yiRG By a3

2% OR TRy ARERNC B4

SYSTEM FATLURE

JMY REVEL wEe

&
=
kS
-
=
(=8
F
=
F
m
S ]
a
—
&2
=
isd
&
=
=

CSCI 4250/6250 — Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)
CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.



Message Integrity

» Allows communicating parties to verify that received
messages are authentic.

Content of message has not been altered
Source of message is who/what you think it is
Message has not been replayed

Sequence of messages is maintained

» Let’s first talk about message digests

91



Message Digests

» Function H( ') that takes as input large
an arbitrary length message and message m
outputs a fixed-length string: m

“message signature” l
» Note that H( ) is a many-to-|

function H(m)
» H( ) is often called a “hash » Desirable properties:

function” Easy to calculate

Irreversibility: Can’t determine m
from H(m)

Collision resistance:
Computationally difficult to
produce m and m’ such that H
(m) = H(m)

Seemingly random output

92



Internet checksum: poor message

digest

Internet checksum has some properties of hash function:

» produces fixed length digest (16-bit sum) of input

» iS many-to-one

But given message with given hash value, it is easy to find another

message with same hash value.

Example: Simplified checksum: add 4-byte chunks at a time:

message

ASCII format

I OoOUl
00 .9
9 BOB

93

49 4F 55 31
30 30 2E 39
39 42 D2 42

B2 C1 D2 AC

message

I 00U
0 0.
9 BO

W [~ [©

ASCIT format

49 4F 55 39
30 30 2E 31
39 42 D2 42

B2 Cl1 D2 AC



Hash Functions

» A hash function h maps a plaintext x to a fixed-length value x = h(P) called
hash value or digest of P

A collision is a pair of plaintexts P and Q that map to the same hash value, h(P)
=h(Q)
Collisions are unavoidable

For efficiency, the computation of the hash function should take time
proportional to the length of the input plaintext

» Example of application: Hash table

94

Search data structure based on storing items in locations associated with their
hash value

Chaining deals with collisions

Domain of hash values proportional to the expected number of items to be
stored

The hash function should spread plaintexts uniformly over the possible hash
values to achieve constant expected search time

Cryptography 9/30/13



Cryptographic Hash Functions

» A cryptographic hash function satisfies additional properties

Preimage resistance (aka one-way)

Given a hash value x, it is hard to find a plaintext P such that h(P) = x

Second preimage resistance (aka weak collision resistance)

Given a plaintext B it is hard to find a plaintext Q such that h(Q) = h(P)

Collision resistance (aka strong collision resistance)

It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P)

» Collision resistance implies second preimage resistance

» Hash values of at least 256 bits recommended to defend
against brute-force attacks

95 Cryptography 9/30/13



How to build a Hash Function

» Can we use a block cipher + CBC?
» How!?

96



How to build a Hash Function

» Can we use a block cipher + CBC?
» How!?

meg Fixed Key

Fixed IV l

» Problem

Not very efficient!

97



Hash Function Algorithms

» MD?5 hash function widely used (RFC 1321)
computes |28-bit message digest in 4-step process.

» SHA-I is also used.
US standard [NIST, FIPS PUB 180-1]
| 60-bit message digest

Often, no good justification
for design choices in Hash
functions.

98



Message-Digest Algorithm 5 (MDJS)

» Developed by Ron Rivest in 1991
» Uses [28-bit hash values

» Still widely used in legacy applications although considered
insecure

» Various severe vulnerabilities discovered

> found by Marc Stevens, Arjen
Lenstra and Benne de Weger
Start with two arbitrary plaintexts P and Q

One can compute suffixes S| and S2 such that P||S| and Q]|S2
collide under MD5 by making 250 hash evaluations

Using this approach, a pair of different executable files or PDF
documents with the same MD5 hash can be computed

99 Cryptography 9/30/13



Problems with MD5

4

Hash collisions created this way are usually not directly
applicable to attack widespread document formats or
protocols.

Attacks are possible by abusing dynamic constructs present in
many formats

E.g., a malicious document would contain two different messages in
the same document, but conditionally displays one or the other

Computer programs have conditional constructs (if-then-else)
that allow testing whether a location in the file has one value
or another.

Some document formats like PostScript, or macros in
Microsoft Word, also have conditional constructs.

