
CSCI 4250/6250 – Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

The language of cryptography

2

m plaintext message
KA(m) ciphertext, encrypted with key KA
m = KB(KA(m))

plaintext plaintext ciphertext

K A

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

K B

Basics

  Alternative Notation
  Secret key K
  Encryption function EK(P)
  Decryption function DK(C)
  Plaintext length typically the same as ciphertext length
  Encryption and decryption are permutation functions

(bijections) on the set of all n-bit arrays
  Efficiency

  functions EK and DK should have efficient algorithms
  Consistency

  Decrypting the ciphertext yields the plaintext
  DK(EK(P)) = P

10/3/13 Cryptography 3

Simple encryption scheme (Ceasar cipher)

4

substitution cipher: substituting one thing for another
  monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Key: the mapping from the set of 26 letters to the
set of 26 letters

Substitution Ciphers

10/3/13 Cryptography 5

  Each letter is uniquely
replaced by another.

  ROT13 examaple:
  CIAO PVNB

  One popular substitution
“cipher” for some
Internet posts is ROT13.

Public domain image from http://en.wikipedia.org/wiki/File:ROT13.png

Polyalphabetic encryption

6

  n monoalphabetic cyphers, M1,M2,…,Mn

  Cycling pattern:
  e.g., n=4 M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;

  For each new plaintext symbol, use subsequent
monoalphabetic pattern in cyclic pattern
  dog: d from M1, o from M3, g from M4

  Key: the n ciphers and the cyclic pattern

  Example:
  Vigenere cipher

Vigenere cipher

7

  Plaintext
  ATTACKATDAWN

  Key
  LEMON

  Keystream
  LEMONLEMONLE…

  Ciphertext
  LXFOPVEFRNHR

Example from Wikipedia
http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

Cryptography vs. Cryptanalysis

8

  Cryptographers invent new clever cryptographic schemes
  Objective: make it infeasible to recover the plaintext

  Computational difficulty: efficient to compute cipher-text, but hard to
“reverse” without the key

  Cryptanalysis studies cryptographic schemes
  Objective: try to find flaws in the schemes

  E.g., recover some info about the plaintext, or recover the key

  Fundamental Tenet of Cryptography
  “If lots of smart people have failed to solve a problem, then it

probably won’t be solved (soon)”

Breaking an encryption scheme

9

  Cipher-text only attack:
Trudy has ciphertext that
she can analyze

  Two approaches:
  Search through all keys: must be

able to differentiate resulting
plaintext from gibberish

  Statistical analysis

  Known-plaintext attack:
trudy has some plaintext
corresponding to some
ciphertext
  eg, in monoalphabetic cipher,

trudy determines pairings for
a,l,i,c,e,b,o,

  Chosen-plaintext attack:
trudy can get the cyphertext
for some chosen plaintext The crypto algorithms is

typically public. Only thing that
is assumed to be secret is the key.

Attacks

  Attacker may have
a)  collection of ciphertexts

(ciphertext only attack)
b)  collection of plaintext/

ciphertext pairs (known
plaintext attack)

c)  collection of plaintext/
ciphertext pairs for plaintexts
selected by the attacker
(chosen plaintext attack)

d)  collection of plaintext/
ciphertext pairs for
ciphertexts selected by the
attacker (chosen ciphertext
attack)

10

Hi, Bob.
Don’t
invite Eve
to the
party!
Love, Alice

Encryption
Algorithm

Plaintext Ciphertext

key

Eve

Hi, Bob.
Don’t
invite Eve
to the
party!
Love, Alice

Plaintext Ciphertext

key

ABCDEFG
HIJKLMN
O
PQRSTUV
WXYZ.

Plaintext Ciphertext

key

IJCGA,
CAN DO
HIFFA
GOT
TIME.

Plaintext Ciphertext

key

Eve

001101
110111

(a)

(b)

(c)

(d)

Eve

Eve

Eve

Encryption
Algorithm

Encryption
Algorithm

Encryption
Algorithm

H
ar

de
r

Ea
si

er

Frequency Analysis

10/3/13 Cryptography 11

  Letters in a natural language, like English, are not uniformly
distributed.

  Knowledge of letter frequencies, including pairs and triples
can be used in cryptologic attacks against substitution
ciphers.

Types of Cryptography

12

  Crypto often uses keys:
  Algorithm is known to everyone
  Only “keys” are secret

  Public key cryptography
  Involves the use of two keys

  Symmetric key cryptography
  Involves the use of one key

  Hash functions
  Involves the use of no keys
  Nothing secret: How can this be useful?

Symmetric key cryptography

13

symmetric key crypto: Bob and Alice share same (symmetric)
key: K

  e.g., key is knowing substitution pattern in mono alphabetic
substitution cipher

Q: how do Bob and Alice agree on key value?

plaintext ciphertext

K S

encryption
algorithm

decryption
algorithm

S

K S

plaintext
message, m

K (m) S
m = KS(KS(m))

Two types of symmetric ciphers

14

  Stream ciphers
  encrypt one bit at time

  Block ciphers
  Break plaintext message in equal-size blocks
  Encrypt each block as a unit

Stream Ciphers

15

  Combine each bit of keystream with bit of plaintext to get bit of
ciphertext
  m(i) = ith bit of message
  ks(i) = ith bit of keystream
  c(i) = ith bit of ciphertext
  c(i) = ks(i) ⊕ m(i) (⊕ = exclusive or)
  m(i) = ks(i) ⊕ c(i)

  Problem:
  If attacker knows portion of plaintext P, she can replace it with desired

malicious plaintext P’

keystream
generator key keystream

pseudo random

RC4 Stream Cipher

16

  RC4 is a popular stream cipher
  Extensively analyzed and considered good
  Key can be from 1 to 256 bytes
  Used in WEP for 802.11
  Can be used in SSL

One-Time Pads
  There is one type of substitution cipher that is absolutely

unbreakable.
  The one-time pad was invented in 1917 by Joseph

Mauborgne and Gilbert Vernam
  We use a block of shift keys, (k1, k2, . . . , kn), to encrypt a

plaintext, M, of length n, with each shift key being chosen
uniformly at random.

  Since each shift is random, every ciphertext is equally
likely for any plaintext.

10/3/13 Cryptography 17

One-Time Pads

18

  Key is as long as the message to be sent
  Stream of bits generated at random (not pseudo-random)

  Impossible to crack (perfect security?)
  H(M) = H(M|C)

  The ciphertext C provides no information about M
  Given we only know C, every plaintext message is equally possible

  Proven by Shannon

  Impractical
  Keys need to be known to the receiver
  Transferred through other means (e.g., paper)
  Never reuse the same key

Weaknesses of the One-Time Pad

  In spite of their perfect security,
one-time pads have some
weaknesses

  The key has to be as long as the
plaintext

  Keys can never be reused
  Repeated use of one-time pads

allowed the U.S. to break some of
the communications of Soviet spies
during the Cold War.

10/3/13 Cryptography 19

See graphical example at
http://www.cryptosmith.com/archives/70

Block Ciphers
  In a block cipher:

  Plaintext and ciphertext have fixed length b (e.g., 128 bits)

  A plaintext of length n is partitioned into a sequence of m
blocks, P[0], …, P[m-1], where n ≤ bm < n + b

  Each message is divided into a sequence of blocks and
encrypted or decrypted in terms of its blocks.

10/3/13 Cryptography 20

Plaintext

Blocks of
plaintext

Requires padding
with extra bits.

Padding
  Block ciphers require the length n of the plaintext to be a multiple

of the block size b
  Padding the last block needs to be unambiguous (cannot just add

zeroes)

  When the block size and plaintext length are a multiple of 8, a
common padding method (PKCS5) is a sequence of identical bytes,
each indicating the length (in bytes) of the padding

  Example for b = 128 (16 bytes)
  Plaintext: “Roberto” (7 bytes)
  Padded plaintext: “Roberto999999999” (16 bytes), where 9 denotes the

number and not the character

  We need to always pad the last block, which may consist only of
padding (http://tools.ietf.org/html/rfc2898)

10/3/13 Cryptography 21

Block ciphers

22

  Message to be encrypted is processed in blocks of k
bits (e.g., 64-bit blocks).

  1-to-1 mapping is used to map k-bit block of plaintext
to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?

Block ciphers

23

  How many possible mappings are there for k=3?
  How many 3-bit inputs?
  How many permutations of the 3-bit inputs?
  Answer: 40,320 ; not very many!

