

CSCI 4250/6250 – Fall 2013 Computer and Network Security

Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu

CSCI 4250/6250

What is the purpose of this course?

- Combined Undergrad/Graduate Intro to Computer and Net Security
- Focuses on understanding security principles, protocols, and pitfalls:
 - How do systems fail under attack?
 - Defend yourself: best practices, design more secure systems

What this course is not!

- This is not a hacking course
- While we will talk about vulnerabilities and attacks, we will not focus on how to write exploits
- Focus will be on analyzing security mechanisms, pitfalls, learn from past mistakes, and think about how to design more secure systems

Course Topics

- Introduction: CIA, Design Principles, Crypto concepts
- Access Control and Security Models
- More crypto
 - confidentiality and integrity
 - Symmetric- and Public-key crypto
 - SSL / IPSec / DNSSEC
- OS and software security
- Malware, Botnets
- Web security
- Operational network security and privacy
 - Spoofing, Poisoning, Firewalls, IDS, Anonymity, etc...
- Physical Security (if time allows...)

Books

- **► Textbook I:** Introduction to Computer Security
 - Michael T. Goodrich and Roberto Tamassia
 - Addition Wesley

- ► **Textbook 2:** Network Security: Private Communication in a Public World, 2/e
 - Charile Kaufman, Radia Perlman, Mike Speciner
 - Prentice Hall
- Recommended Readings: Introduction to Computer Security
 - Matt Bishop
 - Addition Wesley
- See website for other recommended readings...
 - http://www.cs.uga.edu/~perdisci/CSClx250-F13/Syllabus.html

How will students be evaluated?

- ► Class participation: U,G=5%
- ▶ Paper Reviews: U=N/A, G=10%
- ▶ Development Projects and Assignments: U,G=25%
- ▶ Midterm Exam: U=35%, G=30%
- ▶ Final Exam: U=35%, G=30%

Class Participation (5%)

- Class participation is required
 - Students will need to sign the attendance log at the beginning of sample lectures
- Not all topics discussed during lectures are covered in the textbooks
- Lectures will be interleaved with assignments/projects discussions

Paper Presentations (U=N/A, G=10%)

- Throughout the term, graduate students will be required to read a number of academic/technical papers
- For each paper, students will be required to prepare a presentation to be given to the entire class
 - Introduce problem
 - Summarize paper
 - Briefly describe proposed system/algorithms
 - Report most important experimental results
 - Live demonstration (when appropriate)
 - More detailed guidelines later...
- NOTE: Some of the topics discussed in the assigned papers may be part of the midterm and final exams for everybody!

Development Projects + Assignments (25%)

- Students will be required to complete a number of development projects
 - Development in C, Java, or Python
 - ▶ (other languages conditioned to my explicit approval)
 - Some projects must be conducted individually
 - Others may be conducted in pairs (I will indicate which ones), in which case the evaluation will be the same for both students
 - Most projects will be evaluated with a binary criteria
 - It works correctly => X points (X depends on project difficulty)
 - ▶ It does not work (does not compile, fails tests, etc.) => 0 points
 - ▶ I will announce possible exceptions to this rule for specific projects
 - Development Projects and Assignments under Linux
 - You will use a specific VM image (provided later...)

Development Projects + Assignments (25%)

Other assignments will include

- Pencil-and-paper homework
- Hands-on network experiments / analysis

Lateness Policy

- Students will be allowed a maximum of one late submission
- Max delay = 7 days
- Past this threshold, all future late assignments will penalized 100%

Exams

- Midterm Exam (U=35%, G=30%)
 - Will cover all topics discussed up to one week before the exam
- Final Exam (U=35%, G=30%)
 - Can cover all topics
 - Main focus on second part of the course
 - Will include some questions about most important topics covered in the first part of the course
- Both Midterm and Final may also contain some questions related to papers assigned for review

Academic Integrity

- Every student must abide by UGA's academic honesty policy
- A CULTURE OF HONESTY E'A'R'N'S A DEGREE OF RESPECT
- Dishonest behavior including cheating, copying, or forging experimental results will not be tolerated and will be reported according to UGA's policies
- Always adopt an ethical conduct
 - Never use what you learn to attack real systems!!!
- Specific to Development Projects:
 - You are **allowed** to search for examples and documentation
 - You are **not allowed** to reuse other people's code (no cut and paste!)
 - Use examples to understand how the code works and then write your own code!

Logistics

Course Website

- http://www.cs.uga.edu/~perdisci/CSClx250-F13/Calendar.html
- I will post info on topics covered in class, assignments, projects, and related deadlines

Mailing List

- CSCIx250-F13@listserv.uga.edu
- Assignment 0.1:
 - See course calendar for instructions on how to subscribe to the list (only UGA.edu email addresses are allowed)
- Use mailing list to ask any questions about the course (avoid posting questions specific to your case on the list)
- You can also use the mailing list for discussion
- DO NOT expect me to answer to all questions. I will answer only to important questions/urgent issues, anything else can be addressed during last 5min of class

Logistics

- ▶ As a reminder... Classes are on
 - Monday at 2:30-3:20pm, Boyd 306
 - Tuesday and Thursday at 2-3:15pm, Forestry 306
- Office hours
 - Thursdays, I Iam-Ipm
 - ▶ GSRC Room 423
- ► TA
 - Lee Harrison <lee2704 [at] uga [dot] edu>

Questions?