
CSCI 4250/6250 – Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Message Integrity

91

  Allows communicating parties to verify that received
messages are authentic.
  Content of message has not been altered
  Source of message is who/what you think it is
  Message has not been replayed
  Sequence of messages is maintained

  Let’s first talk about message digests

Message Digests

92

  Function H() that takes as input
an arbitrary length message and
outputs a fixed-length string:
“message signature”

  Note that H() is a many-to-1
function

  H() is often called a “hash
function”

  Desirable properties:
  Easy to calculate
  Irreversibility: Can’t determine m

from H(m)
  Collision resistance:

Computationally difficult to
produce m and m’ such that H
(m) = H(m’)

  Seemingly random output

large
message

m

H: Hash
Function

H(m)

Internet checksum: poor message
digest

93

Internet checksum has some properties of hash function:
➼  produces fixed length digest (16-bit sum) of input
➼  is many-to-one

❒  But given message with given hash value, it is easy to find another
message with same hash value.

❒  Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1!
0 0 . 9!
9 B O B!

49 4F 55 31!
30 30 2E 39!
39 42 D2 42!

message ASCII format

B2 C1 D2 AC!

I O U 9!
0 0 . 1!
9 B O B!

49 4F 55 39!
30 30 2E 31!
39 42 D2 42!

message ASCII format

B2 C1 D2 AC!different messages
but identical checksums!

Hash Functions

  A hash function h maps a plaintext x to a fixed-length value x = h(P) called
hash value or digest of P
  A collision is a pair of plaintexts P and Q that map to the same hash value, h(P)

= h(Q)
  Collisions are unavoidable
  For efficiency, the computation of the hash function should take time

proportional to the length of the input plaintext

  Example of application: Hash table
  Search data structure based on storing items in locations associated with their

hash value
  Chaining deals with collisions
  Domain of hash values proportional to the expected number of items to be

stored
  The hash function should spread plaintexts uniformly over the possible hash

values to achieve constant expected search time

9/30/13 Cryptography 94

Cryptographic Hash Functions

  A cryptographic hash function satisfies additional properties

  Preimage resistance (aka one-way)

  Given a hash value x, it is hard to find a plaintext P such that h(P) = x

  Second preimage resistance (aka weak collision resistance)

  Given a plaintext P, it is hard to find a plaintext Q such that h(Q) = h(P)

  Collision resistance (aka strong collision resistance)

  It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P)

  Collision resistance implies second preimage resistance

  Hash values of at least 256 bits recommended to defend
against brute-force attacks

9/30/13 Cryptography 95

How to build a Hash Function

96

  Can we use a block cipher + CBC?
  How?

How to build a Hash Function

97

  Can we use a block cipher + CBC?
  How?

  Problem
  Not very efficient!

Use as
H(m)

Fixed IV

Fixed Key

Hash Function Algorithms

98

  MD5 hash function widely used (RFC 1321)
  computes 128-bit message digest in 4-step process.

  SHA-1 is also used.
  US standard [NIST, FIPS PUB 180-1]
  160-bit message digest

Often, no good justification
for design choices in Hash
functions.

Message-Digest Algorithm 5 (MD5)
  Developed by Ron Rivest in 1991
  Uses 128-bit hash values
  Still widely used in legacy applications although considered

insecure
  Various severe vulnerabilities discovered
  Chosen-prefix collisions attacks found by Marc Stevens, Arjen

Lenstra and Benne de Weger
  Start with two arbitrary plaintexts P and Q
  One can compute suffixes S1 and S2 such that P||S1 and Q||S2

collide under MD5 by making 250 hash evaluations
  Using this approach, a pair of different executable files or PDF

documents with the same MD5 hash can be computed

9/30/13 Cryptography 99

Problems with MD5

100

  Hash collisions created this way are usually not directly
applicable to attack widespread document formats or
protocols.

  Attacks are possible by abusing dynamic constructs present in
many formats
  E.g., a malicious document would contain two different messages in

the same document, but conditionally displays one or the other
  Computer programs have conditional constructs (if-then-else)

that allow testing whether a location in the file has one value
or another.

