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CSCI 4250/6250 — Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)
CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.



Public Key Cryptography

symmetric key crypto public key cryptography

» requires sender, receiver r-adicqlly different
know shared secret key approach [Diffie-

Hellman76, RSA78]

» Q:how to agree on key in sender, receiver do
first place (particularly if share secret key
never “met”)? encryption key

known to
decryption

key known only to
receiver
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Public key cryptography
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Public key encryption algorithms

Requirements:

need KE( )-and Iﬁg () such that
Kg (K, (M) = m

given public key Ké, it should be
impossible to compute private
key KB

RSA: Rivest, Shamir, Adelson algorithm
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RSA: getting ready

» A message is a bit pattern.

» A bit pattern can be uniquely represented by an integer
number.

» Thus encrypting a message is equivalent to encrypting a
number.

Example
» m= 0010001

This message is uniquely represented by the decimal number 145.

To encrypt m, we encrypt the corresponding number, which gives a
new number (the cyphertext).
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RSA: Creating public/private key pair

Choose two large prime numbers p, q.
(e.g., 1024 bits each)

Compute n = pg, z = (p-1)(g-1)

Choose e (with e<n) that has no common factors
with z. (e, zare "relatively prime").

Choose d (with d<n) sothat ed-1 is divisible by z.
(in other words: edmod z = 1).

Public key is (n,e). Private key is (n,d).
H_/ H_/

Ky Ka
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RSA: Creating public/private key pair

Choose two large prime numbers p, q.
(e.g., 1024 bits each, to avoid brute force given n)

Compute n = pg, z = (p-1)(g-1)

Choose e (with e<n) that has no common factors
with z. (e, zare "relatively prime").

Choose d (with d<n) sothat ed-1is divisible by z.
(in other words: edmod z = 1).
e can be

Public key is (n,e). Private key is (n,d). relatively small
H_J H_I
K+ K- d should be large
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RSA:

Encryption, decryption

public private

Given (n,e) and (n,d) as computed above

To encrypt message m (<n), compute

¢ =m€ mod n

To decrypt received bit pattern, ¢, compute

d

m=c"mod n
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m = (m® mod 7)d mod n
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RSA example:

Bob chooses p=5, g=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1exactly divisible by z)
ed-1=144, 144/24=6

Encrypting 8-bit messages.

bit pattern m m® ¢ = m®mod n

0000I000 12 24832 17

C gd m = cdmod h

17  481968572106750915091411825223071697 12
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Prerequisite: modular arithmetic

» x mod n = remainder of x when divide by n
»  Facts:

(@ mod n) + (b mod n)] mod n = (a+b) mod n
(@ mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n
» Thus

(a mod n)® mod n =afmod n
» Example: x=14,n=10, d=2:
(x mod n)Ymodn=4>mod 10 =6
x4=142=196 and x9mod I0 =6
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Multiplicative Inverses (1)

» The residues modulo a positive integer n are the set
Z =1{0,1,2,....,(n—-1)}
» Let x and y be two elements of Z, such that
xymodn=1
WVe say that y is the multiplicative inverse of x in Z, and we
write y = x|
» Example:

Multiplicative inverses of the residues modulo 10
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Multiplicative Inverses (2)

Theorem

An element x of Z, has a multiplicative inverse if and only if x and n are

relatively prime

» Example
The elements of Z,, with a multiplicative inverse are 1,3, 7,9

Corollary

If p is prime, every nonzero residue in Z, has a multiplicative inverse

» Example:

Multiplicative inverses of the residues modulo ||

X 6 7 10
x! 2 8 10
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Euler’s Theorem

» The multiplicative group for Z,, denoted with Z* , is the subset of elements of
Z, relatively prime with n

» The totient function of n, denoted with ¢(n), is the size of Z*,
» Example
Z*, ={1,3,7,9} o(10) = 4
» If pis prime, we have
z*,={L2,...(p~ 1); dp)=p-1
Euler’s Theorem
For each element x of Z* , we have x®") mod n = 1
» Example (n =10)
3909 mod 10 = 3* mod 10 = 81 mod 10 = 1
7¢(10) mod 10 = 7* mod 10 = 2401 mod 10 = 1
9¢(10) mod 10 = 9* mod 10 = 6561 mod 10 = 1

» Consequence
X’ mod n = x¥ "4 9") mod n
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Why?

» Remember
[(@ mod n)(b mod n)] mod n = (ab) mod n

(a mod n)d mod n = a9 mod n

» Then
xY mod n = xke®*) mod n = x*¢ x" mod n =
[(x*¢® mod n)(x" mod n)] mod n = xy ™4 ¢") mod n

=lifxin Z*,
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Why does RSA work?

» Remember that
p and q are two large primes

n=pq; z=(p-1)(g-1) = ¢(n)
edmodz =1

» zis equal to the totient of n
the number of numbers < n that are relatively prime to n
» Fact:for any x and y, x¥ mod n = x m°d2) mod n

» We need to show that ¢ mod n = m, where ¢ = m® mod n

cd mod n = (m® mod n)¢ mod n

= m mod n

= m(ed mod z) mod n

=m! mod n

=m . > (notice that m in [0, n-1])
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RSA: another important property

The following property will be useful later:

Ke(K (M) = m = K (K, (m))

use public key use private key
first, followed first, followed
by private key by public key
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Why  Ky(K (m) = m = K (K, (m) ?

