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The language of cryptography 
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m plaintext message 
KA(m) ciphertext, encrypted with key KA 
m = KB(KA(m)) 

 

plaintext plaintext ciphertext 

K A 

encryption 
algorithm 

decryption  
algorithm 

Alice’s  
encryption 
key 

Bob’s  
decryption 
key 

K B 



Basics 

}  Alternative Notation 
}  Secret key K 
}  Encryption function EK(P) 
}  Decryption function DK(C)  
}  Plaintext length typically the same as ciphertext length 
}  Encryption and decryption are permutation functions 

(bijections) on the set of all n-bit arrays 
}  Efficiency 

}  functions EK and DK should have efficient algorithms 
}  Consistency 

}  Decrypting the ciphertext yields the plaintext 
}  DK(EK(P)) = P 
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Simple encryption scheme (Ceasar cipher) 
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substitution cipher: substituting one thing for another 
}  monoalphabetic cipher: substitute one letter for another 

plaintext:  abcdefghijklmnopqrstuvwxyz 

ciphertext:  mnbvcxzasdfghjklpoiuytrewq 

Plaintext: bob. i love you. alice 
ciphertext: nkn. s gktc wky. mgsbc 

E.g.: 

Key: the mapping from the set of 26 letters to the  
set of 26 letters 



Substitution Ciphers 
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}  Each letter is uniquely 
replaced by another. 

}  ROT13 examaple: 
}  CIAO à PVNB 

}  One popular substitution 
“cipher” for some 
Internet posts is ROT13. 

Public domain image from http://en.wikipedia.org/wiki/File:ROT13.png 



Polyalphabetic encryption 
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}  n monoalphabetic cyphers, M1,M2,…,Mn 

}  Cycling pattern: 
}  e.g., n=4    M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;  

}  For each new plaintext symbol, use subsequent 
monoalphabetic pattern in cyclic pattern 
}  dog: d from M1, o from M3, g from M4 

}  Key: the n ciphers and the cyclic pattern 

}  Example:  
}  Vigenere cipher 



Vigenere cipher 
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}  Plaintext 
}  ATTACKATDAWN 

}  Key 
}  LEMON 

}  Keystream 
}  LEMONLEMONLE… 

}  Ciphertext 
}  LXFOPVEFRNHR 

Example from Wikipedia 
http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher 



Cryptography vs. Cryptanalysis 
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}  Cryptographers invent new clever cryptographic schemes 
}  Objective: make it infeasible to recover the plaintext 

}  Computational difficulty: efficient to compute cipher-text, but hard to 
“reverse” without the key 

}  Cryptanalysis studies cryptographic schemes 
}  Objective: try to find flaws in the schemes 

}  E.g., recover some info about the plaintext, or recover the key 

}   Fundamental Tenet of Cryptography 
}  “If lots of smart people have failed to solve a problem, then it 

probably won’t be solved (soon)” 



Breaking an encryption scheme 
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}  Cipher-text only attack: 
Trudy has ciphertext that 
she can analyze 

}  Two approaches: 
}  Search through all keys: must be 

able to differentiate resulting 
plaintext from gibberish 

}  Statistical analysis 

}  Known-plaintext attack: 
trudy has some plaintext 
corresponding to some 
ciphertext 
}  eg, in monoalphabetic cipher, 

trudy determines pairings for 
a,l,i,c,e,b,o,b 

}  Chosen-plaintext attack: 
trudy can get the cyphertext 
for some chosen plaintext 

 
The crypto algorithms is 
typically public. Only thing that 
is assumed to be secret is the key. 



Attacks 

}  Attacker may have 
a)  collection of ciphertexts 

(ciphertext only attack) 
b)  collection of plaintext/

ciphertext pairs (known 
plaintext attack) 

c)  collection of plaintext/
ciphertext pairs for plaintexts 
selected by the attacker 
(chosen plaintext attack) 

d)  collection of plaintext/
ciphertext pairs for 
ciphertexts selected by the 
attacker (chosen ciphertext 
attack) 
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Hi, Bob. 
Don’t 
invite Eve 
to the 
party!  
Love, Alice 

Encryption 
Algorithm 

Plaintext Ciphertext 

key 

Eve 

Hi, Bob. 
Don’t 
invite Eve 
to the 
party!  
Love, Alice 

Plaintext Ciphertext 

key 

ABCDEFG 
HIJKLMN
O 
PQRSTUV 
WXYZ. 

Plaintext Ciphertext 

key 

IJCGA, 
CAN DO 
HIFFA 
GOT 
TIME. 

Plaintext Ciphertext 

key 

Eve 

001101 
110111 

(a) 

(b) 

(c) 

(d) 

Eve 

Eve 

Eve 

Encryption 
Algorithm 

Encryption 
Algorithm 

Encryption 
Algorithm 

H
ar

de
r 

Ea
si

er
 



Frequency Analysis 
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}  Letters in a natural language, like English, are not uniformly 
distributed. 

}  Knowledge of letter frequencies, including pairs and triples 
can be used in cryptologic attacks against substitution 
ciphers. 



Types of Cryptography 
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}  Crypto often uses keys: 
}  Algorithm is known to everyone 
}  Only “keys” are secret 

}  Public key cryptography  
}  Involves the use of two keys 

}  Symmetric key cryptography 
}  Involves the use of one key 

}  Hash functions 
}  Involves the use of no keys 
}  Nothing secret: How can this be useful? 



Symmetric key cryptography 
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symmetric key crypto: Bob and Alice share same (symmetric) 
key: K 

}  e.g., key is knowing substitution pattern in mono alphabetic 
substitution cipher 

Q: how do Bob and Alice agree on key value? 

plaintext ciphertext 

K S 

encryption 
algorithm 

decryption  
algorithm 

S 

K S 

plaintext 
message, m 

K    (m) S 
m = KS(KS(m)) 



Two types of symmetric ciphers 
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}  Stream ciphers 
}  encrypt one bit at time 

}  Block ciphers 
}  Break plaintext message in equal-size blocks 
}  Encrypt each block as a unit 



Stream Ciphers 
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}  Combine each bit of keystream with bit of plaintext to get bit of 
ciphertext 
}  m(i) = ith bit of message 
}  ks(i) = ith bit of keystream 
}  c(i) = ith bit of ciphertext 
}  c(i) = ks(i) ⊕ m(i)   (⊕ = exclusive or) 
}  m(i) = ks(i) ⊕ c(i)  

}  Problem: 
}  If attacker knows portion of plaintext P, she can replace it with desired 

malicious plaintext P’ 

keystream 
generator key keystream 

pseudo random 



RC4 Stream Cipher 
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}  RC4 is a popular stream cipher 
}  Extensively analyzed and considered good 
}  Key can be from 1 to 256 bytes 
}  Used in WEP for 802.11 
}  Can be used in SSL 

https://tools.ietf.org/html/rfc7465

Use of RC4 in TLS 
is being phased out 



One-Time Pads 
}  There is one type of substitution cipher that is absolutely 

unbreakable. 
}  The one-time pad was invented in 1917 by Joseph 

Mauborgne and Gilbert Vernam 
}  We use a block of shift keys, (k1, k2, . . . , kn), to encrypt a 

plaintext, M, of length n, with each shift key being chosen 
uniformly at random. 

}  Since each shift is random, every ciphertext is equally 
likely for any plaintext. 
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One-Time Pads 
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}  Key is as long as the message to be sent 
}  Stream of bits generated at random (not pseudo-random) 

}  Impossible to crack (perfect security?) 
}  H(M) = H(M|C) 

}  The ciphertext C provides no information about M 
}  Given we only know C, every plaintext message is equally possible 

}  Proven by Shannon 

}  Impractical 
}  Keys need to be known to the receiver 
}  Transferred through other means (e.g., paper) 
}  Never reuse the same key 



Weaknesses of the One-Time Pad 

}  In spite of their perfect security, 
one-time pads have some 
weaknesses 

}  The key has to be as long as the 
plaintext 

}  Keys can never be reused 
}  Repeated use of one-time pads 

allowed the U.S. to break some of 
the communications of Soviet spies 
during the Cold War. 
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See graphical example at 
https://www.khanacademy.org/computing/computer-science/cryptography/crypt/v/one-time-pad 
 



Block Ciphers 
}  In a block cipher: 

}  Plaintext and ciphertext have fixed length b (e.g., 128 bits) 

}  A plaintext of length n is partitioned into a sequence of m 
blocks, P[0], …, P[m-1], where n ≤ bm < n + b 

}  Each message is divided into a sequence of blocks and 
encrypted or decrypted in terms of its blocks. 
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Plaintext 

Blocks of 
plaintext 

Requires padding 
with extra bits. 



Padding 
}  Block ciphers require the length n of the plaintext to be a multiple 

of the block size b 
}  Padding the last block needs to be unambiguous (cannot just add 

zeroes) 
}  When the block size and plaintext length are a multiple of 8, a 

common padding method (PKCS#5) is a sequence of identical bytes, 
each indicating the length (in bytes) of the padding 

}  Example for b = 128 (16 bytes) 
}  Plaintext: “Roberto” (7 bytes) 
}  Padded plaintext: “Roberto999999999” (16 bytes), where 9 denotes the 

number and not the character 

}  We need to always pad the last block, which may consist only of 
padding (http://tools.ietf.org/html/rfc2898) 
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Block ciphers 
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}  Message to be encrypted is processed in blocks of k 
bits (e.g., 64-bit blocks). 

