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Public Key Cryptography 

symmetric key crypto 
  requires sender, receiver 

know shared secret key 

  Q: how to agree on key in 
first place (particularly if 
never “met”)? 
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public key cryptography 
❒  radically different 

approach [Diffie-
Hellman76, RSA78] 

❒  sender, receiver do 
not share secret key 

❒  public encryption key  
known to all 

❒  private decryption 
key known only to 
receiver 



Public key cryptography 
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Public key encryption algorithms 
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need K  ( ) and K  ( ) such that B B 

given public key K  , it should be 
impossible to compute private 
key K   B 

B 

Requirements: 

1 

2 

RSA: Rivest, Shamir, Adelson algorithm 

+ - 

K  (K  (m))  =  m  
B B 

- + 

+ 

- 



RSA: getting ready 
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  A message is a bit pattern. 
  A bit pattern can be uniquely represented by an integer 

number.  
  Thus encrypting a message is equivalent to encrypting a 

number. 
Example 
  m= 10010001  

  This message is uniquely represented by the decimal number 145.  
  To encrypt m, we encrypt the corresponding number, which gives a 

new number (the cyphertext). 



RSA: Creating public/private key pair 
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1. Choose two large prime numbers p, q.  
   (e.g., 1024 bits each) 

2. Compute n = pq,  z = (p-1)(q-1) 

3. Choose e (with e<n) that has no common factors 
    with z. (e, z are “relatively prime”). 

4. Choose d (with d<n) sothat ed-1 is divisible by z. 
    (in other words: ed mod z  = 1 ). 

5. Public key is (n,e).  Private key is (n,d). 

K  B 
+ K  B 

- 



RSA: Creating public/private key pair 
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1. Choose two large prime numbers p, q.  
   (e.g., 1024 bits each, to avoid brute force given n) 

2. Compute n = pq,  z = (p-1)(q-1) 

3. Choose e (with e<n) that has no common factors 
    with z. (e, z are “relatively prime”). 

4. Choose d (with d<n) sothat ed-1 is divisible by z. 
    (in other words: ed mod z  = 1 ). 

5. Public key is (n,e).  Private key is (n,d). 

K  B 
+ K  B 

- 

e can be  
relatively  small 

d should be large 



RSA: Encryption, decryption 
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0.  Given (n,e) and (n,d) as computed above 

1. To encrypt message m (<n), compute 
c = m   mod  n e 

2. To decrypt received bit pattern, c, compute 
m = c   mod  n d 

m  =  (m   mod  n) e  mod  n d Magic 
happens! 

c 

public private 



RSA example: 
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Bob chooses p=5, q=7.  Then n=35, z=24. 
e=5  (so e, z  relatively prime). 
d=29 (so ed-1 exactly divisible by z) 
ed-1 = 144,  144/24=6 

bit pattern m m e c = m  mod  n e 

0000l000 12 24832 17 

c m = c  mod  n d 

17 481968572106750915091411825223071697 12 
c d 

encrypt: 

decrypt: 

Encrypting 8-bit messages. 



Prerequisite: modular arithmetic 
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  x mod n = remainder of x when divide by n 
  Facts: 

[(a mod n) + (b mod n)] mod n = (a+b) mod n 
[(a mod n) - (b mod n)] mod n = (a-b) mod n 
[(a mod n) * (b mod n)] mod n = (a*b) mod n 

  Thus 
      (a mod n)d mod n = ad mod n 
  Example: x=14, n=10, d=2: 

  (x mod n)d mod n = 42 mod 10 = 6 
  xd = 142 = 196   and   xd mod 10  = 6  



Multiplicative Inverses (1) 
  The residues modulo a positive integer n are the set 

  Zn = {0, 1, 2, …, (n - 1)}  
  Let x and y be two elements of Zn such that 

  xy mod n = 1 
 We say that y  is the multiplicative inverse of x in Zn and we 
write y = x-1 

