malicious” portion P’ 



Output Feedback Mode (k-bits) 
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See Kaufman et al. “Network Security, Private Communication in a Public World” 



Cipher Feedback Mode 
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See Kaufman et al. “Network Security, Private Communication in a Public World” 



Cipher Feedback Mode (CFB) 
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  Keystream cannot be generated in advance 
  Need to wait for message to arrive 

  Comparison with CBC and OFB 
  CBC/OFB: if bits of ciphertext lost in transmission, the entire rest of 

transmission is garbled 
  CFB: with 8-bit CFB, as long as the error is an integral number of 

bytes, things will re-sync. (1 bit error will affect 9 consecutive bytes) 



Counter Mode (CTR) 
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  Similar to OFM 
  Encrypts increments of IV to generate keystream 
  Advantages: 

  Decryption can start anywhere, as long as you know the block 
number you are considering 

  Useful in case of encrypted random access files, for example 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



Summary 
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From “Applied Cryptography”, 2nd edition 
Bruce Schneier 
Wiley 



AES: Advanced Encryption Standard 
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  In 1997, the U.S. National Institute for Standards and 
Technology (NIST) put out a public call for a replacement 
to DES.  

  It narrowed down the list of submissions to five finalists, 
and ultimately chose an algorithm that is now known as 
the Advanced Encryption Standard (AES). 

  new (Nov. 2001) symmetric-key NIST standard, replacing DES 
  Nice mathematical justification for design choices 

  processes data in 128 bit blocks 
  128, 192, or 256 bit keys 
  brute force decryption (try each key) taking 1 sec on DES, 

takes 149 trillion years for AES 



The Advanced Encryption Standard (AES) 

  AES is a block cipher that operates on 128-bit blocks. It is designed to 
be used with keys that are 128, 192, or 256 bits long, yielding ciphers 
known as AES-128, AES-192, and AES-256. 
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AES Round Structure 

  The 128-bit version of the AES 
encryption algorithm proceeds in 
ten rounds.  

  Each round performs an invertible 
transformation on a 128-bit array, 
called state.  

  The initial state X0 is the XOR of 
the plaintext P with the key K: 

         X0 = P  XOR  K. 
  Round i (i = 1, …, 10) receives state 

Xi-1 as input and produces state Xi. 
  The ciphertext C is the output of 

the final round: C = X10. 
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AES Rounds 
  Each round is built from four basic steps: 
1.  SubBytes step: an S-box substitution step 
2.  ShiftRows step: a permutation step 
3.  MixColumns step: a matrix multiplication step 
4.  AddRoundKey step: an XOR step with a round key 

derived from the 128-bit encryption key 
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Key Exchange 
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  Enable Alice to communicate with Bob using shared key 
  The key cannot be transmitted in clear 
  It must be either encrypted when transmitted, or derived in a way that a 

third party cannot derive the same key 
  Alice and Bob may rely on a trusted third party, e.g., Cathy 
  The cryptosystem and protocols are publicly known 

  First Attempt to Key Exchange 
  Alice and Cathy share a secret Ka 
  Cathy and Bob share a secret Kb 

1.  Alice >> Cathy : Ka(request for session key to Bob) 
2.  Cathy >> Alice : Ka(Ks) | Kb(Ks) 
3.  Alice >> Bob : Kb(Ks) 
4.  Alice can now privately send message M to Bob using Ks 

1.  Alice >> Bob : Ks(M) 

See Bishop “Introduction to Computer Security” 



Key Exchange 
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  Problem: Replay Attack 
  Eve records (3) and Ks(M), which was sent by Alice to Bob 
  Eve >> Bob: Kb(Ks) 
  Eve >> Bob: Ks(M) 
  If M = “Deposit $500k in Roberto’s account”, we have a problem! 

  Needham-Schroeder protocol 
1.  Alice >> Cathy :  “Alice” | “Bob” | Rand1 
2.  Cathy >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks)) 
3.  Alice >> Bob : Kb(“Alice” | Ks) 
4.  Bob >> Alice : Ks(Rand2) 
5.  Alice >> Bob : Ks(Rand2-1) 

See Bishop “Introduction to Computer Security” 