  In general, 2k! mappings; huge for k=64
  Hard to brute force!

  Storage Problem:
  Table approach requires table with 264 entries, each entry with

64 bits
  It’s like having a key that is 64 x 264 bits long

  Table too big: instead use function that simulates a
randomly permuted table

Prototype function (Version 1)

24

64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate Loop for
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al

Prototype function (Version 2)

25

64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate

64-bit output
Loop for
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al

Why rounds?

26

  If only a single round, then one bit of input affects at most
8 bits of output.

  In 2nd round, the 8 affected bits get scattered (via
permutation) and inputted into multiple substitution
boxes.

  How many rounds?
  How many times do you need to shuffle cards
  Becomes less efficient as n increases

Symmetric key crypto: DES

27

DES: Data Encryption Standard
  US encryption standard [NIST 1993]
  56-bit symmetric key (64 – 8 parity bits)
  64-bit plaintext input blocks
  Can be used in a cipher block chaining (CBC) setting to

encrypt longer messages

Symmetric key
crypto: DES

28

initial permutation
16 identical “rounds” of

function application,
each using different 48
bits of key

final permutation

DES operation

DES Rounds

29

1-round Encryption and Decryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

DES Rounds

30

1-round Encryption and Decryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

DES Mangler Function

31

Expansion of R from
32 to 48 bits

Expanded R and the Key
are divided into eight 6-bit
Chunks

Each 6-bit chunk is mapped
into a 4-bit block

See Kaufman et al. “Network Security, Private Communication in a Public World”

How does the S-box look like?

32

  There are 8 S-boxes (48/6)

Generating Per-Round Keys

33

  Start with 56-bit key (64 - 8 parity bits)
  Why 56 bits? Unknown…

  First divide 56-bit key into two 28-bit chunks
  Rotate bits for 16 rounds…

  Some rounds rotate only by one bit, others rotate by two bits

See Kaufman et al. “Network Security, Private Communication in a Public World”

Does DES work?

34

DES Security

35

  How secure is DES?
  DES Challenge: 56-bit-key-encrypted phrase decrypted (brute

force) in less than a day
  No known good analytic attack

  making DES more secure:
  3DES: encrypt 3 times with 3 different keys (56*3=168 bits)
(actually encrypt, decrypt, encrypt)
  c = Kc(Kb

-1(Ka(m)))
  m = Ka

-1(Kb(Kc
-1(c)))

3DES

36

  In practice only 2 keys are used
  c = Ka(Kb

-1(Ka(m)))
  m = Ka

-1(Kb(Ka
-1(c)))

  It has been shown to be sufficiently secure
  Avoids overhead of sending over 3 keys

  In DES we can encrypt by decrypting (???)
  Using c = Ka(Kb

-1(Ka(m))) allows for inter-operation with DES
  Use Kb = Ka

  Why 3DES and not 120DES or 2DES?
  2DES has been proven not secure (takes only twice the time to

brute-force a single-DES key)
  120DES would be very expensive from a computational point of view

37

  xxx

Crypto modes

38

  Combining use of basic cipher for practical applications

  An application may need to
  Be able to parallelize encryption and decryption
  Preprocess as much as possible
  Recover from bit errors/loss in the ciphertext
  …

  Different modes provide different characteristics

Encrypting a large message

39

  Why not just break message in 64-bit blocks, encrypt
each block separately?

message

m1 m2 m3 mn

c1 c2 c3 cn

Key

Electronic Code Book (ECB) Encrypt

Decrypt

ECB

40

  Why not just break message in 64-bit blocks, encrypt each
block separately?
  The same plaintext always maps to the same ciphertext

  in theory we can create a precomputed code book (one per key!)
  Would be useful for random access files

  ecryption and decryption trivially parallelizable
  If same block of plaintext appears twice, will give same ciphertext
  May facilitate cryptanalysis

  Multiple messages that start with the same structure will give attacker a
number of plaintext-ciphertext pairs to work with

  we could swap things (e.g., swap salaries)

t=1 m(1) = “HTTP/1.1” block
cipher

c(1) = “k329aM02”

…
t=17 m(17) = “HTTP/1.1” block

cipher
c(17) = “k329aM02”

Strengths and Weaknesses of ECB

10/3/13 Cryptography 41

  Strengths:
  Is very simple
  Allows for parallel

encryptions of the blocks
of a plaintext

  Can tolerate the loss or
damage of a block

  Weakness:
  Documents and images are not

suitable for ECB encryption since
patters in the plaintext are repeated
in the ciphertext:

Weaknesses of ECB

42

  Example: Assume attacker knows a block of plaintext
and wants to modify replace it

 Jack Webb $51,000 Jim Cook $12,000
 C1 C2 C3 C4

 Jack Webb $51,000 Jim Cook $51,000
 C1 C2 C3 C2

Encrypting a large message

43

  How about:
  Generate random 64-bit number r(i) for each plaintext block m(i)
  Calculate c(i) = KS(m(i) ⊕ r(i))
  Transmit c(i), r(i), i=1,2,…
  At receiver: m(i) = KS(c(i)) ⊕ r(i)
  Problems:

  inefficient, need to send c(i) and r(i)

message

m1⊕r1 m2⊕r2 m3⊕r3 mn⊕rn

c1 c2 c3 cn

Key

Electronic Code Book (ECB)

Cipher Block Chaining (CBC)

44

  CBC generates its own random numbers
  Have encryption of current block depend on result of previous block
  c(i) = KS(m(i) ⊕ c(i-1))
  m(i) = KS(c(i)) ⊕ c(i-1)

  Forces same plaintext blocks to produce different ciphertext
  How do we encrypt first block?

  Initialization vector (IV): random block = c(0)
  IV does not have to be secret

  Change IV for each message (or session)
  Guarantees that even if the same message is sent repeatedly, the

ciphertext will be completely different each time

Cipher Block Chaining

❒  cipher block chaining:
XOR ith input block, m(i),
with previous block of
cipher text, c(i-1)
❍  c(0) transmitted to

receiver in clear
❍  what happens in

“HTTP/1.1” scenario
from above?

+

m(i)

c(i)

block
cipher

c(i-1)

CBC

46

CBC Encryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

CBC

47

CBC Encryption

CBC Decryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

CBC: Threats

48

  CBC does not eliminate the possibility of somebody modifying the message in transit
  The attacker cannot swap blocks (e.g., to replace the IT guy’s salary with the CEO

salary), but can modify the ciphertext

  Example: Assume attacker knows a block of plaintext and wants to modify it
 Jack Webb IT Department $51,000
 Ci-1 Ci Ci+1

  Changing Ci will modify Mi+1 in a predictable way
  However, Mi will be most likely garbled

  The change may be noticeable or not, the attacker may decide take his chances
  We may also need to “protect” IV, to avoid predictable changes to M1

  Example: IV = timestamp; send Ek(IV)

  One possible defense
  Attach one checksum block to the plaintext before encrypting
  Changes in the plaintext will be detected with high probability

Strengths and Weaknesses of CBC

10/3/13 Cryptography 49

  Weaknesses:
  CBC requires the reliable

transmission of all the
blocks sequentially

  CBC is not suitable for
applications that allow
packet losses (e.g., music
and video streaming)

  Existence of Threats

  Strengths:
  Doesn’t show patterns in

the plaintext
  Is the most common

mode
  Is fast and relatively simple

Output Feedback Mode

50

  Use Block Cipher to generate key-stream (ks)
  K(IV) = [b0…bn]
  K([b0…bn]) = bn+1…b2n

  etc.