  Example: 
  Multiplicative inverses of the residues modulo 10 
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x 0 1 2 3 4 5 6 7 8 9 
x-1 1 7 3 9 



Multiplicative Inverses (2) 
Theorem 

 An element x of Zn has a multiplicative inverse if and only if x and n are 
relatively prime 

  Example 
  The elements of Z10 with a multiplicative inverse are 1, 3, 7, 9 

Corollary 
 If p is prime, every nonzero residue in Zp has a multiplicative inverse 

  Example: 
  Multiplicative inverses of the residues modulo 11 
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x 0 1 2 3 4 5 6 7 8 9 10 
x-1 1 6 4 3 9 2 8 7 5 10 



Euler’s Theorem 
  The multiplicative group for Zn, denoted with Z*n, is the subset of elements of 

Zn relatively prime with n  
  The totient function of n, denoted with φ(n), is the size of Z*n 
  Example 

  Z*10  = { 1, 3, 7, 9 }   φ(10) = 4	


  If p is prime, we have 

  Z*p  = {1, 2, …, (p - 1)}  φ(p) = p - 1 
Euler’s Theorem 

 For each element x of Z*n, we have xφ(n) mod n = 1 
  Example (n = 10) 

 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1	


	

7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1	


	

9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1 

  Consequence 
  xy mod n = xy mod φ(n) mod n  
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Why? 
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  Remember 
  [(a mod n)(b mod n)] mod n = (ab) mod n 
  (a mod n)d mod n = ad mod n 

  Then 
  xy mod n = x(kφ(n)+r) mod n = xkφ(n) xr mod n =  

[(xkφ(n) mod n)(xr mod n)] mod n = xy mod φ(n)  mod n  

=1 if x in Z*n 



Why does RSA work? 
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  Remember that  
  p and q are two large primes 
  n = pq;  z = (p-1)(q-1) = φ(n) 
  ed mod z = 1 

  z is equal to the totient of n 
  the number of numbers < n that are relatively prime to n   

  Fact: for any x and y,  xy mod n = x(y mod z) mod n 

  We need to show that cd mod n = m, where c = me mod n 

 cd mod n = (me mod n)d mod n 
                  = med mod n  
                  = m(ed mod z) mod n 
                  = m1 mod n 
                  = m                  (notice that m in [0, n-1]) 



RSA: another important property 
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The following property will be very useful later: 

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   B B 
+ - 

= 

use public key 
first, followed 
by private key  

use private key 
first, followed 
by public key  

Result is the same!  
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Follows directly from modular arithmetic: 

(me mod n)d mod n = med mod n 
                             = mde mod n 
                             = (md mod n)e mod n  

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   B B 
+ - 

= Why ? 



Why is RSA Secure? 
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  Suppose you know Bob’s public key (n,e). How hard is 
it to determine d? 

  Essentially need to find factors of n without knowing 
the two factors p and q.  

  Fact: factoring a big number is hard. 



Algorithmic Issues 

  The implementation of the 
RSA cryptosystem 
requires various 
algorithms 

  Overall 
 Representation of integers of 
arbitrarily large size and 
arithmetic operations on 
them 

  Encryption 
 Modular power 

  Decryption 
 Modular power 

  Setup 
 Generation of random 
numbers with a given number 
of bits (to generate candidates 
p and q) 

 Primality testing (to check that 
candidates p and q are prime) 

 Computation of the GCD (to 
verify that e and φ(n) are 
relatively prime) 

 Computation of the 
multiplicative inverse (to 
compute d from e) 
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Session keys 
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  Exponentiation is computationally intensive 
  DES is at least 100 times faster than RSA 
Session key, KS 