}  1-to-1 mapping is used to map k-bit block of plaintext 
to k-bit block of ciphertext 

Example with k=3: 

input   output 
000      110 
001       111 
010       101 
011       100 
 

input   output 
100      011 
101       010 
110       000 
111       001 
 What is the ciphertext for 010110001111 ? 



Block ciphers 
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}  How many possible mappings are there for k=3? 
}  How many 3-bit inputs? 
}  How many permutations of the 3-bit inputs? 
}  Answer: 40,320 ;  not very many! 

}  In general, 2k! mappings;   huge for k=64 
}  Hard to brute force! 

}  Storage Problem:  
}  Table approach requires table with 264 entries, each entry with 

64 bits 
}  It’s like having a key that is 64 x 264 bits long 

}  Table too big: instead use function that simulates a 
randomly permuted table 



Prototype function (Version 1) 
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64-bit input 

S1 

8bits 

8 bits 

S2 

8bits 

8 bits 

S3 

8bits 

8 bits 

S4 

8bits 

8 bits 

S7 

8bits 

8 bits 

S6 

8bits 

8 bits 

S5 

8bits 

8 bits 

S8 

8bits 

8 bits 

64-bit intermediate Loop for  
n rounds 

8-bit to 
8-bit 
mapping 

From Kaufman 
et al 



Prototype function (Version 2) 
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64-bit input 

S1 

8bits 

8 bits 

S2 

8bits 

8 bits 

S3 

8bits 

8 bits 

S4 

8bits 

8 bits 

S7 

8bits 

8 bits 

S6 

8bits 

8 bits 

S5 

8bits 

8 bits 

S8 

8bits 

8 bits 

64-bit intermediate 

64-bit output 
Loop for  
n rounds 

8-bit to 
8-bit 
mapping 

From Kaufman 
et al 



Why rounds? 
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}  If only a single round, then one bit of input affects at most 
8 bits of output. 

}  In 2nd round, the 8 affected bits get scattered (via 
permutation) and inputted into multiple substitution 
boxes. 

}  How many rounds? 
}  How many times do you need to shuffle cards 
}  Becomes less efficient as n increases 



Symmetric key crypto: DES 
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DES: Data Encryption Standard 
}  US encryption standard [NIST 1993] 
}  56-bit symmetric key (64 – 8 parity bits) 
}  64-bit plaintext input blocks 
}  Can be used in a cipher block chaining (CBC) setting to 

encrypt longer messages 



Symmetric key  
crypto: DES 
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initial permutation  
16 identical “rounds” of 

function application, 
each using different 48 
bits of key 

final permutation 
 

DES operation 



DES Rounds 
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1-round Encryption and Decryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



DES Rounds 
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1-round Encryption and Decryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



DES Mangler Function  
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Expansion of R from 
32 to 48 bits 

Expanded R and the Key 
are divided into eight 6-bit 
Chunks 
 
Each 6-bit chunk is mapped 
into a 4-bit block 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



How does the S-box look like? 

32 

}  There are 8 S-boxes (48/6) 



Generating Per-Round Keys 
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}  Start with 56-bit key (64 - 8 parity bits) 
}  Why 56 bits? Unknown… 

}  First divide 56-bit key into two 28-bit chunks 
}  Rotate bits for 16 rounds… 

}  Some rounds rotate only by one bit, others rotate by two bits 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



Does DES work? 
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DES Security 
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}  How secure is DES? 
}  DES Challenge: 56-bit-key-encrypted phrase  decrypted (brute 

force) in less than a day 
}  No known good analytic attack 

}  making DES more secure: 
}  3DES: encrypt 3 times with 3 different keys (56*3=168 bits) 
(actually encrypt, decrypt, encrypt) 
}  c = Kc(Kb

-1(Ka(m))) 
}  m = Ka

-1(Kb(Kc
-1(c))) 

 



3DES 
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}  In practice only 2 keys are used 
}  c = Ka(Kb

-1(Ka(m))) 
}  m = Ka

-1(Kb(Ka
-1(c))) 

}  It has been shown to be sufficiently secure 
}  Avoids overhead of sending over 3 keys  

}  In DES we can encrypt by decrypting (???) 
}  Using c = Ka(Kb

-1(Ka(m))) allows for inter-operation with DES 
}  Use Kb = Ka 

}  Why 3DES and not 120DES or 2DES? 
}  2DES has been proven not secure (takes only twice the time to 

brute-force a single-DES key) 
}  120DES would be very expensive from a computational point of view 
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}  xxx 



Crypto modes 
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}  Combining use of basic cipher for practical applications 

}  An application may need to 
}  Be able to parallelize encryption and decryption 
}  Preprocess as much as possible 
}  Recover from bit errors/loss in the ciphertext 
}  … 

}  Different modes provide different characteristics 



Encrypting a large message 
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}  Why not just break message in 64-bit blocks, encrypt 
each block separately? 

 

message 

m1 m2 m3 mn 

c1 c2 c3 cn 

Key 

Electronic Code Book (ECB) Encrypt 

Decrypt 



ECB 
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}  Why not just break message in 64-bit blocks, encrypt each 
block separately? 
}  The same plaintext always maps to the same ciphertext  

}  in theory we can create a precomputed code book (one per key!) 
}  Would be useful for random access files 

}  ecryption and decryption trivially parallelizable 
}  If same block of plaintext appears twice, will give same ciphertext 
}  May facilitate cryptanalysis 

}  Multiple messages that start with the same structure will give attacker a 
number of plaintext-ciphertext pairs to work with 

}  we could swap things (e.g., swap salaries) 

t=1 m(1)   = “HTTP/1.1” block 
cipher 

c(1)    = “k329aM02” 

… 
t=17 m(17)   = “HTTP/1.1” block 

cipher 
c(17)    = “k329aM02” 



Strengths and Weaknesses of ECB 
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}  Strengths: 
}  Is very simple 
}  Allows for parallel 

encryptions of the blocks 
of a plaintext 

}  Can tolerate the loss or 
damage of a block 

}  Weakness: 
}  Documents and images are not 

suitable for ECB encryption since 
patters in the plaintext are repeated 
in the ciphertext: 



Weaknesses of ECB 
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}  Example: Assume attacker knows a block of plaintext 
and wants to modify or replace it 

  Jack Webb   $51,000       Jim Cook   $12,000 
      C1             C2               C3           C4 

 
  Jack Webb   $51,000       Jim Cook   $51,000 

      C1             C2               C3           C2 
   



Encrypting a large message 
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}  How about: 
}  Generate random 64-bit number r(i) for each plaintext block m(i) 
}  Calculate c(i) = KS( m(i) ⊕ r(i) ) 
}  Transmit c(i), r(i), i=1,2,… 
}  At receiver: m(i) = KS(c(i)) ⊕ r(i)  
}  Problems:  

}  inefficient, need to send c(i) and r(i) 
 

message 

m1⊕r1 m2⊕r2 m3⊕r3 mn⊕rn 

c1 c2 c3 cn 

Key 

Electronic Code Book (ECB) 



Cipher Block Chaining (CBC) 
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}  CBC generates its own random numbers 
}  Have encryption of current block depend on result of previous block 
}  c(i) = KS( m(i) ⊕ c(i-1) ) 
}  m(i) = KS( c(i) ) ⊕ c(i-1) 

}  Forces same plaintext blocks to produce different ciphertext  
}  How do we encrypt first block? 

}  Initialization vector (IV): random block = c(0) 
}  IV does not have to be secret 

}  Change IV for each message (or session) 
}  Guarantees that even if the same message is sent repeatedly, the 

ciphertext will be completely different each time 

 



Cipher Block Chaining 

❒  cipher block chaining: 
XOR ith input block, m(i), 
with previous block of 
cipher text, c(i-1) 
❍  c(0) transmitted to 

receiver in clear 
❍  what happens in 

“HTTP/1.1” scenario 
from above? 

+ 

m(i) 

c(i) 

block 
cipher 

c(i-1) 



CBC 
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CBC Encryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



CBC 
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CBC Encryption 

CBC Decryption 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



CBC: Threats 
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}  CBC does not eliminate the possibility of somebody modifying the message in transit 
}  The attacker cannot swap blocks (e.g., to replace the IT guy’s salary with the CEO 

salary), but can modify the ciphertext 

}  Example: Assume attacker knows a block of plaintext and wants to modify it 
   Jack Webb      IT Department      $51,000 
        Ci-1         Ci              Ci+1 

 
}  Changing Ci will modify M(i+1) in a predictable way 
}  However, Mi will be most likely garbled  

}  The change may be noticeable or not, the attacker may decide to take his chances 

}  We may also need to “protect” IV, to avoid predictable changes to M1 
}  Example:  IV = timestamp; send Ek(IV) 

}  One possible defense 
}  Attach one checksum block to the plaintext before encrypting 
}  Changes in the plaintext will be detected with high probability 



Strengths and Weaknesses of CBC 
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}  Weaknesses: 
}  CBC requires the reliable 

transmission of all the 
blocks sequentially 

}  CBC is not suitable for 
applications that allow 
packet losses (e.g., music 
and video streaming) 

}  Existence of Threats 

}  Strengths: 
}  Doesn’t show patterns in 

the plaintext 
}  Is the most common 

mode 
}  Is fast and relatively simple 



Output Feedback Mode 

50 

}  Use Block Cipher to generate key-stream (ks) 
}  K(IV) = [b0…bn] 
}  K([b0…bn]) = bn+1…b2n 

}  etc. 