  Advantage of OFB
  If we need to perform per-packet encryption, we don’t need to pad the payload
  Keystream can be generated in advance, before message to be sent arrives
  Destination knows IV and K, therefore can generate same keystream

  Ciphertext generated as usual
  Encryption: c = m ⊕ ks
  Decryption: m = c ⊕ ks

  Potential problem
  If somebody knows a portion P or the plaintext, that can be replaced with another “malicious”

portion P’

Output Feedback Mode (k-bits)

51
See Kaufman et al. “Network Security, Private Communication in a Public World”

Cipher Feedback Mode

52
See Kaufman et al. “Network Security, Private Communication in a Public World”

Cipher Feedback Mode (CFB)

53

  Keystream cannot be generated in advance
  Need to wait for message to arrive

  Comparison with CBC and OFB
  OFB: bit errors do not propagate beyond the current k-bit block
  CBC/OFB: if bits of ciphertext lost in transmission, the entire rest of

transmission is garbled
  CFB: with 8-bit CFB, as long as the error is an integral number of

bytes, things will re-sync. (1 bit error will affect 9 consecutive bytes)

Counter Mode (CTR)

54

  Similar to OFM
  Encrypts increments of IV to generate keystream
  Advantages:

  Decryption can start anywhere, as long as you know the block
number you are considering

  Encryption/decryption can be trivially parallelized
  Keystream can be preprocessed once IV is known
  Useful in case of encrypted random access files, for example

See Kaufman et al. “Network Security, Private Communication in a Public World”

Summary

55

From “Applied Cryptography”, 2nd edition
Bruce Schneier
Wiley

AES: Advanced Encryption Standard

56

  In 1997, the U.S. National Institute for Standards and
Technology (NIST) put out a public call for a replacement
to DES.

  It narrowed down the list of submissions to five finalists,
and ultimately chose an algorithm that is now known as
the Advanced Encryption Standard (AES).

  new (Nov. 2001) symmetric-key NIST standard, replacing DES
  Nice mathematical justification for design choices

  processes data in 128 bit blocks
  128, 192, or 256 bit keys
  brute force decryption (try each key) taking 1 sec on DES,

takes 149 trillion years for AES

The Advanced Encryption Standard (AES)

  AES is a block cipher that operates on 128-bit blocks. It is designed to
be used with keys that are 128, 192, or 256 bits long, yielding ciphers
known as AES-128, AES-192, and AES-256.

10/3/13 Cryptography 57

AES Round Structure

  The 128-bit version of the AES
encryption algorithm proceeds in
ten rounds.

  Each round performs an invertible
transformation on a 128-bit array,
called state.

  The initial state X0 is the XOR of
the plaintext P with the key K:

  X0 = P XOR K.
  Round i (i = 1, …, 10) receives state

Xi-1 as input and produces state Xi.
  The ciphertext C is the output of

the final round: C = X10.

10/3/13 Cryptography 58

AES Rounds
  Each round is built from four basic steps:
1.  SubBytes step: an S-box substitution step
2.  ShiftRows step: a permutation step
3.  MixColumns step: a matrix multiplication step
4.  AddRoundKey step: an XOR step with a round key

derived from the 128-bit encryption key

10/3/13 Cryptography 59

Key Exchange

60

  Enable Alice to communicate with Bob using shared key
  The key cannot be transmitted in clear
  It must be either encrypted when transmitted, or derived in a way that a

third party cannot derive the same key
  Alice and Bob may rely on a trusted third party, e.g., Cathy
  The cryptosystem and protocols are publicly known

  First Attempt to Key Exchange
  Alice and Cathy share a secret Ka
  Cathy and Bob share a secret Kb

1.  Alice >> Cathy : Ka(request for session key to Bob)
2.  Cathy >> Alice : Ka(Ks) | Kb(Ks)
3.  Alice >> Bob : Kb(Ks)
4.  Alice can now privately send message M to Bob using Ks

1.  Alice >> Bob : Ks(M)

See Bishop “Introduction to Computer Security”

Key Exchange

61

  Problem: Replay Attack
  Eve records (3) and Ks(M), which was sent by Alice to Bob
  Eve >> Bob: Kb(Ks)
  Eve >> Bob: Ks(M)
  If M = “Deposit $500k in Roberto’s account”, we have a problem!

  Needham-Schroeder protocol
1.  Alice >> Cathy : “Alice” | “Bob” | Rand1
2.  Cathy >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks))
3.  Alice >> Bob : Kb(“Alice” | Ks)
4.  Bob >> Alice : Ks(Rand2)
5.  Alice >> Bob : Ks(Rand2-1)

See Bishop “Introduction to Computer Security”

CSCI 4250/6250 – Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Public Key Cryptography

symmetric key crypto
  requires sender, receiver

know shared secret key

  Q: how to agree on key in
first place (particularly if
never “met”)?

63

public key cryptography
❒  radically different

approach [Diffie-
Hellman76, RSA78]

❒  sender, receiver do
not share secret key

❒  public encryption key
known to all

❒  private decryption
key known only to
receiver

Public key cryptography

64

plaintext
message, m

ciphertext encryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message K (m) B

+

K B
+

Bob’s private
key

K B
-

m = K (K (m)) B
+

B
-

Public key encryption algorithms

65

need K () and K () such that B B

given public key K , it should be
impossible to compute private
key K B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
B B

- +

+

-

RSA: getting ready

66

  A message is a bit pattern.
  A bit pattern can be uniquely represented by an integer

number.
  Thus encrypting a message is equivalent to encrypting a

number.
Example
  m= 10010001

  This message is uniquely represented by the decimal number 145.
  To encrypt m, we encrypt the corresponding number, which gives a

new number (the cyphertext).

RSA: Creating public/private key pair

67

1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z. (e, z are “relatively prime”).

4. Choose d (with d<n) sothat ed-1 is divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

K B
+ K B

-

RSA: Creating public/private key pair

68

1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each, to avoid brute force given n)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z. (e, z are “relatively prime”).

4. Choose d (with d<n) sothat ed-1 is divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

K B
+ K B

-

e can be
relatively small

d should be large

RSA: Encryption, decryption

69

0. Given (n,e) and (n,d) as computed above

1. To encrypt message m (<n), compute
c = m mod n e

2. To decrypt received bit pattern, c, compute
m = c mod n d

m = (m mod n) e mod n d Magic
happens!

c

public private

RSA example:

70

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z)
ed-1 = 144, 144/24=6

bit pattern m m e c = m mod n e

0000l000 12 24832 17

c m = c mod n d

17 481968572106750915091411825223071697 12
c d

encrypt:

decrypt:

Encrypting 8-bit messages.

Prerequisite: modular arithmetic

71

  x mod n = remainder of x when divide by n
  Facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

  Thus
 (a mod n)d mod n = ad mod n
  Example: x=14, n=10, d=2:

  (x mod n)d mod n = 42 mod 10 = 6
  xd = 142 = 196 and xd mod 10 = 6

Multiplicative Inverses (1)
  The residues modulo a positive integer n are the set

 Zn = {0, 1, 2, …, (n - 1)}
  Let x and y be two elements of Zn such that

 xy mod n = 1
 We say that y is the multiplicative inverse of x in Zn and we
write y = x-1

  Example:
  Multiplicative inverses of the residues modulo 10

10/3/13 Cryptography 72

x 0 1 2 3 4 5 6 7 8 9
x-1 1 7 3 9

Multiplicative Inverses (2)
Theorem

 An element x of Zn has a multiplicative inverse if and only if x and n are
relatively prime

  Example
  The elements of Z10 with a multiplicative inverse are 1, 3, 7, 9

Corollary
 If p is prime, every nonzero residue in Zp has a multiplicative inverse

  Example:
  Multiplicative inverses of the residues modulo 11

10/3/13 Cryptography 73

x 0 1 2 3 4 5 6 7 8 9 10
x-1 1 6 4 3 9 2 8 7 5 10

Euler’s Theorem
  The multiplicative group for Zn, denoted with Z*n, is the subset of elements of

Zn relatively prime with n
  The totient function of n, denoted with φ(n), is the size of Z*n
  Example

 Z*10 = { 1, 3, 7, 9 } φ(10) = 4	

  If p is prime, we have

 Z*p = {1, 2, …, (p - 1)} φ(p) = p - 1
Euler’s Theorem

 For each element x of Z*n, we have xφ(n) mod n = 1
  Example (n = 10)

 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1	

	
7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1	

	
9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1

  Consequence
  xy mod n = xy mod φ(n) mod n

10/3/13 Cryptography 74

Why?

75

  Remember
  [(a mod n)(b mod n)] mod n = (ab) mod n
  (a mod n)d mod n = ad mod n

  Then
  xy mod n = x(kφ(n)+r) mod n = xkφ(n) xr mod n =

[(xkφ(n) mod n)(xr mod n)] mod n = xy mod φ(n) mod n

=1 if x in Z*n

Why does RSA work?

