
CSCI 4250/6250 – Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Message Integrity

91

  Allows communicating parties to verify that received
messages are authentic.
  Content of message has not been altered
  Source of message is who/what you think it is
  Message has not been replayed
  Sequence of messages is maintained

  Let’s first talk about message digests

Message Digests

92

  Function H() that takes as input
an arbitrary length message and
outputs a fixed-length string:
“message signature”

  Note that H() is a many-to-1
function

  H() is often called a “hash
function”

  Desirable properties:
  Easy to calculate
  Irreversibility: Can’t determine m

from H(m)
  Collision resistance:

Computationally difficult to
produce m and m’ such that H
(m) = H(m’)

  Seemingly random output

large
message

m

H: Hash
Function

H(m)

Internet checksum: poor message
digest

93

Internet checksum has some properties of hash function:
➼  produces fixed length digest (16-bit sum) of input
➼  is many-to-one

❒  But given message with given hash value, it is easy to find another
message with same hash value.

❒  Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1!
0 0 . 9!
9 B O B!

49 4F 55 31!
30 30 2E 39!
39 42 D2 42!

message ASCII format

B2 C1 D2 AC!

I O U 9!
0 0 . 1!
9 B O B!

49 4F 55 39!
30 30 2E 31!
39 42 D2 42!

message ASCII format

B2 C1 D2 AC!different messages
but identical checksums!

Hash Functions

  A hash function h maps a plaintext x to a fixed-length value x = h(P) called
hash value or digest of P
  A collision is a pair of plaintexts P and Q that map to the same hash value, h(P)

= h(Q)
  Collisions are unavoidable
  For efficiency, the computation of the hash function should take time

proportional to the length of the input plaintext

  Example of application: Hash table
  Search data structure based on storing items in locations associated with their

hash value
  Chaining deals with collisions
  Domain of hash values proportional to the expected number of items to be

stored
  The hash function should spread plaintexts uniformly over the possible hash

values to achieve constant expected search time

9/30/13 Cryptography 94

Cryptographic Hash Functions

  A cryptographic hash function satisfies additional properties

  Preimage resistance (aka one-way)

  Given a hash value x, it is hard to find a plaintext P such that h(P) = x

  Second preimage resistance (aka weak collision resistance)

  Given a plaintext P, it is hard to find a plaintext Q such that h(Q) = h(P)

  Collision resistance (aka strong collision resistance)

  It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P)

  Collision resistance implies second preimage resistance

  Hash values of at least 256 bits recommended to defend
against brute-force attacks

9/30/13 Cryptography 95

How to build a Hash Function

96

  Can we use a block cipher + CBC?
  How?

How to build a Hash Function

97

  Can we use a block cipher + CBC?
  How?

  Problem
  Not very efficient!

Use as
H(m)

Fixed IV

Fixed Key

Hash Function Algorithms

98

  MD5 hash function widely used (RFC 1321)
  computes 128-bit message digest in 4-step process.

  SHA-1 is also used.
  US standard [NIST, FIPS PUB 180-1]
  160-bit message digest

Often, no good justification
for design choices in Hash
functions.

Message-Digest Algorithm 5 (MD5)
  Developed by Ron Rivest in 1991
  Uses 128-bit hash values
  Still widely used in legacy applications although considered

insecure
  Various severe vulnerabilities discovered
  Chosen-prefix collisions attacks found by Marc Stevens, Arjen

Lenstra and Benne de Weger
  Start with two arbitrary plaintexts P and Q
  One can compute suffixes S1 and S2 such that P||S1 and Q||S2

collide under MD5 by making 250 hash evaluations
  Using this approach, a pair of different executable files or PDF

documents with the same MD5 hash can be computed

9/30/13 Cryptography 99

Problems with MD5

100

  Hash collisions created this way are usually not directly
applicable to attack widespread document formats or
protocols.

  Attacks are possible by abusing dynamic constructs present in
many formats
  E.g., a malicious document would contain two different messages in

the same document, but conditionally displays one or the other
  Computer programs have conditional constructs (if-then-else)

that allow testing whether a location in the file has one value
or another.