}  Advantage of OFB 
}  If we need to perform per-packet encryption, we don’t need to pad the payload 
}  Keystream can be generated in advance, before message to be sent arrives 
}  Destination knows IV and K, therefore can generate same keystream 

}  Ciphertext generated as usual 
}  Encryption: c = m ⊕ ks 
}  Decryption: m = c ⊕ ks 

}  Potential problem 
}  If somebody knows a portion P or the plaintext, that can be replaced with another “malicious” 

portion P’ 



Output Feedback Mode (k-bits) 
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See Kaufman et al. “Network Security, Private Communication in a Public World” 



Cipher Feedback Mode 
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See Kaufman et al. “Network Security, Private Communication in a Public World” 



Cipher Feedback Mode (CFB) 
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}  Keystream cannot be generated in advance 
}  Need to wait for message to arrive 

}  Comparison with CBC and OFB 
}  OFB: bit errors do not propagate beyond the current k-bit block 
}  CBC/OFB: if bits of ciphertext lost in transmission, the entire rest of 

transmission is garbled 
}  CFB: with 8-bit CFB, as long as the error is an integral number of 

bytes, things will re-sync. (1 bit error will affect 9 consecutive bytes) 



Counter Mode (CTR) 
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}  Similar to OFM 
}  Encrypts increments of IV to generate keystream 
}  Advantages: 

}  Decryption can start anywhere, as long as you know the block 
number you are considering 

}  Encryption/decryption can be trivially parallelized 
}  Keystream can be preprocessed once IV is known 
}  Useful in case of encrypted random access files, for example 

See Kaufman et al. “Network Security, Private Communication in a Public World” 



Summary 
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From “Applied Cryptography”, 2nd edition 
Bruce Schneier 
Wiley 



AES: Advanced Encryption Standard 
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}  In 1997, the U.S. National Institute for Standards and 
Technology (NIST) put out a public call for a replacement 
to DES.  

}  It narrowed down the list of submissions to five finalists, 
and ultimately chose an algorithm that is now known as 
the Advanced Encryption Standard (AES). 

}  new (Nov. 2001) symmetric-key NIST standard, replacing DES 
}  Nice mathematical justification for design choices 

}  processes data in 128 bit blocks 
}  128, 192, or 256 bit keys 
}  brute force decryption (try each key) taking 1 sec on DES, 

takes 149 trillion years for AES 



The Advanced Encryption Standard (AES) 

}  AES is a block cipher that operates on 128-bit blocks. It is designed to 
be used with keys that are 128, 192, or 256 bits long, yielding ciphers 
known as AES-128, AES-192, and AES-256. 
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AES Round Structure 

}  The 128-bit version of the AES 
encryption algorithm proceeds in 
ten rounds.  

}  Each round performs an invertible 
transformation on a 128-bit array, 
called state.  

}  The initial state X0 is the XOR of 
the plaintext P with the key K: 

}         X0 = P  XOR  K. 
}  Round i (i = 1, …, 10) receives state 

Xi-1 as input and produces state Xi. 
}  The ciphertext C is the output of 

the final round: C = X10. 
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AES Rounds 
}  Each round is built from four basic steps: 
1.  SubBytes step: an S-box substitution step 
2.  ShiftRows step: a permutation step 
3.  MixColumns step: a matrix multiplication step 
4.  AddRoundKey step: an XOR step with a round key 

derived from the 128-bit encryption key 
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Key Exchange 
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}  Enable Alice to communicate with Bob using shared key 
}  The key cannot be transmitted in clear 
}  It must be either encrypted when transmitted, or derived in a way that a 

third party cannot derive the same key 
}  Alice and Bob may rely on a trusted third party, e.g., Cathy 
}  The cryptosystem and protocols are publicly known 

}  First Attempt to Key Exchange 
}  Alice and Cathy share a secret Ka 
}  Cathy and Bob share a secret Kb 

1.  Alice >> Cathy : Ka(request for session key to Bob) 
2.  Cathy >> Alice : Ka(Ks) | Kb(Ks) 
3.  Alice >> Bob : Kb(Ks) 
4.  Alice can now privately send message M to Bob using Ks 

1.  Alice >> Bob : Ks(M) 

See Bishop “Introduction to Computer Security” 



Key Exchange 
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}  Problem: Replay Attack 
}  Eve records (3) and Ks(M), which was sent by Alice to Bob 
}  Eve >> Bob: Kb(Ks) 
}  Eve >> Bob: Ks(M) 
}  If M = “Deposit $500k in Roberto’s account”, we have a problem! 

}  Needham-Schroeder protocol 
1.  Alice >> Cathy :  “Alice” | “Bob” | Rand1 
2.  Cathy >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks)) 
3.  Alice >> Bob : Kb(“Alice” | Ks) 
4.  Bob >> Alice : Ks(Rand2) 
5.  Alice >> Bob : Ks(Rand2-1) 

See Bishop “Introduction to Computer Security” 
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Message Integrity 
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}  Allows communicating parties to verify that received 
messages are authentic. 
}  Content of message has not been altered 
}  Source of message is who/what you think it is 
}  Message has not been replayed 
}  Sequence of messages is maintained 

}  Let’s first talk about message digests 



Message Digests 
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}  Function H( ) that takes as input 
an arbitrary length message and 
outputs a fixed-length string: 
“message signature” 

}  Note that H( ) is a many-to-1 
function 

}  H( ) is often called a “hash 
function” 

 

}  Desirable properties: 
}  Easy to calculate 
}  Irreversibility: Can’t determine m 

from H(m) 
}  Collision resistance: 

Computationally difficult to 
produce m and m’ such that 
H(m) = H(m’) 

}  Seemingly random output 

large  
message 

m 

H: Hash 
Function 

H(m) 



Internet checksum: poor message 
digest 
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Internet checksum has some properties of hash function: 
➼  produces fixed length digest (16-bit sum) of input 
➼  is many-to-one 

❒  But given message with given hash value, it is easy to find another 
message with same hash value. 

❒  Example: Simplified checksum: add 4-byte chunks at a time: 
  

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format 

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format 

B2 C1 D2 ACdifferent messages 
but identical checksums! 



Hash Functions 

}  A hash function h maps a plaintext x to a fixed-length value x = h(P) called 
hash value or digest of P 
}  A collision is a pair of plaintexts P and Q that map to the same hash value, h(P) 

= h(Q) 
}  Collisions are unavoidable 
}  For efficiency, the computation of the hash function should take time 

proportional to the length of the input plaintext 

}  Example of application: Hash table 
}  Search data structure based on storing items in locations associated with their 

hash value 
}  Chaining deals with collisions 
}  Domain of hash values proportional to the expected number of items to be 

stored 
}  The hash function should spread plaintexts uniformly over the possible hash 

values to achieve constant expected search time 
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Cryptographic Hash Functions 

}  A cryptographic hash function satisfies additional properties 
}  Preimage resistance (aka one-way) 

}  Given a hash value x, it is hard to find a plaintext P such that h(P) = x 

}  Second preimage resistance (aka weak collision resistance) 

}  Given a plaintext P, it is hard to find a plaintext Q such that h(Q) = h(P) 

}  Collision resistance (aka strong collision resistance) 

}  It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P) 

}  Collision resistance implies second preimage resistance 

}  Hash values of at least 256 bits recommended to defend 
against brute-force attacks 
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How to build a Hash Function 
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}  Can we use a block cipher + CBC? 
}  How? 



How to build a Hash Function 

69 

}  Can we use a block cipher + CBC? 
}  How? 

}  Problem 
}  Not very efficient! 

Use as 
H(m) 

Fixed IV 

Fixed Key 



Hash Function Algorithms 
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}  MD5 hash function widely used (RFC 1321)  
}  computes 128-bit message digest in 4-step process.  

}  SHA-1 is also used. 
}  US standard [NIST, FIPS PUB 180-1] 
}  160-bit message digest 

Often, no good justification 
for design choices in Hash 
functions. 



Message-Digest Algorithm 5 (MD5) 
}  Developed by Ron Rivest in 1991 
}  Uses 128-bit hash values 
}  Still widely used in legacy applications although considered 

insecure 
}  Various severe vulnerabilities discovered 
}  Chosen-prefix collisions attacks found by Marc Stevens, Arjen 

Lenstra and Benne de Weger 
}  Start with two arbitrary plaintexts P and Q 
}  One can compute suffixes S1 and S2 such that P||S1 and Q||S2 

collide under MD5 by making 250 hash evaluations 
}  Using this approach, a pair of different executable files or PDF 

documents with the same MD5 hash can be computed 
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Problems with MD5 
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}  Hash collisions created this way are usually not directly 
applicable to attack widespread document formats or 
protocols.  