76

  Remember that
  p and q are two large primes
  n = pq; z = (p-1)(q-1) = φ(n)
  ed mod z = 1

  z is equal to the totient of n
  the number of numbers < n that are relatively prime to n

  Fact: for any x and y, xy mod n = x(y mod z) mod n

  We need to show that cd mod n = m, where c = me mod n

 cd mod n = (me mod n)d mod n
 = med mod n
 = m(ed mod z) mod n
 = m1 mod n
 = m (notice that m in [0, n-1])

RSA: another important property

77

The following property will be very useful later:

K (K (m)) = m
B B

- +
K (K (m)) B B
+ -

=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

78

Follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
 = mde mod n
 = (md mod n)e mod n

K (K (m)) = m
B B

- +
K (K (m)) B B
+ -

= Why ?

Why is RSA Secure?

79

  Suppose you know Bob’s public key (n,e). How hard is
it to determine d?

  Essentially need to find factors of n without knowing
the two factors p and q.

  Fact: factoring a big number is hard.

Algorithmic Issues

  The implementation of the
RSA cryptosystem
requires various
algorithms

  Overall
 Representation of integers of
arbitrarily large size and
arithmetic operations on
them

  Encryption
 Modular power

  Decryption
 Modular power

  Setup
 Generation of random
numbers with a given number
of bits (to generate candidates
p and q)

 Primality testing (to check that
candidates p and q are prime)

 Computation of the GCD (to
verify that e and φ(n) are
relatively prime)

 Computation of the
multiplicative inverse (to
compute d from e)

10/3/13 Cryptography 80

Session keys

81

  Exponentiation is computationally intensive
  DES is at least 100 times faster than RSA
Session key, KS

  Bob and Alice use RSA to exchange a symmetric key KS

  Once both have KS, they use symmetric key cryptography

Diffie-Hellman

82

  Public key cryptosystem
  First known public key-based system
  Useful to perform key exchange when communication channel is not

private

  Alice and Bob first agree on a large prime p and another number
g < p (some subtle restrictions apply…), then
1.  g and p can be published (no need to keep them secret)
2.  Alice chooses a random number Sa, and Bob a rand num Sb
3.  Alice computes Ta = gSa mod p, Bob computes Tb = gSb mod p
4.  Alice and Bob exchange Ta and Tb (in public)
5.  Alice and Bob compute TbSa mod p and TaSb mod p, respectively
6.  They will get the same number (the exchanged key)

 TbSa = gSbSa mod p = gSaSb mod p = TaSb

Diffie-Hellman

83

  Why is this secure?
  Nobody else can calculate gSaSb, even if they separately know

Ta = gSa mod p and Tb = gSb mod p

  To get Sa or Sb an attacker would need to compute discrete
logarithms
  Discrete logarithms are very hard to compute
  Mathematicians have not yet figured out how to do it efficiently

  Vulnerable to man-in-the-middle attack in certain scenarios
  Alice and Bob do not authenticate each other
  Attacker may intercept and replace Ta and Tb
  To solve (or mitigate) problem, Ta and Tb should be stored in a

secure repository of “public numbers”

DH – Man-in-the-Middle Attack

84

gSa = 8389 gSb = 9267

gSe = 5876

8389

9267

5876

5876

Alice-Eve
Shared Key
5876Sa = 8389Se

Bob-Eve
Shared Key
5876Sb = 9267Se

Does it help if Alice and Bob try to verify their identity
by sending each other a pre-shared password?

DH – Man-in-the-Middle Defense

85

  Published DH numbers
  p and g are agreed upon
  Each party chooses a fixed secret number Si and publishes her

(Ti = gSi mod p) in a reliable place
  Assumption: the attacker cannot change/forge p and g

  Authenticated DH, examples
  Alice can sign her Ta
  Alice can encrypt her Ta with Bob’s pub key
  After DH, Alice sends Bob a hash H(S|Ta), where S is a pre-

shared secret (e.g., a password)

DH – Man-in-the-Middle Defense

86

  Bob is a server, and has a priv/pub key
  Alice knows (and trusts) Bob’s pub key, Kb

+

Kb
+(Ta)

Tb

Ks(r1)

Ks(r1+1)

Ks(M)

This seems to have significant problems
(Eve can still pretend to be Alice)

Ks=TaSb mod p Ks=TbSa mod p

DH – Man-in-the-Middle Defense

87

  Bob is a server, and has a priv/pub key
  Alice knows Bob’s pub key, Kb

+

Kb
+(Ta)

Tb

Ks(r1)

Ks(r1+1)

Ks(password)

This seems to work but may still have problems

Ks=TaSb mod p Ks=TbSa mod p

Ks(OK | r2)

Ks(M)

Perfect Forward Secrecy

88

  A protocol is said to have PFS if it is impossible for Trudy
to decrypt a message m sent between Alice and Bob, even
if Trudy, after m is sent, breaks into both Alice’s and Bob’s
machines and steals their private keys

  This can be achieved by using session keys that
  Are chosen independently from the private/public keys
  Alice and Bob forget the session key as soon as the

communication is over
  E.g., this can be done using Diffie-Hellman

  Alice and Bob forget their Sa and Sb after end of session
  To avoid man-in-the-middle, Alice “signs” Ta with her private

key, and Bob “signs” Tb with his pub key

Zero-Knowledge Proof Systems

89

  Used only for authentication
  Allows you to prove that you know a secret without

actually revealing the secret
  E.g.: RSA is a zero-knowledge proof system

  You can prove you know the “secret” associated with your
public key without revealing your private key

  There exist ZKPSs that are much more efficient than RSA

CSCI 4250/6250 – Fall 2013
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Message Integrity

91

  Allows communicating parties to verify that received
messages are authentic.
  Content of message has not been altered
  Source of message is who/what you think it is
  Message has not been replayed
  Sequence of messages is maintained

  Let’s first talk about message digests

Message Digests

92

  Function H() that takes as input
an arbitrary length message and
outputs a fixed-length string:
“message signature”

  Note that H() is a many-to-1
function

  H() is often called a “hash
function”

  Desirable properties:
  Easy to calculate

  Irreversibility: Can’t determine m
from H(m)

  Collision resistance:
Computationally difficult to
produce m and m’ such that H
(m) = H(m’)

  Seemingly random output

large
message

m

H: Hash
Function

H(m)

Internet checksum: poor message
digest

93

Internet checksum has some properties of hash function:
➼  produces fixed length digest (16-bit sum) of input
➼  is many-to-one

❒  But given message with given hash value, it is easy to find another
message with same hash value.

❒  Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1!
0 0 . 9!
9 B O B!

49 4F 55 31!
30 30 2E 39!
39 42 D2 42!

message ASCII format

B2 C1 D2 AC!

I O U 9!
0 0 . 1!
9 B O B!

49 4F 55 39!
30 30 2E 31!
39 42 D2 42!

message ASCII format

B2 C1 D2 AC!different messages
but identical checksums!

Hash Functions

  A hash function h maps a plaintext x to a fixed-length value x = h(P) called
hash value or digest of P
  A collision is a pair of plaintexts P and Q that map to the same hash value, h(P)

= h(Q)
  Collisions are unavoidable

  For efficiency, the computation of the hash function should take time
proportional to the length of the input plaintext

  Example of application: Hash table
  Search data structure based on storing items in locations associated with their

hash value
  Chaining deals with collisions

  Domain of hash values proportional to the expected number of items to be
stored

  The hash function should spread plaintexts uniformly over the possible hash
values to achieve constant expected search time

10/3/13 Cryptography 94

Cryptographic Hash Functions

  A cryptographic hash function satisfies additional properties

  Preimage resistance (aka one-way)

  Given a hash value x, it is hard to find a plaintext P such that h(P) = x

  Second preimage resistance (aka weak collision resistance)

  Given a plaintext P, it is hard to find a plaintext Q such that h(Q) = h(P)

  Collision resistance (aka strong collision resistance)

  It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P)

  Collision resistance implies second preimage resistance

  Hash values of at least 256 bits recommended to defend
against brute-force attacks

10/3/13 Cryptography 95

How to build a Hash Function

96

  Can we use a block cipher + CBC?
  How?

How to build a Hash Function

97

  Can we use a block cipher + CBC?
  How?

  Problem
  Not very efficient!

Use as
H(m)

Fixed IV

Fixed Key

Hash Function Algorithms

98

  MD5 hash function widely used (RFC 1321)
  computes 128-bit message digest in 4-step process.

  SHA-1 is also used.
  US standard [NIST, FIPS PUB 180-1]
  160-bit message digest

Often, no good justification
for design choices in Hash
functions.