  Some document formats like PostScript, or macros in
Microsoft Word, also have conditional constructs.

  Finding such colliding docs/programs may take just a few
seconds on modern CPUs

Secure Hash Algorithm (SHA)

  Developed by NSA and approved as a federal standard by
NIST

  SHA-0 and SHA-1 (1993)
  160-bits
  Considered insecure
  Still found in legacy applications
  Vulnerabilities less severe than those of MD5

  SHA-2 family (2002)
  256 bits (SHA-256) or 512 bits (SHA-512)
  Still considered secure despite published attack techniques

  Public competition for SHA-3 announced in 2007

9/30/13 Cryptography 101

Iterated Hash Function
  A compression function works on input values of fixed length

  Inputs: X,Y with len(X)=m, len(Y)=n; Output: Z with len(Z)=n

  An iterated hash function extends a compression function to inputs
of arbitrary length
  padding, initialization vector, and chain of compression functions
  inherits collision resistance of compression function

  MD5 and SHA are iterated hash functions

102

|
|

|
|

|
|

|
|

P1 P2 P3 P4

IV digest

Question

103

  Assume we want to send a message
  We are not concerned with confidentiality, only integrity

  What if we send
  m’ = m || MD5(m)
  The receiver can extract m, compute MD5(m), and check if this

matches the MD5 that was sent

  Does this guarantee integrity?

Message Authentication Code (MAC)

104

  Authenticates sender
  Verifies message integrity
  No encryption !
  Also called “keyed hash”
  Notation: MDm = H(s||m) ; send m||MDm

  Is this secure? It seems like

m
es

sa
ge

H()

s

m
es

sa
ge

m
es

sa
ge

 s

H()

compare

s = shared secret

Not so fast!

105

  Because most hash functions are iterated hash functions
  Trudy knows the message m and MD(s||m)
  She could append something to m to get m’ = m||a, and use

 MD(s||m) to initialize the computation of MD(s||m’)

|
|

|
|

|
|

|
|

m1 m2 m3 a

IV digest

MD(s||m) MD(s||m’)

HMAC***

106

  Popular MAC standard
  Addresses some subtle flaws

1.  Concatenates secret to front of
message.

2.  Hashes concatenated message
3.  Concatenates the secret to front

of digest
4.  Hashes the combination again.

s 0

m

HMAC(s,m)

xor c1

xor

c2

H()

H()

Padding to 512 bits

HMAC(s,m) = H(s||H(s||M))

Other nifty things to do with a hash

107

  Hashing passwords
  Document/Program fingerprint
  Authentication

  Encryption

Alice Bob

Ra
H(Kab|Ra)

H(Kab|Rb)
Rb

b1 = H(Kab|IV) c1 = p1 xor b1
b2 = H(Kab|c1) c2 = p2 xor b2
b3 = H(Kab|c2) c3 = p3 xor b3
…

MAC Transfer $1M
from Bill to Trudy

MAC Transfer $1M
from Bill to Trudy

Playback attack
MAC =
f(msg,s)

Playback

“I am Alice”

R

MAC Transfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

Digital Signatures

110

Cryptographic technique analogous to hand-written
signatures.

  sender (Bob) digitally signs document, establishing he is
document owner/creator.

  Goal is similar to that of a MAC, except now use public-
key cryptography

  verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice), must
have signed document

Digital Signatures

111

Simple digital signature for message m:
  Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m) - -

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
- (m)

Alice verifies signature and integrity
of digitally signed message:

112

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

KB(H(m)) -

encrypted
msg digest

KB(H(m)) -

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

Digital Signatures (more)

113

  Suppose Alice receives msg m, digital signature KB(m)
  Alice verifies m signed by Bob by applying Bob’s public key KB to

KB(m) then checks KB(KB(m)) = m.
  If KB(KB(m)) = m, whoever signed m must have used Bob’s private

key.

Alice thus verifies that:
➼  Bob signed m.
➼  No one else signed m.
➼  Bob signed m and not m’.

Non-repudiation:
  Alice can take m, and signature KB(m) to court and prove

that Bob signed m.