}  Attacks are possible by abusing dynamic constructs present in 
many formats 
}  E.g., a malicious document would contain two different messages in 

the same document, but conditionally displays one or the other 
}  Computer programs have conditional constructs (if-then-else) 

that allow testing whether a location in the file has one value 
or another. 

}  Some document formats like PostScript, or macros in 
Microsoft Word, also have conditional constructs. 

}  Finding such colliding docs/programs may take just a few 
seconds on modern CPUs 



Secure Hash Algorithm (SHA) 

}  Developed by NSA and approved as a federal standard by 
NIST 

}  SHA-0 and SHA-1 (1993) 
}  160-bits  
}  Considered insecure 
}  Still found in legacy applications 
}  Vulnerabilities less severe than those of MD5 

}  SHA-2 family (2002) 
}  256 bits (SHA-256) or 512 bits (SHA-512) 
}  Still considered secure despite published attack techniques 

}  Public competition for SHA-3 announced in 2007 
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Iterated Hash Function 
}  A compression function works on input values of fixed length 

}  Inputs: X,Y   with len(X)=m, len(Y)=n;  Output: Z  with len(Z)=n 

}  An iterated hash function extends a compression function to inputs 
of arbitrary length 
}  padding, initialization vector, and chain of compression functions 
}  inherits collision resistance of compression function 

}  MD5 and SHA are iterated hash functions 
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|
| 

|
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|
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|
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IV digest 

Hashing Time
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Question 
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}  Assume we want to send a message 
}  We are not concerned with confidentiality, only integrity 

}  What if we send 
}  m’ = m || MD5(m) 
}  The receiver can extract m, compute MD5(m), and check if this 

matches the MD5 that was sent  

}  Does this guarantee integrity? 



Message Authentication Code (MAC) 
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}  Authenticates sender 
}  Verifies message integrity 
}  No encryption ! 
}  Also called “keyed hash” 
}  Notation: MDm = H(s||m) ; send m||MDm   

}  Is this secure?  It seems like 

m
es

sa
ge

 

H( ) 

s 

 
 

m
es

sa
ge

 

 
 

m
es

sa
ge

 

 
 

s 

H( )  
 

 
 

compare 

s = shared secret 



Not so fast! 

77 

}  Because most hash functions are iterated hash functions  
}  Trudy knows the message m and MD(s||m) 
}  She could append something to m to get m’ = m||a, and use  

 MD(s||m) to initialize the computation of MD(s||m’) 

|
| 

|
| 

|
| 

|
| 

m1 m2 m3 a 

IV digest 

MD(s||m) MD(s||m’) 



HMAC*** 
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}  Popular MAC standard 
}  Addresses  some subtle flaws 

1.  Concatenates secret to front of 
message.  

2.  Hashes concatenated message 
3.  Concatenates the secret to front 

of digest 
4.  Hashes the combination again. 

s 0 

m 

HMAC(s,m) 

xor c1 

xor 

c2 

H( ) 

H( ) 

Padding to 512 bits 

HMAC(s,m) = H(s||H(s||M)) 



Other nifty things to do with a hash 
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}  Hashing passwords 
}  Document/Program fingerprint 
}  Authentication 

}  Encryption 

Alice Bob 

Ra 
H(Kab|Ra) 

H(Kab|Rb) 
Rb 

b1 = H(Kab|IV)           c1 = p1 xor b1 
b2 = H(Kab|c1)           c2 = p2 xor b2 
b3 = H(Kab|c2)           c3 = p3 xor b3 
… 



MAC Transfer $1M 
from Bill to Trudy 

MAC Transfer $1M  
from Bill to Trudy 

Playback attack 
MAC = 
f(msg,s) 

Playback 



“I am Alice” 

R 

MAC Transfer $1M  
from Bill to Susan 

MAC = 
f(msg,s,R) 

Defending against playback 
attack: nonce 



CSCI 4250/6250 – Fall 2015 
Computer and Networks Security 

INTRODUCTION TO CRYPTO 
CHAPTER 8 (Goodrich) 

CHAPTER 2-6 (Kaufman) 
CHAPTER 8    (Kurose) 

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al. 



Public Key Cryptography 

symmetric key crypto 
}  requires sender, receiver 

know shared secret key 

}  Q: how to agree on key in 
first place (particularly if 
never “met”)? 

83 

public key cryptography 
❒  radically different 

approach [Diffie-
Hellman76, RSA78] 

❒  sender, receiver do 
not share secret key 

❒  public encryption key  
known to all 

❒  private decryption 
key known only to 
receiver 



Public key cryptography 

84 

plaintext 
message, m 

ciphertext encryption 
algorithm 

decryption  
algorithm 

Bob’s public  
key  

plaintext 
message K  (m) B 

+ 

K  B 
+ 

Bob’s private 
key  

K  B 
- 

m = K  (K  (m)) B 
+ 

B 
- 



Public key encryption algorithms 

85 

need K  ( ) and K  ( ) such that B B 

given public key K  , it should be 
impossible to compute private 
key K   B 

B 

Requirements: 

1 

2 

RSA: Rivest, Shamir, Adelson algorithm 

+ - 

K  (K  (m))  =  m  
B B 

- + 

+ 

- 



RSA: getting ready 
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}  A message is a bit pattern. 
}  A bit pattern can be uniquely represented by an integer 

number.  
}  Thus encrypting a message is equivalent to encrypting a 

number. 
Example 
}  m= 10010001  

}  This message is uniquely represented by the decimal number 145.  
}  To encrypt m, we encrypt the corresponding number, which gives a 

new number (the cyphertext). 



RSA: Creating public/private key pair 
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1. Choose two large prime numbers p, q.  
   (e.g., 1024 bits each, to avoid brute force given n) 

2. Compute n = pq,  z = (p-1)(q-1) 

3. Choose e (with e<n) that has no common factors 
    with z. (e, z are “relatively prime”). 

4. Choose d (with d<n) so that ed-1 is divisible by z. 
    (in other words: ed mod z  = 1 ). 

5. Public key is (n,e).  Private key is (n,d). 

K  B 
+ K  B 

- 



RSA: Creating public/private key pair 

88 

1. Choose two large prime numbers p, q.  
   (e.g., 1024 bits each, to avoid brute force given n) 

2. Compute n = pq,  z = (p-1)(q-1) 

3. Choose e (with e<n) that has no common factors 
    with z. (e, z are “relatively prime”). 

4. Choose d (with d<n) so that ed-1 is divisible by z. 
    (in other words: ed mod z  = 1 ). 

5. Public key is (n,e).  Private key is (n,d). 

K  B 
+ K  B 

- 

e can be  
relatively  small 
 
d should be large 



RSA: Encryption, decryption 
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0.  Given (n,e) and (n,d) as computed above 

1. To encrypt message m (<n), compute 
c = m   mod  n e 

2. To decrypt received bit pattern, c, compute 
m = c   mod  n d 

m  =  (m   mod  n) e  mod  n d Magic 
happens! 

c 

public private 



RSA example: 
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Bob chooses p=5, q=7.  Then n=35, z=24. 
e=5  (so e, z  relatively prime). 
d=29 (so ed-1 exactly divisible by z) 
ed-1 = 144,  144/24=6 
  

bit pattern m m e c = m  mod  n e 

0000l000 12 24832 17 

c m = c  mod  n d 

17 481968572106750915091411825223071697 12 
c d 

encrypt: 

decrypt: 

Encrypting 8-bit messages. 



Prerequisite: modular arithmetic 
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}  x mod n = remainder of x when divide by n 
}  Facts: 

[(a mod n) + (b mod n)] mod n = (a+b) mod n 
[(a mod n) - (b mod n)] mod n = (a-b) mod n 
[(a mod n) * (b mod n)] mod n = (a*b) mod n 

}  Thus 
      (a mod n)d mod n = ad mod n 
}  Example: x=14, n=10, d=2: 

}  (x mod n)d mod n = 42 mod 10 = 6 
}  xd = 142 = 196   and   xd mod 10  = 6  



Multiplicative Inverses (1) 
}  The residues modulo a positive integer n are the set 

  Zn = {0, 1, 2, …, (n - 1)}  
}  Let x and y be two elements of Zn such that 

  xy mod n = 1 
 We say that y  is the multiplicative inverse of x in Zn and we 
write y = x-1 

}  Example: 
}  Multiplicative inverses of the residues modulo 10 
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x 0 1 2 3 4 5 6 7 8 9 
x-1 1 7 3 9 



Multiplicative Inverses (2) 
Theorem 

 An element x of Zn has a multiplicative inverse if and only if x and n are 
relatively prime 

}  Example 
}  The elements of Z10 with a multiplicative inverse are 1, 3, 7, 9 

Corollary 
 If p is prime, every nonzero residue in Zp has a multiplicative inverse 

}  Example: 
}  Multiplicative inverses of the residues modulo 11 
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x 0 1 2 3 4 5 6 7 8 9 10 
x-1 1 6 4 3 9 2 8 7 5 10 



Euler’s Theorem 
}  The multiplicative group for Zn, denoted with Z*n, is the subset of elements of 

Zn relatively prime with n  
}  The totient function of n, denoted with φ(n), is the size of Z*n 
}  Example 

  Z*10  = { 1, 3, 7, 9 }   φ(10) = 4
}  If p is prime, we have 

  Z*p  = {1, 2, …, (p - 1)}  φ(p) = p - 1 
Euler’s Theorem 

 For each element x of Z*n, we have xφ(n) mod n = 1 
}  Example (n = 10) 

 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1
7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1
9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1 

}  Consequence 
}  xy mod n = xy mod φ(n) mod n  
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Why? 

