

CSCI 4250/6250 – Fall 2013 Computer and Networks Security

INTRODUCTION TO CRYPTO CHAPTER 8 (Goodrich) CHAPTER 2-6 (Kaufman) CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key cryptography

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

Requirements:

- 1 need $K_B^+()$ and $K_B^-()$ such that $K_B^-(K_B^+(m)) = m$
- given public key K_B⁺, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adelson algorithm

RSA: getting ready

- A message is a bit pattern.
- A bit pattern can be uniquely represented by an integer number.
- Thus encrypting a message is equivalent to encrypting a number.

Example

- ▶ m= 10010001
 - This message is uniquely represented by the decimal number 145.
 - To encrypt m, we encrypt the corresponding number, which gives a new number (the cyphertext).

RSA: Creating public/private key pair

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e < n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d (with d < n) so that ed 1 is divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d). K_{B}^{+}

RSA: Creating public/private key pair

- 1. Choose two large prime numbers *p*, *q*. (e.g., 1024 bits each, to avoid brute force given *n*)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e < n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d (with d < n) so that ed 1 is divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d).

e can be relatively small d should be large

RSA: Encryption, decryption

public private

- O. Given (n,e) and (n,d) as computed above
- 1. To encrypt message m (<n), compute $c = m^e \mod n$
- 2. To decrypt received bit pattern, c, compute $m = c^d \mod n$

Magic happens!
$$m = (m^e \mod n)^d \mod n$$

RSA example:

```
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).

d=29 (so ed-1 exactly divisible by z)

ed-1=144, 144/24=6
```

Encrypting 8-bit messages.

encrypt:
$$\frac{\text{bit pattern}}{00001000} \frac{\text{m}}{12} \frac{\text{m}^e}{24832} \frac{\text{c = m}^e \text{mod n}}{17}$$

decrypt:
$$\frac{c}{17}$$
 $\frac{c}{481968572106750915091411825223071697}$ $\frac{m = c^d \mod n}{12}$

Prerequisite: modular arithmetic

- x mod n = remainder of x when divide by n
- Facts:

```
[(a mod n) + (b mod n)] mod n = (a+b) mod n

[(a mod n) - (b mod n)] mod n = (a-b) mod n

[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

Thus

```
(a \mod n)^d \mod n = a^d \mod n
```

- \blacktriangleright Example: x=14, n=10, d=2:
 - $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$
 - $x^d = 14^2 = 196$ and $x^d \mod 10 = 6$

Multiplicative Inverses (1)

 \triangleright The residues modulo a positive integer n are the set

$$Z_n = \{0, 1, 2, ..., (n-1)\}$$

Let x and y be two elements of Z_n such that $xy \mod n = 1$

We say that y is the multiplicative inverse of x in Z_n and we write $y = x^{-1}$

- Example:
 - Multiplicative inverses of the residues modulo 10

x	0		2	3	4	5	6	7	8	9
x^{-1}		I		7				3		9

Multiplicative Inverses (2)

Theorem

An element x of Z_n has a multiplicative inverse if and only if x and n are relatively prime

- Example
 - The elements of \mathbb{Z}_{10} with a multiplicative inverse are 1, 3, 7, 9

Corollary

If p is prime, every nonzero residue in Z_p has a multiplicative inverse

- Example:
 - Multiplicative inverses of the residues modulo 11

X	0		2	3	4	5	6	7	8	9	10
x^{-1}		I	6	4	3	9	2	8	7	5	10

Euler's Theorem

- The multiplicative group for Z_n , denoted with Z_n^* , is the subset of elements of Z_n relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of Z^*_n
- Example

$$Z^*_{10} = \{1, 3, 7, 9\}$$

$$\phi(10) = 4$$

 \blacktriangleright If p is prime, we have

$$Z^*_p = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p-1$

$$\phi(\boldsymbol{p}) = \boldsymbol{p} - 1$$

Euler's Theorem

For each element x of \mathbb{Z}_n^* , we have $x^{\phi(n)} \mod n = 1$

 \blacktriangleright Example (n = 10)

$$3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1$$

$$7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1$$

$$9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1$$

Consequence

 $x^y \mod n = x^{y \mod \phi(n)} \mod n$

Why?

Remember

- $[(a \mod n)(b \mod n)] \mod n = (ab) \mod n$
- $(a \mod n)^d \mod n = a^d \mod n$

Then

 $x^{y} \mod n = x^{(k\phi(n)+r)} \mod n = x^{k\phi(n)} x^{r} \mod n =$ $[(x^{k\phi(n)} \mod n)(x^{r} \mod n)] \mod n = x^{y \mod \phi(n)} \mod n$ $= 1 \text{ if } x \text{ in } Z^{*}_{n}$

Why does RSA work?

- Remember that
 - p and q are two large primes
 - $n = pq; z = (p-1)(q-1) = \phi(n)$
 - \rightarrow ed mod z = I
- z is equal to the totient of n
 - \blacktriangleright the number of *numbers* < *n* that are relatively prime to n
- Fact: for any x and y, $x^y \mod n = x^{(y \mod z)} \mod n$
- We need to show that $c^d \mod n = m$, where $c = m^e \mod n$

RSA: another important property

The following property will be very useful later:

$$K_{B}^{-}(K_{B}^{+}(m)) = m = K_{B}^{+}(K_{B}^{-}(m))$$

use public key first, followed by private key use private key first, followed by public key

Result is the same!

Why
$$K_B^-(K_B^+(m)) = m = K_B^+(K_B^-(m))$$
?

Follows directly from modular arithmetic:

```
(m^e \mod n)^d \mod n = m^{ed} \mod n
= m^{de} \mod n
= (m^d \mod n)^e \mod n
```

Why is RSA Secure?

- Suppose you know Bob's public key (n,e). How hard is it to determine d?
- Essentially need to find factors of n without knowing the two factors p and q.
- ▶ Fact: factoring a big number is hard.

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - Modular power
- Decryption
 - Modular power

Setup

- Generation of random numbers with a given number of bits (to generate candidates p and q)
- Primality testing (to check that candidates p and q are prime)
- Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
- Computation of the multiplicative inverse (to compute *d* from *e*)

Session keys

- Exponentiation is computationally intensive
- ▶ DES is at least 100 times faster than RSA

Session key, K_S

- Bob and Alice use RSA to exchange a symmetric key K_S
- ▶ Once both have K_S, they use symmetric key cryptography

Diffie-Hellman

- Public key cryptosystem
 - First known public key-based system
 - Useful to perform key exchange when communication channel is not private
- Alice and Bob first agree on a large prime p and another number g
 - I. g and p can be published (no need to keep them secret)
 - 2. Alice chooses a random number Sa, and Bob a rand num Sb
 - 3. Alice computes $Ta = g^{Sa} \mod p$, Bob computes $Tb = g^{Sb} \mod p$
 - 4. Alice and Bob exchange Ta and Tb (in public)
 - 5. Alice and Bob compute Tb^{Sa} mod p and Ta^{Sb} mod p, respectively
 - They will get the same number (the exchanged key) $Tb^{Sa} = g^{SbSa} \mod p = g^{SaSb} \mod p = Ta^{Sb}$

Diffie-Hellman

Why is this secure?

- Nobody else can calculate g^{SaSb} , even if they separately know $Ta = g^{Sa} \mod p$ and $Tb = g^{Sb} \mod p$
- To get Sa or Sb an attacker would need to compute discrete logarithms
 - Discrete logarithms are very hard to compute
 - Mathematicians have not yet figured out how to do it efficiently

Vulnerable to man-in-the-middle attack in certain scenarios

- Alice and Bob do not authenticate each other
- Attacker may intercept and replace Ta and Tb
- To solve (or mitigate) problem, Ta and Tb should be stored in a secure repository of "public numbers"

DH – Man-in-the-Middle Attack

Does it help if Alice and Bob try to verify their identity by sending each other a pre-shared password?

DH – Man-in-the-Middle Defense

Published DH numbers

- p and g are agreed upon
- Each party chooses a fixed secret number Si and publishes her $(Ti = g^{Si} \mod p)$ in a reliable place
- Assumption: the attacker cannot change/forge p and g

Authenticated DH, examples

- Alice can sign her Ta
- Alice can encrypt her Ta with Bob's pub key
- After DH, Alice sends Bob a hash H(S|Ta), where S is a preshared secret (e.g., a password)

DH – Man-in-the-Middle Defense

- ▶ Bob is a server, and has a priv/pub key
- ▶ Alice knows (and trusts) Bob's pub key, K_b⁺

This seems to have significant problems (Eve can still pretend to be Alice)

DH – Man-in-the-Middle Defense

- Bob is a server, and has a priv/pub key
- Alice knows Bob's pub key, K_b⁺

Perfect Forward Secrecy

- A protocol is said to have PFS if it is impossible for Trudy to decrypt a message m sent between Alice and Bob, even if Trudy, after m is sent, breaks into both Alice's and Bob's machines and steals their private keys
- This can be achieved by using session keys that
 - Are chosen independently from the private/public keys
 - Alice and Bob forget the session key as soon as the communication is over
- E.g., this can be done using Diffie-Hellman
 - Alice and Bob forget their Sa and Sb after end of session
 - To avoid man-in-the-middle, Alice "signs" Ta with her private key, and Bob "signs" Tb with his pub key

Zero-Knowledge Proof Systems

- Used only for authentication
- Allows you to prove that you know a secret without actually revealing the secret
- ▶ E.g.: RSA is a zero-knowledge proof system
 - You can prove you know the "secret" associated with your public key without revealing your private key
- There exist ZKPSs that are much more efficient than RSA