  Bob and Alice use RSA to exchange a symmetric key KS 

  Once both have KS, they use symmetric key cryptography 



Diffie-Hellman 
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  Public key cryptosystem 
  First known public key-based system 
  Useful to perform key exchange when communication channel is not 

private 

  Alice and Bob first agree on a large prime p and another number 
g < p (some subtle restrictions apply…), then 
1.  g and p can be published (no need to keep them secret) 
2.  Alice chooses a random number Sa, and Bob a rand num Sb 
3.  Alice computes Ta = gSa mod p, Bob computes Tb = gSb mod p 
4.  Alice and Bob exchange Ta and Tb (in public) 
5.  Alice and Bob compute TbSa mod p and TaSb mod p, respectively 
6.  They will get the same number (the exchanged key) 

 TbSa = gSbSa mod p = gSaSb mod p = TaSb 



Diffie-Hellman 
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  Why is this secure? 
  Nobody else can calculate gSaSb, even if they separately know  

Ta = gSa mod p and Tb = gSb mod p 

  To get Sa or Sb an attacker would need to compute discrete 
logarithms 
  Discrete logarithms are very hard to compute  
  Mathematicians have not yet figured out how to do it efficiently 

  Vulnerable to man-in-the-middle attack in certain scenarios 
  Alice and Bob do not authenticate each other 
  Attacker may intercept and replace Ta and Tb 
  To solve (or mitigate) problem, Ta and Tb should be stored in a 

secure repository of “public numbers” 



DH – Man-in-the-Middle Attack 
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gSa = 8389 gSb = 9267 

gSe = 5876 

8389 

9267 

5876 

5876 

Alice-Eve 
Shared Key 
5876Sa = 8389Se 

Bob-Eve 
Shared Key 
5876Sb = 9267Se 

Does it help if Alice and Bob try to verify their identity 
by sending each other a pre-shared password? 



DH – Man-in-the-Middle Defense 
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  Published DH numbers 
  p and g are agreed upon 
  Each party chooses a fixed secret number Si and publishes her 

(Ti = gSi mod p) in a reliable place  
  Assumption: the attacker cannot change/forge p and g 

  Authenticated DH, examples 
  Alice can sign her Ta 
  Alice can encrypt her Ta with Bob’s pub key 
  After DH, Alice sends Bob a hash H(S|Ta), where S is a pre-

shared secret (e.g., a password) 



DH – Man-in-the-Middle Defense 

86 

  Bob is a server, and has a priv/pub key 
  Alice knows (and trusts) Bob’s pub key,  Kb

+ 

Kb
+(Ta) 

Tb 

Ks(r1) 

Ks(r1+1) 

Ks(M) 

This seems to have significant problems 
(Eve can still pretend to be Alice) 

Ks=TaSb mod p Ks=TbSa mod p 



DH – Man-in-the-Middle Defense 
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  Bob is a server, and has a priv/pub key 
  Alice knows Bob’s pub key,  Kb

+ 

Kb
+(Ta) 

Tb 

Ks(r1) 

Ks(r1+1) 

Ks(password) 

This seems to work but may still have problems 

Ks=TaSb mod p Ks=TbSa mod p 

Ks(OK | r2) 

Ks(M) 



Perfect Forward Secrecy 
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  A protocol is said to have PFS if it is impossible for Trudy 
to decrypt a message m sent between Alice and Bob, even 
if  Trudy, after m is sent, breaks into both Alice’s and Bob’s 
machines and steals their private keys 

  This can be achieved by using session keys that 
  Are chosen independently from the private/public keys 
  Alice and Bob forget the session key as soon as the 

communication is over 
  E.g., this can be done using Diffie-Hellman 

  Alice and Bob forget their Sa and Sb after end of session 
  To avoid man-in-the-middle, Alice “signs” Ta with her private 

key, and Bob “signs” Tb with his pub key 



Zero-Knowledge Proof Systems 
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  Used only for authentication 
  Allows you to prove that you know a secret without 

actually revealing the secret 
  E.g.: RSA is a zero-knowledge proof system 

  You can prove you know the “secret” associated with your 
public key without revealing your private key 

  There exist ZKPSs that are much more efficient than RSA 