95 

}  Remember 
}  [(a mod n)(b mod n)] mod n = (ab) mod n 
}  (a mod n)d mod n = ad mod n 

}  Then 
}  xy mod n = x(kφ(n)+r) mod n = xkφ(n) xr mod n =  

[(xkφ(n) mod n)(xr mod n)] mod n = xy mod φ(n)  mod n  

=1 if x in Z*n 



Why does RSA work? 
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}  Remember that  
}  p and q are two large primes 
}  n = pq;  z = (p-1)(q-1) = φ(n) 
}  ed mod z = 1 

}  z is equal to the totient of n 
}  the number of numbers < n that are relatively prime to n   

}  Fact: for any x and y,  xy mod n = x(y mod z) mod n 

}  We need to show that cd mod n = m, where c = me mod n 
 

 cd mod n = (me mod n)d mod n 
                  = med mod n  
                  = m(ed mod z) mod n 
                  = m1 mod n 
                  = m                  (notice that m in [0, n-1]) 



RSA: another important property 
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The following property will be very useful later: 

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   B B 
+ - 

= 

use public key 
first, followed 
by private key  

use private key 
first, followed 
by public key  

Result is the same!  



98 

 
Follows directly from modular arithmetic: 
 
(me mod n)d mod n = med mod n 
                             = mde mod n 
                             = (md mod n)e mod n  
 

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   B B 
+ - 

= Why ? 



Why is RSA Secure? 
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}  Suppose you know Bob’s public key (n,e). How hard is 
it to determine d? 

}  Essentially need to find factors of n without knowing 
the two factors p and q.  

}  Fact: factoring a big integer is hard 
}  Even harder for large semiprime numbers (product of two 

large primes) 
 



Algorithmic Issues 

}  The implementation of the 
RSA cryptosystem 
requires various 
algorithms 

}  Overall 
} Representation of integers of 
arbitrarily large size and 
arithmetic operations on 
them 

}  Encryption 
} Modular power 

}  Decryption 
} Modular power 

}  Setup 
} Generation of random 
numbers with a given number 
of bits (to generate candidates 
p and q) 

} Primality testing (to check that 
candidates p and q are prime) 

} Computation of the GCD (to 
verify that e and φ(n) are 
relatively prime) 

} Computation of the 
multiplicative inverse (to 
compute d from e) 
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https://tools.ietf.org/html/rfc3447



Session keys 
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}  In practice RSA key between 1024 and 4096 bits (GPG) 
}  128 to 512 bytes 
}  Effective msg length is less, due to padding 

}  Exponentiation is computationally intensive 
}  DES is at least 100 times faster than RSA 
Session key, KS 

}  Bob and Alice use RSA to exchange a symmetric key KS 

}  Once both have KS, they use symmetric key cryptography 



Diffie-Hellman 
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}  Public key cryptosystem 
}  First known public key-based system 
}  Useful to perform key exchange when communication channel is not 

private 
 

}  Alice and Bob first agree on a large prime p and another number 
g < p (some subtle restrictions apply…), then 
1.  g and p can be published (no need to keep them secret) 
2.  Alice chooses a random number Sa, and Bob a rand num Sb 
3.  Alice computes Ta = gSa mod p, Bob computes Tb = gSb mod p 
4.  Alice and Bob exchange Ta and Tb (in public) 
5.  Alice and Bob compute TbSa mod p and TaSb mod p, respectively 
6.  They will get the same number (the exchanged key) 

 TbSa = gSbSa mod p = gSaSb mod p = TaSb 



Diffie-Hellman 

103 

}  Why is this secure? 
}  Nobody else can calculate gSaSb, even if they separately know  

Ta = gSa mod p and Tb = gSb mod p 

}  To get Sa or Sb an attacker would need to compute discrete 
logarithms 

¨  E.g.: Sb = dlog(Tb | g, p) 
}  Computing exponentials module a prime is easy 
}  Discrete logarithms are very hard to compute  
}  Mathematicians have not yet figured out how to do it efficiently 

}  Vulnerable to man-in-the-middle attack in certain scenarios 
}  Alice and Bob do not authenticate each other 
}  Attacker may intercept and replace Ta and Tb 
}  To solve (or mitigate) problem, Ta and Tb should be stored in a 

secure repository of “public numbers” 



DH – Man-in-the-Middle Attack 
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gSa = 8389 gSb = 9267 

gSe = 5876 

8389 

9267 

5876 

5876 

Alice-Eve 
Shared Key 
5876Sa = 8389Se 
 

Bob-Eve 
Shared Key 
5876Sb = 9267Se 
 

Does it help if Alice and Bob try to verify their identity 
by sending each other a pre-shared password? 



DH – Man-in-the-Middle Defense 
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}  Published DH numbers 
}  p and g are agreed upon 
}  Each party chooses a fixed secret number Si and publishes her 

(Ti = gSi mod p) in a reliable place  
}  Assumption: the attacker cannot change/forge the published 

numbers 

}  Authenticated DH, examples 
}  Alice can sign her Ta 
}  Alice can encrypt her Ta with Bob’s pub key 
}  After DH, Alice sends Bob a hash HMAC(S|Ta), where S is a 

pre-shared secret (e.g., a password) 



DH – Man-in-the-Middle Defense 
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}  Bob is a server, and has a priv/pub key 
}  Alice knows (and trusts) Bob’s pub key,  Kb

+ 

Kb
+(Ta) 

Tb 

Ks(r1) 

Ks(r1+1) 

Ks(M) 

(Eve can still pretend to be Alice) 

Ks=TaSb mod p Ks=TbSa mod p 



Perfect Forward Secrecy 
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}  A protocol is said to have PFS if it is impossible for Trudy 
to decrypt a message m sent between Alice and Bob, even 
if  Trudy, after m is sent, breaks into both Alice’s and Bob’s 
machines and steals their private keys 

}  This can be achieved by using session keys that 
}  Are chosen independently from the private/public keys 
}  Alice and Bob forget the session key as soon as the 

communication is over 



Perfect Forward Secrecy 
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Kb
+(Ks) 

Ks(M1) 

Ks(M2) 

Alice chooses a 
random key Ks 

After message exchange 
both Alice and Bob forget Ks 

Alice Bob 

Does this provide PFS? 
Eve records the 
entire conversation 

Bob has his own 
Kb

+ and Kb
- 



Perfect Forward Secrecy 
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}  PFS can be attained using Diffie-Hellman 
}  Why? 

gSb = 9267 gSa = 5876 

9267 

5876 

Alice-Bob 
Shared Key 
5876Sb = 9267Sa 
 



Perfect Forward Secrecy 
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}  PFS can be attained using Diffie-Hellman 
}  Alice and Bob forget their Sa and Sb after end of session 

gSb = 9267 gSa = 5876 

9267 

5876 

Alice-Bob 
Shared Key 
5876Sb = 9267Sa 
 



Zero-Knowledge Proof Systems 
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}  Used only for authentication 
}  Allows you to prove that you know a secret without 

actually revealing the secret 
}  E.g.: RSA is a zero-knowledge proof system 

}  You can prove you know the “secret” associated with your 
public key without revealing your private key 

}  There exist ZKPSs that are much more efficient than RSA 



Digital Signatures  
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Cryptographic technique analogous to hand-written 
signatures. 

}  sender (Bob) digitally signs document,  establishing he is 
document owner/creator.  

}  verifiable, nonforgeable: recipient (Alice) can prove to 
someone that Bob, and no one else (including Alice), must 
have signed document  

}  Goal is similar to that of a MAC, except now use public-
key cryptography 



Digital Signatures  
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Simple digital signature for message m: 
}  Bob signs m by encrypting with his private key KB, 

creating “signed” message, KB(m) - - 

Dear Alice 
Oh, how I have missed 
you. I think of you all the 
time! …(blah blah blah) 

Bob 

Bob’s message, m 

Public key 
encryption 
algorithm 

Bob’s private 
key  K  B 

- 

Bob’s message, 
m, signed 

(encrypted) with 
his private key 

K  B 
- (m) 



Alice verifies signature and integrity 
of digitally signed message: 
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large  
message 

m 
H: Hash 
function H(m) 

digital 
signature 
(encrypt) 

Bob’s  
private 

key  K  B 
- 

+ 

Bob sends digitally signed 
message: 

KB(H(m)) - 

encrypted  
msg digest 

KB(H(m)) - 

encrypted  
msg digest 

large  
message 

m 

H: Hash 
function 

H(m) 

digital 
signature 
(decrypt) 

H(m) 

Bob’s  
public 

key  K  B 
+ 

equal 
 ? 