Message-Digest Algorithm 5 (MD5)
  Developed by Ron Rivest in 1991
  Uses 128-bit hash values
  Still widely used in legacy applications although considered

insecure
  Various severe vulnerabilities discovered
  Chosen-prefix collisions attacks found by Marc Stevens, Arjen

Lenstra and Benne de Weger
  Start with two arbitrary plaintexts P and Q
  One can compute suffixes S1 and S2 such that P||S1 and Q||S2

collide under MD5 by making 250 hash evaluations
  Using this approach, a pair of different executable files or PDF

documents with the same MD5 hash can be computed

10/3/13 Cryptography 99

Problems with MD5

100

  Hash collisions created this way are usually not directly
applicable to attack widespread document formats or
protocols.

  Attacks are possible by abusing dynamic constructs present in
many formats
  E.g., a malicious document would contain two different messages in

the same document, but conditionally displays one or the other
  Computer programs have conditional constructs (if-then-else)

that allow testing whether a location in the file has one value
or another.

  Some document formats like PostScript, or macros in
Microsoft Word, also have conditional constructs.

  Finding such colliding docs/programs may take just a few
seconds on modern CPUs

Secure Hash Algorithm (SHA)

  Developed by NSA and approved as a federal standard by
NIST

  SHA-0 and SHA-1 (1993)
  160-bits
  Considered insecure
  Still found in legacy applications
  Vulnerabilities less severe than those of MD5

  SHA-2 family (2002)
  256 bits (SHA-256) or 512 bits (SHA-512)
  Still considered secure despite published attack techniques

  Public competition for SHA-3 announced in 2007

10/3/13 Cryptography 101

Iterated Hash Function
  A compression function works on input values of fixed length

  Inputs: X,Y with len(X)=m, len(Y)=n; Output: Z with len(Z)=n

  An iterated hash function extends a compression function to inputs
of arbitrary length
  padding, initialization vector, and chain of compression functions
  inherits collision resistance of compression function

  MD5 and SHA are iterated hash functions

102

|
|

|
|

|
|

|
|

P1 P2 P3 P4

IV digest

Question

103

  Assume we want to send a message
  We are not concerned with confidentiality, only integrity

  What if we send
  m’ = m || MD5(m)
  The receiver can extract m, compute MD5(m), and check if this

matches the MD5 that was sent

  Does this guarantee integrity?

Message Authentication Code (MAC)

104

  Authenticates sender
  Verifies message integrity
  No encryption !
  Also called “keyed hash”
  Notation: MDm = H(s||m) ; send m||MDm

  Is this secure? It seems like

m
es

sa
ge

H()

s

m
es

sa
ge

m
es

sa
ge

 s

H()

compare

s = shared secret

Not so fast!

105

  Because most hash functions are iterated hash functions
  Trudy knows the message m and MD(s||m)
  She could append something to m to get m’ = m||a, and use

 MD(s||m) to initialize the computation of MD(s||m’)

|
|

|
|

|
|

|
|

m1 m2 m3 a

IV digest

MD(s||m) MD(s||m’)

HMAC***

106

  Popular MAC standard
  Addresses some subtle flaws

1.  Concatenates secret to front of
message.

2.  Hashes concatenated message
3.  Concatenates the secret to front

of digest
4.  Hashes the combination again.

s 0

m

HMAC(s,m)

xor c1

xor

c2

H()

H()

Padding to 512 bits

HMAC(s,m) = H(s||H(s||M))

Other nifty things to do with a hash

107

  Hashing passwords
  Document/Program fingerprint
  Authentication

  Encryption

Alice Bob

Ra
H(Kab|Ra)

H(Kab|Rb)
Rb

b1 = H(Kab|IV) c1 = p1 xor b1
b2 = H(Kab|c1) c2 = p2 xor b2
b3 = H(Kab|c2) c3 = p3 xor b3
…

MAC Transfer $1M
from Bill to Trudy

MAC Transfer $1M
from Bill to Trudy

Playback attack
MAC =
f(msg,s)

Playback

“I am Alice”

R

MAC Transfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

Digital Signatures

110

Cryptographic technique analogous to hand-written
signatures.

  sender (Bob) digitally signs document, establishing he is
document owner/creator.

  Goal is similar to that of a MAC, except now use public-
key cryptography

  verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice), must
have signed document

Digital Signatures

111

Simple digital signature for message m:
  Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m) - -

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
- (m)

Alice verifies signature and integrity
of digitally signed message:

112

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

KB(H(m)) -

encrypted
msg digest

KB(H(m)) -

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

Digital Signatures (more)

113

  Suppose Alice receives msg m, digital signature KB(m)
  Alice verifies m signed by Bob by applying Bob’s public key KB to

KB(m) then checks KB(KB(m)) = m.
  If KB(KB(m)) = m, whoever signed m must have used Bob’s private

key.

Alice thus verifies that:
➼  Bob signed m.
➼  No one else signed m.
➼  Bob signed m and not m’.

Non-repudiation:
  Alice can take m, and signature KB(m) to court and prove

that Bob signed m.

+ +

-

-

- -

+

-

Public-key certification

114

  Motivation: Trudy plays pizza prank on Bob
  Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank
you, Bob

  Trudy signs order with her private key
  Trudy sends order to Pizza Store
  Trudy sends to Pizza Store her public key, but says it’s Bob’s

public key.
  Pizza Store verifies signature; then delivers four pizzas to Bob.
  Bob doesn’t even like Pepperoni

Certification Authorities

  Certification authority (CA): binds public key to particular
entity, E.

  E (person, router) registers its public key with CA.
  E provides “proof of identity” to CA.
  CA creates certificate binding E to its public key.
  certificate containing E’s public key digitally signed by CA – CA says

“this is E’s public key”

115

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

Certification Authorities

  When Alice wants Bob’s public key:
  gets Bob’s certificate (Bob or elsewhere).
  apply CA’s public key to Bob’s certificate, get Bob’s public

key

116

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

Alternative: symmetric crypto + KDC

117

  KDC = Key Distribution Center
  Trusted Node
  When Alice and Bob want to talk

  Alice asks KDC for a symmetric session key to be shared with Bob

  Reduces the number of keys that need to be distributed
  If a new node joins the network, we need to generate n new keys
  With KDC, only the new node and the KDC need to agree on a key

without KDC with KDC

Key Exchange via KDC

118

  Needham-Schroeder protocol
1.  Alice >> KDC : “Alice” | “Bob” | Rand1
2.  KDC >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks))
3.  Alice >> Bob : Kb(“Alice” | Ks)
4.  Bob >> Alice : Ks(Rand2)
5.  Alice >> Bob : Ks(Rand2-1)

See Bishop “Introduction to Computer Security”

KDC vs. CA

119

  KDC = Key Distribution Center
  KDC can eavesdrop conversations
  Single point of failure

  CA = Certification Authority
  CA signs Alice’s and Bob’s pub keys
  CA cannot decrypt communications between Alice and Bob

  It does not have a copy of their private keys
  If CA is compromised, attacker cannot gain access to the plaintext

  Even if CA stops functioning, Alice and Bob can still
communicate

Certificates: summary

120

  Primary standard X.509 (RFC 2459)
  Certificate contains:

  Issuer name
  Entity name, address, domain name, etc.
  Entity’s public key
  Digital signature (signed with issuer’s private key)

  Public-Key Infrastructure (PKI)
  Certificates and certification authorities
  Certificate Revocation List
  Often considered “heavy”

Components of a PKI

121

  Certificates
  Repository from which certificates can be retrieved
  A method for revoking certificates

  E.g., see https://wiki.mozilla.org/CA:ImprovingRevocation
  An “anchor of trust” (root certificate)
  A method for verifying a chain of certificates up to the anchor of trust

  Browser example:
  Browsers ship with many trust anchors (i.e., public key of trusted CAs)

  Can we really trust the CAs?
  http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
  http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-

man-in-middle.html
  It may be possible to trick users to add a trust anchor into the default set
  The browser itself may be compromised an forced to add a malicious trust

anchor

Secure e-mail

Alice:
  generates random symmetric private key, KS.
  encrypts message with KS (for efficiency)
  also encrypts KS with Bob’s public key.
  sends both KS(m) and KB(KS) to Bob.

  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail

Bob:
  uses his private key to decrypt and recover KS
  uses KS to decrypt KS(m) to recover m

  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail (continued)
•  Alice wants to provide sender authentication message
integrity.