  Some document formats like PostScript, or macros in
Microsoft Word, also have conditional constructs.

  Finding such colliding docs/programs may take just a few
seconds on modern CPUs

Secure Hash Algorithm (SHA)

  Developed by NSA and approved as a federal standard by
NIST

  SHA-0 and SHA-1 (1993)
  160-bits
  Considered insecure
  Still found in legacy applications
  Vulnerabilities less severe than those of MD5

  SHA-2 family (2002)
  256 bits (SHA-256) or 512 bits (SHA-512)
  Still considered secure despite published attack techniques

  Public competition for SHA-3 announced in 2007

9/30/13 Cryptography 101

Iterated Hash Function
  A compression function works on input values of fixed length

  Inputs: X,Y with len(X)=m, len(Y)=n; Output: Z with len(Z)=n

  An iterated hash function extends a compression function to inputs
of arbitrary length
  padding, initialization vector, and chain of compression functions
  inherits collision resistance of compression function

  MD5 and SHA are iterated hash functions

102

|
|

|
|

|
|

|
|

P1 P2 P3 P4

IV digest

Question

103

  Assume we want to send a message
  We are not concerned with confidentiality, only integrity

  What if we send
  m’ = m || MD5(m)
  The receiver can extract m, compute MD5(m), and check if this

matches the MD5 that was sent

  Does this guarantee integrity?

Message Authentication Code (MAC)

104

  Authenticates sender
  Verifies message integrity
  No encryption !
  Also called “keyed hash”
  Notation: MDm = H(s||m) ; send m||MDm

  Is this secure? It seems like

m
es

sa
ge

H()

s

m
es

sa
ge

m
es

sa
ge

 s

H()

compare

s = shared secret

Not so fast!

105

  Because most hash functions are iterated hash functions
  Trudy knows the message m and MD(s||m)
  She could append something to m to get m’ = m||a, and use

 MD(s||m) to initialize the computation of MD(s||m’)

|
|

|
|

|
|

|
|

m1 m2 m3 a

IV digest

MD(s||m) MD(s||m’)

HMAC***

106

  Popular MAC standard
  Addresses some subtle flaws

1.  Concatenates secret to front of
message.

2.  Hashes concatenated message
3.  Concatenates the secret to front

of digest
4.  Hashes the combination again.

s 0

m

HMAC(s,m)

xor c1

xor

c2

H()

H()

Padding to 512 bits

HMAC(s,m) = H(s||H(s||M))

Other nifty things to do with a hash

107

  Hashing passwords
  Document/Program fingerprint
  Authentication

  Encryption

Alice Bob

Ra
H(Kab|Ra)

H(Kab|Rb)
Rb

b1 = H(Kab|IV) c1 = p1 xor b1
b2 = H(Kab|c1) c2 = p2 xor b2
b3 = H(Kab|c2) c3 = p3 xor b3
…

MAC Transfer $1M
from Bill to Trudy

MAC Transfer $1M
from Bill to Trudy

Playback attack
MAC =
f(msg,s)

Playback

“I am Alice”

R

MAC Transfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

Digital Signatures

110

Cryptographic technique analogous to hand-written
signatures.

  sender (Bob) digitally signs document, establishing he is
document owner/creator.

  Goal is similar to that of a MAC, except now use public-
key cryptography

  verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice), must
have signed document

Digital Signatures

111

Simple digital signature for message m:
  Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m) - -

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
- (m)

Alice verifies signature and integrity
of digitally signed message:

112

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

KB(H(m)) -

encrypted
msg digest

KB(H(m)) -

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

Digital Signatures (more)

113

  Suppose Alice receives msg m, digital signature KB(m)
  Alice verifies m signed by Bob by applying Bob’s public key KB to

KB(m) then checks KB(KB(m)) = m.
  If KB(KB(m)) = m, whoever signed m must have used Bob’s private

key.

Alice thus verifies that:
➼  Bob signed m.
➼  No one else signed m.
➼  Bob signed m and not m’.

Non-repudiation:
  Alice can take m, and signature KB(m) to court and prove

that Bob signed m.