Digital signature = signed message digest 



Digital Signatures (more) 
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}  Suppose Alice receives msg m, digital signature KB(m) 
}  Alice verifies m  signed by Bob by applying Bob’s public key KB to 

KB(m) then checks KB(KB(m) ) = m. 
}  If KB(KB(m) ) = m, whoever signed m must have used Bob’s private 

key. 

Alice thus verifies that: 
➼  Bob signed m. 
➼  No one else signed m. 
➼  Bob signed m and not m’. 

Non-repudiation: 
ü  Alice can take m, and signature KB(m) to court and prove 

that Bob signed m.  

+ + 

- 

- 

- - 

+ 

- 



Public-key certification 
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}  Motivation: Trudy plays pizza prank on Bob 
}  Trudy creates e-mail order:  

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank 
you, Bob 

}  Trudy signs order with her private key 
}  Trudy sends order to Pizza Store 
}  Trudy sends to Pizza Store her public key, but says it’s Bob’s 

public key. 
}  Pizza Store verifies signature; then delivers four pizzas to Bob. 
}  Bob doesn’t even like Pepperoni 



Certification Authorities 

}  Certification authority (CA): binds public key to particular 
entity, E. 

}  E (person, router) registers its public key with CA. 
}  E provides “proof of identity” to CA.  
}  CA creates certificate binding E to its public key. 
}  certificate containing E’s public key digitally signed by CA – CA says 

“this is E’s public key” 

117 

Bob’s  
public 

key  K  B 
+ 

Bob’s  
identifying 

information  

digital 
signature 
(encrypt) 

CA  
private 

key  K  CA 
- 

K  B 
+ 

certificate for 
Bob’s public key, 

signed by CA 



Certification Authorities 

}  When Alice wants Bob’s public key: 
}  gets Bob’s certificate (Bob or elsewhere). 
}  apply CA’s public key to Bob’s certificate, get Bob’s public 

key 

118 

Bob’s  
public 

key  K  B 
+ 

digital 
signature 
(decrypt) 

CA  
public 

key  
K  CA 
+ 

K  B 
+ 



Alternative: symmetric crypto + KDC 
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}  KDC = Key Distribution Center 
}  Trusted Node 
}  When Alice and Bob want to talk 

}  Alice asks KDC for a symmetric session key to be shared with Bob 

}  Reduces the number of keys that need to be distributed 
}  If a new node joins the network, we need to generate n new keys 
}  With KDC, only the new node and the KDC need to agree on a key 

without KDC with KDC 



Key Exchange via KDC 

120 

 

}  Needham-Schroeder protocol 
1.  Alice >> KDC :  “Alice” | “Bob” | Rand1 
2.  KDC >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks)) 
3.  Alice >> Bob : Kb(“Alice” | Ks) 
4.  Bob >> Alice : Ks(Rand2) 
5.  Alice >> Bob : Ks(Rand2-1) 

See Bishop “Introduction to Computer Security” 



KDC vs. CA 

121 

}  KDC = Key Distribution Center 
}  KDC can eavesdrop conversations 
}  Single point of failure 

}  CA = Certification Authority 
}  CA signs Alice’s and Bob’s pub keys 
}  CA cannot decrypt communications between Alice and Bob 

}  It does not have a copy of their private keys 
}  If CA is compromised, attacker cannot gain access to the plaintext 

}  Even if CA stops functioning, Alice and Bob can still 
communicate 



Certificates: summary 
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}  Primary standard X.509 (RFC 2459) 
}  Certificate contains: 

}  Issuer name 
}  Entity name, address, domain name, etc. 
}  Entity’s public key 
}  Digital signature (signed with issuer’s private key) 

}  Public-Key Infrastructure (PKI) 
}  Certificates and certification authorities 
}  Certificate Revocation List 
}  Often considered “heavy” 



Components of a PKI 
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}  Certificates 
}  Repository from which certificates can be retrieved 
}  A method for revoking certificates 

}  E.g., see https://wiki.mozilla.org/CA:ImprovingRevocation 
}  An “anchor of trust” (root certificate) 
}  A method for verifying a chain of certificates up to the anchor of trust 

}  Browser example: 
}  Browsers ship with many trust anchors (i.e., public key of trusted CAs)  

}  Can we really trust the CAs? 
}  http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html 
}  http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-

man-in-middle.html 
}  It may be possible to trick users to add a trust anchor into the default set 
}  The browser itself may be compromised an forced to add a malicious trust 

anchor 



PKI problems 
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}  https://www.eff.org/deeplinks/2011/09/post-mortem-
iranian-diginotar-attack 

}  http://www.zdnet.com/article/trustwave-sold-root-
certificate-for-surveillance/ 

}  https://www.eff.org/observatory 
}  https://www.eff.org/files/colour_map_of_cas.pdf 



Secure e-mail  

Alice: 
q  generates random symmetric private key, KS. 
q   encrypts message with KS  (for efficiency) 
q   also encrypts KS with Bob’s public key. 
q  sends both KS(m) and KB(KS) to Bob. 

q  Alice wants to send confidential e-mail, m, to Bob. 

KS( ) . 

KB( ) . + 

+ - 

KS(m ) 

KB(KS ) + 

m 

KS KS 

KB + 

KS( ) . 

KB( ) . - 

KB - 

KS 

m 
KS(m ) 

KB(KS ) + 



Secure e-mail  

Bob: 
q   uses his private key to decrypt and recover KS 
q   uses KS to decrypt KS(m) to recover m 

q  Alice wants to send confidential e-mail, m, to Bob. 

KS( ) . 

KB( ) . + 

+ - 

KS(m ) 

KB(KS ) + 

m 

KS KS 

KB + 

KS( ) . 

KB( ) . - 

KB - 

KS 

m 
KS(m ) 
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Secure e-mail (continued) 
•  Alice wants to provide sender authentication message 
integrity. 

•   Alice digitally signs message. 
•   sends both message (in the clear) and digital signature. 

H( ) . KA( ) . - 

+ - 

H(m) KA(H(m)) - 
m 

KA - 

m 

KA( ) . + 

KA + 

KA(H(m)) - 

m 
H( ) . H(m) 

compare 



Secure e-mail (continued) 
•  Alice wants to provide secrecy, sender authentication,  
   message integrity. 

Alice uses three keys: her private key, Bob’s public key, newly 
created symmetric key 

H( ) . KA( ) . - 

+ 

KA(H(m)) - 
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KS( ) . 

KB( ) . + 
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KB(KS ) + 

KS 
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SSL: Secure Sockets Layer 
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}  Widely deployed security protocol 
}  Supported by almost all browsers 

and web servers 
}  https 
}  Tens of billions $ spent per year 

over SSL 
}  Originally designed by Netscape in 

1993 
}  Number of variations: 

}  TLS: transport layer security, RFC 
2246 

}  Provides 
}  Confidentiality 
}  Integrity 
}  Authentication 

}  Original goals: 
}  Had Web e-commerce transactions 

in mind 
}  Encryption (especially credit-card 

numbers) 
}  Web-server authentication 
}  Optional client authentication 
}  Minimum hassle in doing business 

with new merchant 
}  Available to all TCP applications 

}  Secure socket interface 



SSL and TCP/IP 
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Application 

TCP 

IP 

Normal Application 

Application 

SSL 

TCP 

IP 

Application  
  with SSL 

•  SSL provides application programming interface (API) 
to applications 
•  C and Java SSL libraries/classes readily available 



Could do something like PGP: 
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•  But want to send byte streams & interactive data 
• Want a set of secret keys for the entire connection 
•  Want certificate exchange part of protocol:  
   handshake phase 

H( ) . KA( ) . - 

+ 

KA(H(m)) - 
m 

KA - 
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KS( ) . 

KB( ) . + 
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KB(KS ) + 

KS 

KB + 
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SSL: a simple secure channel 
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}  Handshake:  Alice and Bob use their certificates and 
private keys to authenticate each other and exchange 
shared secret  
}  In most practical cases, only one-way authentication! 

}  Key Derivation: Alice and Bob use shared secret to derive 
set of keys 

}  Data Transfer: Data to be transferred is broken up into a 
series of records 

}  Connection Closure: Special messages to securely close 
connection 



A simplified handshake using (RSA) 
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}  MS = master secret 
}  EMS = encrypted master secret 

hello 

certificate 

KB
+(MS) = EMS 



A simplified handshake (Diffie-Hellman) 
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}  MS = master secret 

hello 

certificate 

Bob’s DH public parameters (signed) 

Alice’s DH public parameters Compute  MS Compute  MS 



Key derivation 
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}  Considered bad to use same key for more than one 
cryptographic operation 
}  Use different keys for message authentication code (MAC) and 

encryption 

}  Four keys (both Alice and Bob will have all 4 keys): 
}  Kc = encryption key for data sent from client to server 
}  Mc = MAC key for data sent from client to server 
}  Ks = encryption key for data sent from server to client 
}  Ms = MAC key for data sent from server to client 

}  Keys derived from key derivation function (KDF) 
}  Takes master secret and (possibly) some additional random data and 

creates the keys 



Data Records 
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}  Why not encrypt data in constant stream as we write it to 
TCP? 
}  Where would we put the MAC? If at end, no message integrity until 

all data processed. 
}  For example, with instant messaging, how can we do integrity check 

over all bytes sent before displaying? 
}  Instead, break stream in series of records 

}  Each record carries a MAC 
}  Receiver can act on each record as it arrives 

}  Issue: in record, receiver needs to distinguish MAC from 
data 
}  Want to use variable-length records 

length data MAC 



Sequence Numbers 
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}  Attacker can capture and replay or re-order records 
}  Solution: put sequence number into MAC: 

}  MAC = MAC(Mx, sequence||data) 
}  Note: no sequence number field 

}  Attacker could still replay all of the records 
}  Use random nonce 



Control information 
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}  Truncation attack:  
}  attacker forges TCP connection close segment 
}  One or both sides thinks there is less data than there 

actually is.  