•  Alice digitally signs message.
•  sends both message (in the clear) and digital signature.

H() . KA() . -

+ -

H(m) KA(H(m)) -
m

KA -

m

KA() . +

KA +

KA(H(m)) -

m
H() . H(m)

compare

Secure e-mail (continued)
•  Alice wants to provide secrecy, sender authentication,
 message integrity.

Alice uses three keys: her private key, Bob’s public key, newly
created symmetric key

H() . KA() . -

+

KA(H(m)) -
m

KA -

m

KS() .

KB() . +

+

KB(KS) +

KS

KB +

KS

SSL: Secure Sockets Layer

126

  Widely deployed security protocol
  Supported by almost all browsers

and web servers
  https
  Tens of billions $ spent per year

over SSL
  Originally designed by Netscape in

1993
  Number of variations:

  TLS: transport layer security, RFC
2246

  Provides
  Confidentiality
  Integrity
  Authentication

  Original goals:
  Had Web e-commerce transactions

in mind
  Encryption (especially credit-card

numbers)
  Web-server authentication
  Optional client authentication
  Minimum hassle in doing business

with new merchant
  Available to all TCP applications

  Secure socket interface

SSL and TCP/IP

127

Application

TCP

IP

Normal Application

Application

SSL

TCP

IP

Application
 with SSL

•  SSL provides application programming interface (API)
to applications
•  C and Java SSL libraries/classes readily available

Could do something like PGP:

128

•  But want to send byte streams & interactive data
• Want a set of secret keys for the entire connection
•  Want certificate exchange part of protocol:
 handshake phase

H() . KA() . -

+

KA(H(m)) -
m

KA -

m

KS() .

KB() . +

+

KB(KS) +

KS

KB +

KS

SSL: a simple secure channel

129

  Handshake: Alice and Bob use their certificates and
private keys to authenticate each other and exchange
shared secret
  In most practical cases, only one-way authentication!

  Key Derivation: Alice and Bob use shared secret to derive
set of keys

  Data Transfer: Data to be transferred is broken up into a
series of records

  Connection Closure: Special messages to securely close
connection

A simplified handshake using (RSA)

130

  MS = master secret
  EMS = encrypted master secret

hello

certificate

KB
+(MS) = EMS

A simplified handshake (Diffie-Hellman)

131

  MS = master secret

hello

certificate

Bob’s DH public parameters (signed)

Alice’s DH public parameters Compute MS Compute MS

Key derivation

132

  Considered bad to use same key for more than one
cryptographic operation
  Use different keys for message authentication code (MAC) and

encryption

  Four keys (both Alice and Bob will have all 4 keys):
  Kc = encryption key for data sent from client to server
  Mc = MAC key for data sent from client to server
  Ks = encryption key for data sent from server to client
  Ms = MAC key for data sent from server to client

  Keys derived from key derivation function (KDF)
  Takes master secret and (possibly) some additional random data and

creates the keys

Data Records

133

  Why not encrypt data in constant stream as we write it to
TCP?
  Where would we put the MAC? If at end, no message integrity until

all data processed.
  For example, with instant messaging, how can we do integrity check

over all bytes sent before displaying?
  Instead, break stream in series of records

  Each record carries a MAC
  Receiver can act on each record as it arrives

  Issue: in record, receiver needs to distinguish MAC from
data
  Want to use variable-length records

length data MAC

Sequence Numbers

134

  Attacker can capture and replay record or re-order
records

  Solution: put sequence number into MAC:
  MAC = MAC(Mx, sequence||data)
  Note: no sequence number field

  Attacker could still replay all of the records
  Use random nonce

Control information

135

  Truncation attack:
  attacker forges TCP connection close segment
  One or both sides thinks there is less data than there

actually is.

  Solution: record types, with one type for closure
  type 0 for data; type 1 for closure

  MAC = MAC(Mx, sequence||type||data)

length type data MAC

Encrypted

SSL: summary ***

136

hello

certificate, nonce

KB
+(MS) = EMS

type 0, seq 1, data
type 0, seq 2, data

type 0, seq 1, data

type 0, seq 3, data
type 1, seq 4, close

type 1, seq 2, close

en
cr

yp
te

d

bob.com

This version of SSL isn’t complete

137

  How long are the fields?
  What encryption protocols?
  No negotiation

  Allow client and server to support different encryption
algorithms

  Allow client and server to choose together specific algorithm
before data transfer

Most common symmetric ciphers in SSL

138

  DES – Data Encryption Standard: block
  3DES – Triple strength: block
  RC2 – Rivest Cipher 2: block
  RC4 – Rivest Cipher 4: stream

Public key encryption
  RSA

SSL Cipher Suite

139

  Cipher Suite
  Public-key algorithm
  Symmetric encryption algorithm
  MAC algorithm

  SSL supports a variety of cipher suites
  Negotiation: client and server must agree on cipher suite
  Client offers choice; server picks one

Real SSL: Handshake (1)

140

Purpose
1.  Server authentication
2.  Negotiation: agree on crypto algorithms
3.  Establish keys
4.  Client authentication (optional)

Real SSL: Handshake (2)

141

1.  Client sends list of algorithms it supports, along with client
nonce

2.  Server chooses algorithms from list; sends back: choice +
certificate + server nonce

3.  Client verifies certificate, extracts server’s public key,
generates pre_master_secret, encrypts with server’s public
key, sends to server

4.  Client and server independently compute encryption and
MAC keys from pre_master_secret and nonces

5.  Client sends a MAC of all the handshake messages
6.  Server sends a MAC of all the handshake messages

Real SSL: Handshake (2)

142

S = pre-master

K = master

K

K

Real SSL: Handshaking (3)

143

Last 2 steps protect handshake from tampering
  Client typically offers range of algorithms, some strong,

some weak
  Man-in-the middle could delete the stronger algorithms

from list
  Last 2 steps prevent this

  Last two messages are encrypted

Real SSL: Handshaking (4)

144

  Why the two random nonces?
  Suppose Trudy sniffs all messages between Alice &

Bob.
  Next day, Trudy sets up TCP connection with Bob,

sends the exact same sequence of records,.
  Bob (Amazon) thinks Alice made two separate orders for

the same thing.
  Solution: Bob sends different random nonce for each

connection. This causes encryption keys to be different on
the two days.

  Trudy’s messages will fail Bob’s integrity check.

Real SSL: Key derivation

145

  Client nonce, server nonce, and pre-master secret input into
pseudo random-number generator.
  Produces master secret

  Master secret and nonces used to generate session keys
  client MAC key
  server MAC key
  client encryption key
  server encryption key
  client initialization vector (IV)
  server initialization vector (IV)

SSL Record Protocol

146

data

data
fragment

data
fragment MAC MAC

encrypted
data and MAC

encrypted
data and MAC

record
header

record
header

record header: content type; version; length
MAC: includes sequence number, MAC key Mx

Fragment: each SSL fragment max 214 bytes (~16 Kbytes)

SSL Record Format

147

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

Data and MAC encrypted (symmetric algo)

Cryptographically protected records

148

Sequence number is not explicitly sent, but is part of MAC

Real
Connection

149

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchange ChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application_data

application_data

Alert: warning, close_notify TCP Fin follow

Everything
henceforth
is encrypted

What is confidentiality at the network-
layer?

150

Between two network entities:
  Sending entity encrypts the payloads of datagrams.

Payload could be:
  TCP segment, UDP segment, ICMP message, OSPF message,

and so on.

  All data sent from one entity to the other would be
hidden:
  Web pages, e-mail, P2P file transfers, TCP SYN packets, and so

on.

  That is, “blanket coverage”.

Virtual Private Networks (VPNs)

151

  Institutions often want private networks for security.
  Costly! Separate routers, links, DNS infrastructure.

  With a VPN, institution’s inter-office traffic is sent over
public Internet instead.
  But inter-office traffic is encrypted before entering public

Internet

152

IP
header

IPsec
header

Secure
payload

IP

he
ad

er

IP
se

c
he

ad
er

Se

cu
re

pa

yl
oa

d

headquarters
branch office

salesperson
in hotel

Public
Internet

laptop
w/ IPsec

Router w/
IPv4 and IPsec

Router w/
IPv4 and IPsec

Virtual Private Network (VPN)

IPsec services

153

  Confidentiality
  Data integrity
  Origin authentication
  Replay attack prevention

  Two protocols providing different service models:
  AH = Authentication Header
  ESP = Encapsulated Security Payload

IPsec Transport Mode

154

  Useful when IPsec is applied end-to-end

IPsec IPsec

IP header Payload

IP header Payload IPSec header

Transport
mode

IPsec – tunneling mode (1)

155

  End routers are IPsec aware. Hosts need not be.