+ +

-

-

- -

+

-

Public-key certification

114

  Motivation: Trudy plays pizza prank on Bob
  Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank
you, Bob

  Trudy signs order with her private key
  Trudy sends order to Pizza Store
  Trudy sends to Pizza Store her public key, but says it’s Bob’s

public key.
  Pizza Store verifies signature; then delivers four pizzas to Bob.
  Bob doesn’t even like Pepperoni

Certification Authorities

  Certification authority (CA): binds public key to particular
entity, E.

  E (person, router) registers its public key with CA.
  E provides “proof of identity” to CA.
  CA creates certificate binding E to its public key.
  certificate containing E’s public key digitally signed by CA – CA says

“this is E’s public key”

115

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

Certification Authorities

  When Alice wants Bob’s public key:
  gets Bob’s certificate (Bob or elsewhere).
  apply CA’s public key to Bob’s certificate, get Bob’s public

key

116

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

Alternative: symmetric crypto + KDC

117

  KDC = Key Distribution Center
  Trusted Node
  When Alice and Bob want to talk

  Alice asks KDC for a symmetric session key to be shared with Bob

  Reduces the number of keys that need to be distributed
  If a new node joins the network, we need to generate n new keys
  With KDC, only the new node and the KDC need to agree on a key

without KDC with KDC

Key Exchange via KDC

118

  Needham-Schroeder protocol
1.  Alice >> KDC : “Alice” | “Bob” | Rand1
2.  KDC >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks))
3.  Alice >> Bob : Kb(“Alice” | Ks)
4.  Bob >> Alice : Ks(Rand2)
5.  Alice >> Bob : Ks(Rand2-1)

See Bishop “Introduction to Computer Security”

KDC vs. CA

119

  KDC = Key Distribution Center
  KDC can eavesdrop conversations
  Single point of failure

  CA = Certification Authority
  CA signs Alice’s and Bob’s pub keys
  CA cannot decrypt communications between Alice and Bob

  It does not have a copy of their private keys
  If CA is compromised, attacker cannot gain access to the plaintext

  Even if CA stops functioning, Alice and Bob can still
communicate

Certificates: summary

120

  Primary standard X.509 (RFC 2459)
  Certificate contains:

  Issuer name
  Entity name, address, domain name, etc.
  Entity’s public key
  Digital signature (signed with issuer’s private key)

  Public-Key Infrastructure (PKI)
  Certificates and certification authorities
  Certificate Revocation List
  Often considered “heavy”

Components of a PKI

121

  Certificates
  Repository from which certificates can be retrieved
  A method for revoking certificates

  E.g., see https://wiki.mozilla.org/CA:ImprovingRevocation
  An “anchor of trust” (root certificate)
  A method for verifying a chain of certificates up to the anchor of trust

  Browser example:
  Browsers ship with many trust anchors (i.e., public key of trusted CAs)

  Can we really trust the CAs?
  http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
  http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-

man-in-middle.html
  It may be possible to trick users to add a trust anchor into the default set
  The browser itself may be compromised an forced to add a malicious trust

anchor

Secure e-mail

Alice:
  generates random symmetric private key, KS.
  encrypts message with KS (for efficiency)
  also encrypts KS with Bob’s public key.
  sends both KS(m) and KB(KS) to Bob.

  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail

Bob:
  uses his private key to decrypt and recover KS
  uses KS to decrypt KS(m) to recover m

  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail (continued)
•  Alice wants to provide sender authentication message
integrity.

•  Alice digitally signs message.
•  sends both message (in the clear) and digital signature.

H() . KA() . -

+ -

H(m) KA(H(m)) -
m

KA -

m

KA() . +

KA +

KA(H(m)) -

m
H() . H(m)

compare

Secure e-mail (continued)
•  Alice wants to provide secrecy, sender authentication,
 message integrity.

Alice uses three keys: her private key, Bob’s public key, newly
created symmetric key

H() . KA() . -

+

KA(H(m)) -
m

KA -

m

KS() .

KB() . +

+

KB(KS) +

KS

KB +

KS