}  Solution: record types, with one type for closure 
}  type 0 for data; type 1 for closure 

}  MAC = MAC(Mx, sequence||type||data) 

length type data MAC 

Encrypted 



SSL: summary *** 
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hello 

certificate, nonce 

KB
+(MS) = EMS 

type 0, seq 1, data 
type 0, seq 2, data 

type 0, seq 1, data 

type 0, seq 3, data 
type 1, seq 4, close 

type 1, seq 2, close 

en
cr

yp
te

d 

bob.com 



This version of SSL isn’t complete 

140 

}  How long are the fields? 
}  What encryption protocols? 
}  No negotiation 

}  Allow client and server to support different encryption 
algorithms 

}  Allow client and server to choose together specific algorithm 
before data transfer 



Most common symmetric ciphers in SSL 
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}  DES – Data Encryption Standard: block 
}  3DES – Triple strength: block 
}  RC2 – Rivest Cipher 2: block 
}  RC4 – Rivest Cipher 4: stream 

Public key encryption 
}  RSA 



SSL Cipher Suite 
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}  Cipher Suite 
}  Public-key algorithm 
}  Symmetric encryption algorithm 
}  MAC  algorithm 

}  SSL supports a variety of cipher suites 
}  Negotiation: client and server must agree on cipher suite 
}  Client offers choices; server picks one 



Real SSL: Handshake (1) 
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Purpose 
1.  Server authentication 
2.  Negotiation: agree on crypto algorithms 
3.  Establish keys 
4.  Client authentication (optional) 
 



Real SSL: Handshake (2) 
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1.  Client sends list of algorithms it supports, along with client 
nonce 

2.  Server chooses algorithms from list; sends back: choice + 
certificate + server nonce 

3.  Client verifies certificate, extracts server’s public key, 
generates pre_master_secret, encrypts with server’s public 
key, sends to server 

4.  Client and server independently compute encryption and 
MAC keys from pre_master_secret and nonces 

5.  Client sends a MAC of all the handshake messages 
6.  Server sends a MAC of all the handshake messages 



Real SSL: Handshake (2) 
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S = pre-master 

K = master 

K 

K 



Real SSL: Handshaking (3) 
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Last 2 steps protect handshake from tampering 
}  Client typically offers range of algorithms, some strong, 

some weak 
}  Man-in-the middle could delete the stronger algorithms 

from list 
}  Last 2 steps prevent this 

}  Last two messages are encrypted 



Real SSL: Handshaking (4) 
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}  Why the two random nonces?  
}  Suppose Trudy sniffs all messages between Alice & 

Bob.  
}  Next day, Trudy sets up TCP connection with Bob, 

sends the exact same sequence of records,. 
}  Bob (Amazon) thinks Alice made two separate orders for 

the same thing. 
}  Solution: Bob sends different random nonce for each 

connection. This causes encryption keys to be different on 
the two days. 

}  Trudy’s messages will fail Bob’s integrity check. 



Real SSL: Key derivation 
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}  Client nonce, server nonce, and pre-master secret input into 
pseudo random-number generator. 
}  Produces master secret 

}  Master secret and nonces used to generate session keys 
}  client MAC key 
}  server MAC key 
}  client encryption key 
}  server encryption key 
}  client initialization vector (IV) 
}  server initialization vector (IV) 



SSL Record Protocol 
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data 

data  
fragment 

data  
fragment MAC MAC 

encrypted 
data and MAC 

encrypted 
data and MAC 

record 
header 

record 
header 

record header: content type; version; length  
MAC: includes sequence number, MAC key Mx 

Fragment: each SSL fragment max 214 bytes (~16 Kbytes) 



SSL Record Format 
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content 
type SSL version length 

MAC 

data 

1 byte 2 bytes 3 bytes 

Data and MAC encrypted (symmetric algo) 



Cryptographically protected records 
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Sequence number is not explicitly sent, but is part of MAC 



Real  
Connection 
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handshake: ClientHello 

handshake: ServerHello 

handshake: Certificate 

handshake: ServerHelloDone 

handshake: ClientKeyExchange ChangeCipherSpec 

handshake: Finished 

ChangeCipherSpec 

handshake: Finished 

application_data 

application_data 

Alert: warning, close_notify TCP Fin follow 

Everything 
henceforth 
is encrypted 



SSL/TLS handshake 
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}  RFC: https://tools.ietf.org/html/rfc2246 
}  ChangeCipherSpec  

}  The change cipher spec message is sent by both the client 
and server to notify the receiving party that subsequent 
records will be protected under the newly negotiated 
CipherSpec and keys 

}  TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 
}  DHE = Ephemeral Diffie-Hellman signed with RSA 
}  EDE = Encrypt-Decrypt-Encrypt 



What is confidentiality at the network-
layer? 
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Between two network entities: 
}  Sending entity encrypts the payloads of datagrams. 

Payload could be: 
}  TCP segment, UDP segment, ICMP message, OSPF message, 

and so on. 

}  All data sent from one entity to the other would be 
hidden: 
}  Web pages, e-mail, P2P file transfers, TCP SYN packets, and so 

on. 

}  That is, “blanket coverage”. 



Virtual Private Networks (VPNs) 
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}  Institutions often want private networks for security.  
}  Costly! Separate routers, links, DNS infrastructure. 

}  With a VPN, institution’s inter-office traffic is sent over 
public Internet instead.  
}  But inter-office traffic is encrypted before entering public 

Internet 
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IP 
header 

IPsec 
header 

Secure 
payload 

IP
 

he
ad

er
 

IP
se

c 
he
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er

 
Se
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pa

yl
oa

d 

headquarters 
branch office 

salesperson 
in hotel 

Public 
Internet laptop  

w/ IPsec 

Router w/ 
IPv4 and IPsec 

Router w/ 
IPv4 and IPsec 

Virtual Private Network (VPN) 



IPsec services 
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}  Confidentiality  
}  Data integrity 
}  Origin authentication 
}  Replay attack prevention 

}  Two protocols providing different service models: 
}  AH = Authentication Header 
}  ESP = Encapsulated Security Payload 

 



IPsec Transport Mode 
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}  Useful when IPsec is applied end-to-end 

IPsec IPsec 

IP header Payload 

IP header Payload IPSec header 

Transport 
mode 



IPsec – tunneling mode (1) 
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}  End routers are IPsec aware. Hosts need not be. 

IPsec IPsec 

IP header Payload 

IP header Payload IPSec header 

Tunnel 
mode 

new IP hdr 



IPsec – tunneling mode (2) 
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}  Also tunneling mode. 

IPsec 
IPsec 



Two protocols 
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}  Authentication Header (AH) protocol 
}  provides source authentication & data integrity but not confidentiality 

}  Encapsulation Security Protocol (ESP) 
}  provides source authentication, data integrity, and confidentiality 
}  more widely used than AH 

}  Why doe we need AH at all, then? 
}  AH does not encrypt the payload 

}  Offers integrity protection on payload + part of IP header (excluding TTL, 
fragment info, etc…), while ESP offers integrity only on payload 

}  TCP/UDP header are accessible 
}  This works well with firewalls and NAT, which often look at 

transport layer to decide if/how packets should go through 



Four combinations are possible! 

 
Host mode  

with AH 

 
Host mode  
with ESP 

 
Tunnel mode 

with AH 

 
Tunnel mode 

with ESP 
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Most common and 
most important 



Security associations (SAs)  

163 

}  Before sending data, a virtual connection is established from 
sending entity to receiving entity.  

}  Called “security association (SA)” 
}  SAs are simplex: for only one direction 

}  Both sending and receiving entities maintain state information 
about the SA 
}  Recall that TCP endpoints also maintain state information. 
}  IP is connectionless; IPsec is connection-oriented! 

}  How many SAs in VPN w/ headquarters, branch office, and n 
traveling salesperson? 

 



Example SA from R1 to R2 
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R1 stores SA 
}  32-bit identifier for SA: Security Parameter Index (SPI) 

}  SPI is included in IPSec header, allows for fast lookups 

}  the origin interface of the SA (200.168.1.100) 
}  destination interface of the SA (193.68.2.23) 
}  type of encryption to be used (for example, 3DES with CBC) 
}  encryption key 
}  type of integrity check (for example, HMAC with MD5) 
}  authentication key 

193.68.2.23 200.168.1.100 

172.16.1/24 
172.16.2/24 

SA 

Internet Headquarters 
Branch Office 

R1 
R2 



Example SA 
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Example SA 

SPI: 12345 
Source IP: 200.168.1.100 
Dest IP: 193.68.2.23  
Protocol: ESP 
Encryption algorithm: 3DES-cbc 
HMAC algorithm: MD5 
Encryption key: 0x7aeaca… 
HMAC key:0xc0291f… 
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Security Association Database (SAD) 

❒  Endpoint holds state of its SAs in a SAD, where it can 
locate them during processing. 
 