IPsec IPsec

IP header Payload

IP header Payload IPSec header

Tunnel
mode

new IP hdr

IPsec – tunneling mode (2)

156

  Also tunneling mode.

IPsec
IPsec

Two protocols

157

  Authentication Header (AH) protocol
  provides source authentication & data integrity but not confidentiality

  Encapsulation Security Protocol (ESP)
  provides source authentication, data integrity, and confidentiality
  more widely used than AH

  Why doe we need AH at all, then?
  AH does not encrypt the payload

  Offers integrity protection on payload + part of IP header (excluding TTL,
fragment info, etc…), while ESP offers integrity only on payload

  TCP/UDP header are accessible
  This works well with firewalls and NAT, which often look at

transport layer to decide if/how packets should go through

Four combinations are possible!

Host mode
with AH

Host mode
with ESP

Tunnel mode
with AH

Tunnel mode
with ESP

158

Most common and
most important

Security associations (SAs)

159

  Before sending data, a virtual connection is established from
sending entity to receiving entity.

  Called “security association (SA)”
  SAs are simplex: for only one direction

  Both sending and receiving entities maintain state information
about the SA
  Recall that TCP endpoints also maintain state information.
  IP is connectionless; IPsec is connection-oriented!

  How many SAs in VPN w/ headquarters, branch office, and n
traveling salesperson?

Example SA from R1 to R2

160

R1 stores SA
  32-bit identifier for SA: Security Parameter Index (SPI)

  SPI is included in IPSec header, allows for fast lookups

  the origin interface of the SA (200.168.1.100)
  destination interface of the SA (193.68.2.23)
  type of encryption to be used (for example, 3DES with CBC)
  encryption key
  type of integrity check (for example, HMAC with MD5)
  authentication key

193.68.2.23 200.168.1.100

172.16.1/24
172.16.2/24

SA

Internet Headquarters
Branch Office

R1
R2

Example SA

161

Example SA
SPI: 12345
Source IP: 200.168.1.100
Dest IP: 193.68.2.23
Protocol: ESP
Encryption algorithm: 3DES-cbc
HMAC algorithm: MD5
Encryption key: 0x7aeaca…
HMAC key:0xc0291f…

162

Security Association Database (SAD)

❒  Endpoint holds state of its SAs in a SAD, where it can
locate them during processing.

❒  With branch office and n salespersons
❒  Headquarter router stores 2 + 2n SAs in R1’s SAD

❒  When sending IPsec datagram, R1 accesses SAD to
determine how to process datagram.

❒  When IPsec datagram arrives to R2, R2 examines SPI
in IPsec datagram, indexes SAD with SPI, and
processes datagram accordingly.

IPsec datagram

163

Focus for now on tunnel mode with ESP

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
header SPI Seq

IV

4 4 1 1

What happens?

164

193.68.2.23 200.168.1.100

172.16.1/24
172.16.2/24

SA

Internet Headquarters
Branch Office

R1
R2

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
header SPI Seq

IV

R1 converts original datagram
into IPsec datagram

165

  Appends an “ESP trailer” field to back of original datagram
(which includes original header fields!)

  Encrypts result using algorithm & key specified by SA.
  Appends the “ESP header” to front of this encrypted quantity
  Creates authentication MAC over the obtained datagram, using

algorithm and key specified in SA;
  Appends MAC to back, forming payload;
  Creates brand new IP header, with all the classic IPv4 header

fields, which it appends before payload.

Inside the enchilada:

166

  ESP trailer: Padding for block ciphers
  ESP header:

  SPI, so receiving entity knows what to do
  Sequence number, to thwart replay attacks

  MAC in ESP auth field is created with shared secret key

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
header SPI Seq

IV

IPsec sequence numbers

167

  For new SA, sender initializes seq. # to 0
  Each time datagram is sent on SA:

  Sender increments seq # counter
  Places value in seq # field

  Goal:
  Prevent attacker from sniffing and replaying a packet

  Receipt of duplicate, authenticated IP packets may disrupt service

  Method:
  Destination checks for duplicates
  But doesn’t keep track of ALL received packets; instead uses a window

Security Policy Database (SPD)

168

  Policy: For a given datagram, sending entity needs to know
if it should use IPsec.

  Needs also to know which SA to use
  May use: source and destination IP address; protocol number.

  Info in SPD indicates “what” to do with arriving datagram;
  Info in the SAD indicates “how” to do it.

Summary: IPsec services

169

  Suppose Trudy sits somewhere between R1 and R2. She
doesn’t know the keys.
  Will Trudy be able to see contents of original datagram? How

about source, dest IP address, transport protocol, application
port?

  Flip bits without detection?
  Masquerade as R1 using R1’s IP address?
  Replay a datagram?

Internet Key Exchange

170

  In previous examples, we assumed the IPsec SAs was manually
established (configured) at the endpoints:

Example SA
SPI: 12345
Source IP: 200.168.1.100
Dest IP: 193.68.2.23
Protocol: ESP
Encryption algorithm: 3DES-cbc
HMAC algorithm: MD5
Encryption key: 0x7aeaca…
HMAC key:0xc0291f…

  Such manual keying is impractical for large VPN with, say,
hundreds of sales people.

  Instead use IPsec IKE (Internet Key Exchange)

IKE Phases

171

  IKE has two phases
  Phase 1:

  Performs mutual authentication and establishment of session keys
  Also called ISAKMP security association

  Phase 2:
  used to securely negotiate the IPsec pair of SAs
  Sends info used to derive the actual session keys used for ESP/AH

  Phase 1 has two modes: aggressive mode and main mode
  Aggressive mode uses fewer messages
  Main mode provides identity protection and is more flexible

  No party needs to reveal their actual identity in plaintext

IKE Phase-1: Main Mode (simplified)

172

Tb = gb mod p K = gab mod p K = gab mod p
K{“Alice”, proof I’m Alice (certificate)}

crypto I choose

Ta = ga mod p

crypto I support

K{“Bob”, proof I’m Bob (certificate)}

http://tools.ietf.org/html/rfc2409

IKE Phase-1: Aggressive Mode (simplified)

173

Tb = gb mod p, crypto choice, K{proof I’m Bob}

K = gab mod p K = gab mod p K{proof I’m Alice}

I’m Alice, Ta = ga mod p, crypto proposal

http://tools.ietf.org/html/rfc2409

IKE: PSK and PKI

174

  Authentication (proof of who you are) with either
  pre-shared secret (PSK) or
  with PKI (pubic/private keys and certificates).

  With PSK, both sides start with secret:
  then run IKE to authenticate each other and to generate

IPsec SAs (one in each direction), including encryption and
integrity keys

  With PKI, both sides start with public/private key pair
and certificate.
  run IKE to authenticate each other and obtain IPsec SAs

(one in each direction).
  Similar to handshake in SSL.