Finding such colliding docs/programs may take just a few
seconds on modern CPUs

100



Secure Hash Algorithm (SHA)

» Developed by NSA and approved as a federal standard by
NIST

» SHA-0 and SHA-I (1993)
| 60-bits
Considered insecure

Still found in legacy applications

Vulnerabilities less severe than those of MD5

» SHA-2 family (2002)
256 bits (SHA-256) or 512 bits (SHA-512)

Still considered secure despite published attack techniques

» Public competition for SHA-3 announced in 2007

101 Cryptography 9/30/13



Iterated Hash Function

» A compression function works on input values of fixed length
Inputs: X,Y with len(X)=m, len(Y)=n; Output: Z with len(Z)=n
» An iterated hash function extends a compression function to inputs
of arbitrary length
padding, initialization vector, and chain of compression functions
inherits collision resistance of compression function

» MD5 and SHA are iterated hash functions

PR B R,

. Hashing Time _,\S,||_D|'24

0.05
o 0.04 R
® 0.03 BRSPS
E 0,02 e

0.01 F~

0 T T T T T T T T T T T T T T T T T T T T
102 0 100 200 300 400 500 600 700 800 900 1000
Input Size (Bytes)




Question

» Assume we want to send a message

We are not concerned with confidentiality, only integrity

» What if we send
m’ = m || MD5(m)
The receiver can extract m, compute MD5(m), and check if this
matches the MD5 that was sent

» Does this guarantee integrity!?

103



Message Authentication Code (MAC)

s = shared secret

message l

>a@—T

compare

message l

l message

Authenticates sender

Verifies message integrity

No encryption !

Also called “keyed hash”

Notation: MD,, = H(s||m) ; send m||MD,_
Is this secure? It seems like

v Vv Vv Vv Vv

104



Not so fast!

» Because most hash functions are iterated hash functions

Trudy knows the message m and MD(s||m)
She could append something to m to get m’ = m||a, and use
MD(s||m) to initialize the computation of MD(s||m’)

m, m, ms a

S -

*

MD(s||m) MD(s]||m’)

105



HMAC***
Popular MAC standard

Addresses some subtle flaws

v Vv

Concatenates secret to front of
message.

Hashes concatenated message

Concatenates the secret to front
of digest

Hashes the combination again.

HMAC(s,m) = H(s||H(s| |M))

106

Padding to 512 bits

S 0

xor «=— ¢l

H()

HMAC(s,m)




Other nifty things to do with a hash

» Hashing passwords
» Document/Program fingerprint
» Authentication

Ra
. H(Kab|Ra)
Alice Rb Bob
H(Kab|Rb)
» Encryption
bl = H(Kab|IV) cl = pl xor bl
b2 = H(Kab|cl) c2 = p2 xor b2

b3 = H(Kab|c2) c3 = p3 xor b3

107



MAC =
f(msg,s)

Transfer $1M
from Bill to Trudy

@ o

Playback

—-8

Transfer $1M
from Bill to Trudy

@/




MAC =

"T am Alice"

g\
»

f(msg.s.R) T

Transfer $1M
from Bill to Susan

MAC

—

3



Digital Signatures

Cryptographic technique analogous to hand-written
sighatures.

» sender (Bob) digitally signs document, establishing he is
document owner/creator.

» Goal is similar to that of a MAC, except now use public-
key cryptography
> recipient (Alice) can prove to

someone that Bob, and no one else (including Alice), must
have signed document

110



Digital Signatures

Simple digital signature for message m:

» Bob signs m by encrypting with his private key Kg,
creating “‘signed” message, K;(m) i

Bob's message, m 7. Ky 5055 private Ka(m)
: ey

Dear Alice
Oh, how | have missed Public k O anegd®
, NOW | have misse .
you. | think of you all the HOHE ey m, signed _
encryption (encrypted) with

time! ...(blah blah blah) . . .
Bob algorithm his private key

111



Bob sends digitally signed
message:

large

m

message:

Bob's
private

key KI_B

—

H(m)

digital
S sighature
(encrypt)

encrypted
msg digest

Ka(H(m))

Alice verifies signature and integrity
of digitally signed message:

» encrypted
e msg digest
' Ka(H(m)
large |
message .
m ’ B?DI:I’.S © digital
pukelc i signature
Y K (decrypt)
\ /
equal
?



Digital Signatures (more)

» Suppose Alice receives msg m, digital signature Kg(m)

» Alice verifies m signed by Bob by applying Bob’s public key Kg to
K&(m) then checks Ki(Kg(m) ) = m.

» If KZ(Kz(m) ) = m, whoever signed m must have used Bob’s private
key.

Alice thus verifies that:
Bob signed m.
No one else signed m.
Bob signed m and not m’.
Non-repudiation:

Alice can take m, and signature Kg(m) to court and prove
that Bob signed m.