Follows directly from modular arithmetic:
(m& mod n)d mod n = m® mod n

= m< mod n

= (m9 mod n)®¢ mod n
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Why is RSA Secure?

» Suppose you know Bob’s public key (n,e). How hard is
it to determine d!

» Essentially need to find factors of n without knowing
the two factors p and q.

» Fact: factoring a big number is hard.
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Algorithmic Issues

» The implementation of the
RSA cryptosystem
requires various
algorithms

» Overall

Representation of integers of
arbitrarily large size and
arithmetic operations on
them

» Encryption
Modular power

» Decryption
Modular power
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» Setup

Generation of random
numbers with a given number
of bits (to generate candidates

pand q)
Primality testing (to check that
candidates p and ¢ are prime)

Computation of the GCD (to
verify that e and ¢(n) are
relatively prime)

Computation of the
multiplicative inverse (to
compute d from e)

Cryptography 9/13/13



Session keys

» Exponentiation is computationally intensive
» DES is at least 100 times faster than RSA

Session key, K¢

» Bob and Alice use RSA to exchange a symmetric key K
» Once both have K, they use symmetric key cryptography
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Diffie-Hellman

» Public key cryptosystem
First known public key-based system

Useful to perform key exchange when communication channel is not
private

» Alice and Bob first agree on a large prime p and another number
g < p (some subtle restrictions apply...), then
g and p can be published (no need to keep them secret)
Alice chooses a random number Sa, and Bob a rand num Sb
Alice computes Ta = g mod p, Bob computes Tb = g** mod p
Alice and Bob exchange Ta and Tb (in public)
Alice and Bob compute Tb> mod p and Ta*® mod p, respectively

They will get the same number (the exchanged key)
Tb% = g% mod p = g% mod p = Ta
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Diffie-Hellman

» Why is this secure!
Nobody else can calculate g>**, even if they separately know
Ta=g?*mod pandTb = g®®*mod p
To get Sa or Sb an attacker would need to compute discrete
logarithms

Discrete logarithms are very hard to compute
Mathematicians have not yet figured out how to do it efficiently

» Vulnerable to man-in-the-middle attack in certain scenarios
Alice and Bob do not authenticate each other
Attacker may intercept and replace Ta and Tb

To solve (or mitigate) problem, Ta and Tb should be stored in a
secure repository of “public numbers”
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DH — Man-in-the-Middle Attack

g>¢= 8389 g5t = 9267

8389 > 5876 >
Q < 5876 < 9267 @

Alice-Eve Bob-Eve
Shared Key gSe= 5876 Shared Key
587652 = 83895¢ B8765P = 92675¢

Does it help if Alice and Bob try to verify their identity
by sending each other a pre-shared password?
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DH - Man-in-the-Middle Defense
» Published DH numbers

p and g are agreed upon

Each party chooses a fixed secret number Si and publishes her
(Ti = g8 mod p) in a reliable place

Assumption: the attacker cannot change/forge p and g

» Authenticated DH, examples
Alice can sign her Ta

Alice can encrypt her Ta with Bob’s pub key

After DH,Alice sends Bob a hash H(S|Ta), where S is a pre-
shared secret (e.g., a password)
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DH — Man-in-the-Middle Defense

» Bob is a server, and has a priv/pub key

» Alice knows (and trusts) Bob’s pub key, K.*

Ky*(Ta) .
< b _
< PR
Ks=Tb>*mod p _ K(ri+1) K=Ta**> mod p
Ks(M)

>
Ll

This seems to have significant problems
(Eve can still pretend to be Alice)
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DH — Man-in-the-Middle Defense

» Bob is a server, and has a priv/pub key

» Alice knows Bob’s pub key, K. *
Ky*(Ta)

) Tb

Q Ks(ry) .

Ks=Tb>*mod p _ Ks(ry+1) Ks=Ta>® mod p

K.(password)

v

K(OK | r,)
Ks(M)

>

87 This seems to work but may still have problems



Perfect Forward Secrecy

» A protocol is said to have PFS if it is impossible for Trudy
to decrypt a message m sent between Alice and Bob, even
if Trudy, after m is sent, breaks into both Alice’s and Bob’s
machines and steals their private keys

» This can be achieved by using session keys that

Are chosen independently from the private/public keys

Alice and Bob forget the session key as soon as the
communication is over

» E.g., this can be done using Diffie-Hellman
Alice and Bob forget their Sa and Sb after end of session

To avoid man-in-the-middle, Alice “signs” Ta with her private
key, and Bob “signs” Tb with his pub key
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Zero-Knowledge Proof Systems

» Used only for authentication

» Allows you to prove that you know a secret without
actually revealing the secret

» E.g.: RSA is a zero-knowledge proof system

You can prove you know the “secret” associated with your
public key without revealing your private key

» There exist ZKPSs that are much more efficient than RSA
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