IKE Phase-1
Signature vs. Public Key Encryption

175

  Signature
  Does not require Alice to know Bob’s pub key in advance
  She will receive Bob’s certificate in the last message
  Identity may be revealed to an attacker who is trying to

impersonate one of the parties

  Pub key encryption
  Alice must know Bob’s pub key
  Both sides reveal their identity only to whom they intend to

authenticate themselves

Summary of IPsec

176

  IKE message exchange for algorithms, secret keys, SPI numbers
  Either the AH or the ESP protocol (or both)
  The AH protocol provides integrity and source authentication
  The ESP protocol (with AH) additionally provides encryption
  IPsec peers can be two end systems, two routers/firewalls, or a

router/firewall and an end system

Source: Stallings – “Cryptography and Network Security, Principles and Practice”

Wired Equivalent Privacy

WEP Design Goals

178

  Symmetric key crypto
  Confidentiality
  Station authorization
  Data integrity

  Self synchronizing: each packet separately encrypted
  Given encrypted packet and key, can decrypt; can continue to decrypt

packets when preceding packet was lost
  Unlike Cipher Block Chaining (CBC) in block ciphers

  Efficient
  Can be implemented in hardware or software

Review: Symmetric Stream Ciphers

179

  Combine each byte of keystream with byte of plaintext to
get ciphertext

  m(i) = ith unit of message
  ks(i) = ith unit of keystream
  c(i) = ith unit of ciphertext
  c(i) = ks(i) ⊕ m(i) (⊕ = exclusive or)
  m(i) = ks(i) ⊕ c(i)
  WEP uses RC4

keystream
generator key keystream

Attacks on Stream Ciphers

  Repetition attack
  if key stream reused, attacker obtains XOR of two plaintexts

(P1 xor P2)
  If P1 is known, P2 is also known
  Even if no plaintext is known, there are known attacks based

on PI xor P2 (e.g., frequency attacks)

10/3/13 Cryptography 180

See graphical example at
http://www.cryptosmith.com/archives/70

Stream cipher and packet independence

181

  Recall design goal: each packet separately encrypted
  If for frame n+1, use keystream from where we left off for

frame n, then each frame is not separately encrypted
  Need to know where we left off for packet n

  WEP approach: initialize keystream with key + new IV for
each packet:

keystream
generator Key+IVpacket keystreampacket

WEP encryption (1)

182

  Sender calculates Integrity Check Value (ICV) over data
  four-byte hash/CRC for data integrity

  Each side has 104-bit shared key
  Sender creates 24-bit initialization vector (IV), appends to key: gives

128-bit key
  Sender also appends keyID (in 8-bit field)
  128-bit key inputted into pseudo random number generator to get

keystream
  data in frame + ICV is encrypted with RC4:

  Bytes of keystream are XORed with bytes of data & ICV
  IV & keyID are appended to encrypted data to create payload
  Payload inserted into 802.11 frame

encrypted

data ICV IV

MAC payload

Key
ID

WEP encryption (2)

183

New IV for each frame

WEP decryption overview

184

  Receiver extracts IV
  Inputs IV and shared secret key into pseudo random

generator, gets keystream
  XORs keystream with encrypted data to decrypt data +

ICV
  Verifies integrity of data with ICV

  Note that message integrity approach used here is different from
the MAC (message authentication code) and signatures (using PKI).

encrypted

data ICV IV

MAC payload

Key
ID

WEP Authentication

185

  Two different auth modes
  Open System and Shared Secret

  Open System
  No real authentication, anybody can associate with AP
  After AP association, device needs to have the correct key, otherwise

packets will be rejected (will fail integrity check)
  Shared Secret

  Device needs to provide credentials before AP association

R

IV, KIV{R}

want to connect

OK

Is there any problem here?

see Borisov et al. “Intercepting Mobile Communications: The Insecurity of 802.11”

WEP Authentication

186

  Problems with Shared Secret authentication
  Eve eavesdropped R and IV, KIV{R}
  Thus, Eve knows the key-stream related to IV

  Reuse known IV, KIV to authenticate and associate with AP

R’

IV, KIV{R’}

want to connect

OK

see Borisov et al. “Intercepting Mobile Communications: The Insecurity of 802.11”

Breaking 802.11 WEP encryption

security hole:
  24-bit IV, one IV per frame, -> IV’s eventually reused
  IV transmitted in plaintext -> IV reuse detected
  attack:

  Trudy causes Alice to encrypt known plaintext d1 d2 d3 d4 …
  Trudy sees: ci = di XOR ki

IV

  Trudy knows ci di, so can compute ki
IV

  Trudy knows encrypting key sequence k1
IV k2

IV k3
IV …

  Next time IV is used, Trudy can decrypt!
  RC4 does not work well with “weak” IVs

  A. Bittau, M. Handley and J. Lackey. The Final Nail in WEP's Coffin.
Proceedings of the IEEE Symposium on Security and Privacy, 2006

Kerberos

188

Kerberos
  Kerberos is an authentication protocol and a software suite

implementing this protocol.
  Kerberos uses symmetric cryptography to authenticate clients

to services and vice versa.
  For example, Windows servers use Kerberos as the primary

authentication mechanism, working in conjunction with Active
Directory to maintain centralized user information.

  Other possible uses of Kerberos include allowing users to log
into other machines in a local-area network, authentication for
web services, authenticating email client and servers, and
authenticating the use of devices such as printers.

  Services using Kerberos authentication are commonly referred
to as “Kerberized”.

189

Kerberos Components

190

  Key Distribution Center (KDC)
  Runs on a physically secure node on the network
  Shares a master key with each principal (i.e., each user and

each resource/service that will be using Kerberos)

  KDC has two components
  An authentication server (AS), which performs user

authentication
  A ticket-granting server (TGS), which grants tickets to

users

Kerberos Tickets

  Kerberos uses the concept of a ticket as a token that proves the
identity of a user.

  Tickets are digital documents that store session keys. They are
typically issued during a login session and then can be used
instead of passwords for any Kerberized services. During the
course of authentication, a client receives two tickets:
  A ticket-granting ticket (TGT), which acts as a global identifier for a

user and a session key
  A service ticket, which authenticates a user to a particular service

  These tickets include time stamps that indicate an expiration time
after which they become invalid. This expiration time can be set
by Kerberos administrators depending on the service.

191

Kerberos Features

  The authentication server keeps a database storing the master keys of the
users and services.

  The master key of a user is typically generated by performing a one-way hash
of the user-provided password.

  Kerberos is designed to be modular, so that it can be used with a number of
encryption protocols, with AES being the default cryptosystem.

  Kerberos aims to centralize authentication for an entire network—rather than
storing sensitive authentication information at each user’s machine, this data is
only maintained in one presumably secure location.

192

Kerberos v4 at a glance

193

  Alice logs into her workstation
  Enters user name and password
  A master key is derived from the password
  The workstations asks KDC for a session key SA for Alice, and then forgets the password

she entered
  SA will be used to ask KDC for tickets to access services
  SA will expire after a given time (e.g., a few hours)
  KDC generates SA and sends KA{SA} and KKDC{“Alice”, SA, timeout} to Alice
  KKDC{“Alice”, SA, timeout} is called Ticket Granting Ticket (TGT)

  Alice (a user) wants to talk to (or use) Bob (a service)
  Alice informs the KDC that she needs Bob, and sends her TGT
  KDC decrypts TGT to get SA

  KDC generates a session key KAB, encrypts KAB with Alice’s session key SA, encrypts KAB
with Bob’s key KB, and sends them to Alice

  KB{KAB} is called a ticket to Bob
  KAB is known only to Alice and Bob (and the KDC), and can be used by Alice and Bob to

authenticate each other, encrypt and integrity-protect their communication

Kerberos Authentication

  The client and authentication
server authenticate themselves
to each other.

  The client and ticket-granting
server authenticate themselves
to each other.

  The client and requested
service authenticate
themselves to each other, at
which point the service will be
provided to the client.

194

Obtaining a TGT

195

Alice’s master secret
derived from entered pswd

Plaintext message

Ticket to Bob

196

authenticator proves
Alice knows SA

Need reasonably synchronized clocks!

Logging into Bob

197

Provides for mutual auth

Kerberos Advantages
  The Kerberos protocol is designed to be secure even when performed over

an insecure network.
  Since each transmission is encrypted using an appropriate secret key, an

attacker cannot forge a valid ticket to gain unauthorized access to a service
without compromising an encryption key or breaking the underlying
encryption algorithm, which is assumed to be secure.

  Kerberos is also designed to protect against replay attacks, where an
attacker eavesdrops legitimate Kerberos communications and retransmits
messages from an authenticated party to perform unauthorized actions.
  The inclusion of time stamps in Kerberos messages restricts the window in which

an attacker can retransmit messages.
  Tickets may contain the IP addresses associated with the authenticated party to

prevent replaying messages from a different IP address.
  Kerberized services make use of a “replay cache,” which stores previous

authentication tokens and detects their reuse.
  Kerberos makes use of symmetric encryption instead of public-key

encryption, which makes Kerberos computationally efficient
  The availability of an open-source implementation has facilitated the

adoption of Kerberos.
198

Kerberos Disadvantages
  Kerberos has a single point of failure: if the Key

Distribution Center becomes unavailable, the
authentication scheme for an entire network may cease to
function.
  Larger networks sometimes prevent such a scenario by having

multiple KDCs, or having backup KDCs available in case of
emergency.

  If an attacker compromises the KDC, the authentication
information of every client and server on the network
would be revealed.

  Kerberos requires that all participating parties have
synchronized clocks, since time stamps are used.

199