113



Public-key certification

» Motivation: Trudy plays pizza prank on Bob

Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank
you, Bob

Trudy signs order with her private key
Trudy sends order to Pizza Store

Trudy sends to Pizza Store her public key, but says it’s Bob’s
public key.

Pizza Store verifies signature; then delivers four pizzas to Bob.

Bob doesn’t even like Pepperoni

114



Certification Authorities

» Certification authority (CA): binds public key to particular
entity, E.

» E (person, router) registers its public key with CA.
E provides “proof of identity” to CA.
CA creates certificate binding E to its public key.
certificate containing E’s public key digitally signed by CA — CA says
“this is E’s public key”

Bob's digital
public , ., signature
key Ky = ™. (encrypt)
Bob's privacf'z : certificate for
identifying key |<CA BOb'S. publlc key,
information signed by CA

115



Certification Authorities

» When Alice wants Bob’s public key:
gets Bob’s certificate (Bob or elsewhere).
apply CA’s public key to Bob’s certificate, get Bob’s public

Bob's
» . public
<4

KB key

116



Alternative: symmetric crypto + KDC

» KDC = Key Distribution Center
Trusted Node
When Alice and Bob want to talk

Alice asks KDC for a symmetric session key to be shared with Bob

Reduces the number of keys that need to be distributed

If a new node joins the network, we need to generate n new keys
With KDC, only the new node and the KDC need to agree on a key

\//
T /\\

without KDC with KDC

117



Key Exchange via KDC

» Needham-Schroeder protocol
Alice >> KDC : “Alice” | “Bob” | Rand|
KDC >> Alice : Ka(“Alice” | “Bob” | Rand| | Ks | Kb(“Alice” | Ks))
Alice >> Bob : Kb(“Alice” | Ks)
Bob >> Alice : Ks(Rand2)
Alice >> Bob : Ks(Rand2-1)

118 See Bishop "Introduction to Computer Security”



KDC vs. CA
» KDC = Key Distribution Center

KDC can eavesdrop conversations

Single point of failure

» CA = Certification Authority

CA signs Alice’s and Bob’s pub keys
CA cannot decrypt communications between Alice and Bob

It does not have a copy of their private keys

If CA is compromised, attacker cannot gain access to the plaintext

Even if CA stops functioning, Alice and Bob can still
communicate

119



Certificates: summary
» Primary standard X.509 (RFC 2459)

» Certificate contains:

Issuer name

Entity name, address, domain name, etc.

Entity’s public key

Digital signature (signed with issuer’s private key)
» Public-Key Infrastructure (PKI)

Certificates and certification authorities

Certificate Revocation List

Often considered “heavy”

120



Components of a PKI

Certificates
Repository from which certificates can be retrieved
A method for revoking certificates
E.g., see
An “anchor of trust” (root certificate)
A method for verifying a chain of certificates up to the anchor of trust

v vV Vv

v Vv

» Browser example:
Browsers ship with many trust anchors (i.e., public key of trusted CAs)

» Can we really trust the CAs!?

It may be possible to trick users to add a trust anchor into the default set

The browser itself may be compromised an forced to add a malicious trust
anchor

121



Secure e-mail

Alice wants to send confidential e-mail, m, to Bob.

Ko

m =—> Ks(9 Ks(m)

o

Alice:

K
Ks(m ) Ke(9
> (=)
+ K- °
K +B()
Kg'

generates random symmetric private key, K.
encrypts message with Kg (for efficiency)

also encrypts Kg with Bob's public key.
sends both Ks(m) and Ky(Ks) to Bob.




Secure e-mail

Alice wants to send confidential e-mail, m, to Bob.

Ko

m =—> Ks(9 Ks(m)

o

Bob:

Ks
Ks(m ) Ke(9

> (=)
+ K- °
K +B()

Kg'

uses his private key to decrypt and recover Kq

uses Ks to decrypt Ks(m) to recover m




Secure e-mail (continued)

- Alice wants to provide sender authentication message

Ka(H(m))

(+)

Integrity.

KZ
m=> H(s) [ Ka()
a 1

m

- Alice digitally signs message.

Kz :

v

Ka

/N

H(m))

Ka(9)

—1 H(m)

compare

:__:—>@
L.

H(.)

|

H(m)

+ sends both message (in the clear) and digital signature.



Secure e-mail (continued)

- Alice wants to provide secrecy, sender authentication,
message integrity.

K;

v

Ka(H(m)) K.

m=—= H() K09 .
a (e
m T ®—’ LN

— Kp(Ks )
ks

her private key, Bob's public key, newly
created symmetric key