+ +

-

-

- -

+

-

Public-key certification

114

  Motivation: Trudy plays pizza prank on Bob
  Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank
you, Bob

  Trudy signs order with her private key
  Trudy sends order to Pizza Store
  Trudy sends to Pizza Store her public key, but says it’s Bob’s

public key.
  Pizza Store verifies signature; then delivers four pizzas to Bob.
  Bob doesn’t even like Pepperoni

Certification Authorities

  Certification authority (CA): binds public key to particular
entity, E.

  E (person, router) registers its public key with CA.
  E provides “proof of identity” to CA.
  CA creates certificate binding E to its public key.
  certificate containing E’s public key digitally signed by CA – CA says

“this is E’s public key”

115

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

Certification Authorities

  When Alice wants Bob’s public key:
  gets Bob’s certificate (Bob or elsewhere).
  apply CA’s public key to Bob’s certificate, get Bob’s public

key

116

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

Alternative: symmetric crypto + KDC

117

  KDC = Key Distribution Center
  Trusted Node
  When Alice and Bob want to talk

  Alice asks KDC for a symmetric session key to be shared with Bob

  Reduces the number of keys that need to be distributed
  If a new node joins the network, we need to generate n new keys
  With KDC, only the new node and the KDC need to agree on a key

without KDC with KDC

Key Exchange via KDC

118

  Needham-Schroeder protocol
1.  Alice >> KDC : “Alice” | “Bob” | Rand1
2.  KDC >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks))
3.  Alice >> Bob : Kb(“Alice” | Ks)
4.  Bob >> Alice : Ks(Rand2)
5.  Alice >> Bob : Ks(Rand2-1)

See Bishop “Introduction to Computer Security”

KDC vs. CA

119

  KDC = Key Distribution Center
  KDC can eavesdrop conversations
  Single point of failure

  CA = Certification Authority
  CA signs Alice’s and Bob’s pub keys
  CA cannot decrypt communications between Alice and Bob

  It does not have a copy of their private keys
  If CA is compromised, attacker cannot gain access to the plaintext

  Even if CA stops functioning, Alice and Bob can still
communicate

Certificates: summary

120

  Primary standard X.509 (RFC 2459)
  Certificate contains:

  Issuer name
  Entity name, address, domain name, etc.
  Entity’s public key
  Digital signature (signed with issuer’s private key)

  Public-Key Infrastructure (PKI)
  Certificates and certification authorities
  Certificate Revocation List
  Often considered “heavy”

Components of a PKI

121

  Certificates
  Repository from which certificates can be retrieved
  A method for revoking certificates

  E.g., see https://wiki.mozilla.org/CA:ImprovingRevocation
  An “anchor of trust” (root certificate)
  A method for verifying a chain of certificates up to the anchor of trust

  Browser example:
  Browsers ship with many trust anchors (i.e., public key of trusted CAs)

  Can we really trust the CAs?
  http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
  http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-

man-in-middle.html
  It may be possible to trick users to add a trust anchor into the default set
  The browser itself may be compromised an forced to add a malicious trust

anchor

Secure e-mail

Alice:
  generates random symmetric private key, KS.
  encrypts message with KS (for efficiency)
  also encrypts KS with Bob’s public key.
  sends both KS(m) and KB(KS) to Bob.

  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail

Bob:
  uses his private key to decrypt and recover KS
  uses KS to decrypt KS(m) to recover m

  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail (continued)
•  Alice wants to provide sender authentication message
integrity.

•  Alice digitally signs message.
•  sends both message (in the clear) and digital signature.

H() . KA() . -

+ -

H(m) KA(H(m)) -
m

KA -

m

KA() . +

KA +

KA(H(m)) -

m
H() . H(m)

compare

Secure e-mail (continued)
•  Alice wants to provide secrecy, sender authentication,
 message integrity.

Alice uses three keys: her private key, Bob’s public key, newly
created symmetric key

H() . KA() . -

+

KA(H(m)) -
m

KA -

m

KS() .

KB() . +

+

KB(KS) +

KS

KB +

KS