❒  With branch office and n salespersons 
❒  Headquarter router stores 2 + 2n SAs in R1’s SAD 

 
❒  When sending IPsec datagram, R1 accesses SAD to 

determine how to process datagram. 
 

❒  When IPsec datagram arrives to R2, R2 examines SPI 
in IPsec datagram, indexes SAD with SPI, and 
processes datagram accordingly. 

 



IPsec datagram 
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Focus for now on tunnel mode with ESP 

new IP 
header 

ESP 
hdr 

original 
IP hdr 

Original IP 
datagram payload 

ESP 
trl 

ESP 
auth 

encrypted 

authenticated 

padding pad 
length 

next 
header SPI Seq 

# IV 

4 4 1 1 



What happens? 
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193.68.2.23 
 

200.168.1.100 
 

172.16.1/24 
172.16.2/24 

SA 

Internet Headquarters 
Branch Office 

R1 
R2 

new IP 
header 

ESP 
hdr 

original 
IP hdr 

Original IP 
datagram payload 

ESP 
trl 

ESP 
auth 

encrypted 

authenticated 

padding pad 
length 

next 
header SPI Seq 

# IV 



R1 converts original datagram 
into IPsec datagram 
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}  Appends an “ESP trailer” field to back of original datagram 
(which includes original header fields!) 

}  Encrypts result using algorithm & key specified by SA. 
}  Appends the “ESP header” to front of this encrypted quantity 
}  Creates authentication MAC over the obtained datagram, using 

algorithm and key specified in SA;  
}  Appends MAC to back, forming payload; 
}  Creates brand new IP header, with all the classic IPv4 header 

fields, which it appends before payload.  



Inside the enchilada: 
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}  ESP trailer: Padding for block ciphers 
}  ESP header:  

}  SPI, so receiving entity knows what to do 
}  Sequence number, to thwart replay attacks 

}  MAC in ESP auth field is created with shared secret key 

new IP 
header 

ESP 
hdr 

original 
IP hdr 

Original IP 
datagram payload 

ESP 
trl 

ESP 
auth 

encrypted 

authenticated 

padding pad 
length 

next 
header SPI Seq 

# IV 



IPsec sequence numbers 
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}  For new SA, sender initializes seq. # to 0 
}  Each time datagram is sent on SA: 

}  Sender increments seq # counter 
}  Places value in seq # field 

}  Goal: 
}  Prevent attacker from sniffing and replaying a packet 

}  Receipt of duplicate, authenticated IP packets may disrupt service 

}  Method:  
}  Destination checks for duplicates 
}  But doesn’t keep track of ALL received packets; instead uses a window 



Security Policy Database (SPD) 
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}  Policy: For a given datagram, sending entity needs to know 
if it should use IPsec. 

}  Needs also to know which SA to use 
}  May use: source and destination IP address; protocol number. 

}  Info in SPD indicates “what” to do with arriving datagram;  
}  Info in the SAD indicates “how” to do it.  



Summary: IPsec services 
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}  Suppose Trudy sits somewhere between R1 and R2. She 
doesn’t know the keys.  
}  Will Trudy be able to see contents of original datagram? How 

about source, dest IP address, transport protocol, application 
port? 

}  Flip bits without detection? 
}  Masquerade as R1 using R1’s IP address? 
}  Replay a datagram? 



Internet Key Exchange  
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}  In previous examples, we assumed the IPsec SAs was manually 
established (configured) at the endpoints: 

Example SA 
SPI: 12345 
Source IP: 200.168.1.100 
Dest IP: 193.68.2.23  
Protocol: ESP 
Encryption algorithm: 3DES-cbc 
HMAC algorithm: MD5 
Encryption key: 0x7aeaca… 
HMAC key:0xc0291f… 

}  Such manual keying is impractical for large VPN with, say, 
hundreds of sales people.  

}  Instead use IPsec IKE (Internet Key Exchange) 
 



IKE Phases 
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}  IKE has two phases 
}  Phase 1:  

}  Performs mutual authentication and establishment of session keys 
}  Also called ISAKMP security association 

}  Phase 2:  
}  used to securely negotiate the IPsec pair of SAs 
}  Sends info used to derive the actual session keys used for ESP/AH 

}  Phase 1 has two modes: aggressive mode and main mode 
}  Aggressive mode uses fewer messages 
}  Main mode provides identity protection and is more flexible 

}  No party needs to reveal their actual identity in plaintext 
 



IKE Phase-1: Main Mode (simplified) 
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Tb = gb mod p K = gab mod p K = gab mod p 
K{“Alice”, proof I’m Alice (certificate)} 

crypto I choose 

Ta = ga mod p  

crypto I support 

K{“Bob”, proof I’m Bob (certificate)} 

http://tools.ietf.org/html/rfc2409 



IKE Phase-1: Aggressive Mode (simplified) 
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Tb = gb mod p, crypto choice, K{proof I’m Bob} 

K = gab mod p K = gab mod p K{proof I’m Alice} 

I’m Alice, Ta = ga mod p,  crypto proposal 

http://tools.ietf.org/html/rfc2409 



IKE: PSK and PKI 
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}  Authentication (proof of who you are) with either 
}  pre-shared secret (PSK) or  
}  with PKI (pubic/private keys and certificates). 

}  With PSK, both sides start with secret: 
}  then run IKE to authenticate each other and to generate 

IPsec SAs (one in each direction), including encryption and 
integrity keys 

}  With PKI, both sides start with public/private key pair 
and certificate. 
}  run IKE to authenticate each other and obtain IPsec SAs 

(one in each direction). 
}  Similar to handshake in SSL. 
 
 



IKE Phase-1 
Signature vs. Public Key Encryption 

179 

}  Signature 
}  Does not require Alice to know Bob’s pub key in advance 
}  She will receive Bob’s certificate in the last message 
}  Identity may be revealed to an attacker who is trying to 

impersonate one of the parties 

}  Pub key encryption 
}  Alice must know Bob’s pub key 
}  Both sides reveal their identity only to whom they intend to 

authenticate themselves 



Summary of IPsec 
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}  IKE message exchange for algorithms, secret keys, SPI numbers 
}  Either the AH or the ESP protocol  (or both) 
}  The AH protocol provides integrity and source authentication 
}  The ESP protocol (with AH) additionally provides encryption 
}  IPsec peers can be two end systems, two routers/firewalls, or a 

router/firewall and an end system 

Source: Stallings – “Cryptography and Network Security, Principles and Practice” 



Wired Equivalent Privacy 



WEP Design Goals 
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}  Symmetric key crypto 
}  Confidentiality 
}  Station authorization 
}  Data integrity 

}  Self synchronizing: each packet separately encrypted 
}  Given encrypted packet and key, can decrypt; can continue to decrypt 

packets when preceding packet was lost 
}  Unlike Cipher Block Chaining (CBC) in block ciphers 

}  Efficient 
}  Can be implemented in hardware or software 

 



Review: Symmetric Stream Ciphers 
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}  Combine each byte of keystream with byte of plaintext to 
get ciphertext 

}  m(i) = ith unit of message 
}  ks(i) = ith unit of keystream 
}  c(i) = ith unit of ciphertext 
}  c(i) = ks(i) ⊕ m(i)   (⊕ = exclusive or) 
}  m(i) = ks(i) ⊕ c(i)  
}  WEP uses RC4 

keystream 
generator key keystream 



Attacks on Stream Ciphers 

}  Repetition attack 
}  if key stream reused, attacker obtains XOR of two plaintexts 

(P1 xor P2) 
}  If P1 is known, P2 is also known 
}  Even if no plaintext is known, there are known attacks based 

on PI xor P2 (e.g., frequency attacks) 

12/7/15 Cryptography 184 



Stream cipher and packet independence 
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}  Recall design goal: each packet separately encrypted 
}  If for frame n+1, use keystream from where we left off for 

frame n, then each frame is not separately encrypted 
}  Need to know where we left off for packet n 

}  WEP approach: initialize keystream with key + new IV for 
each packet: 

keystream 
generator Key+IVpacket keystreampacket 



WEP encryption (1) 
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}  Sender calculates Integrity Check Value (ICV) over data 
}  four-byte hash/CRC for data integrity 

}  Each side has 104-bit shared key 
}  Sender creates 24-bit initialization vector (IV), appends to key: gives 

128-bit key 
}  Sender also appends keyID (in 8-bit field) 
}  128-bit key inputted into pseudo random number generator to get 

keystream 
}  data in frame + ICV is encrypted with RC4: 

}  Bytes of keystream are XORed with bytes of data & ICV 
}  IV & keyID are appended to encrypted data to create payload 
}  Payload inserted into 802.11 frame 

encrypted 

data ICV IV 

MAC payload 

Key 
ID 



WEP encryption (2) 
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IV 
(per frame) 

KS: 104-bit  
secret 

symmetric 
key k1

IV    k2
IV   k3

IV   … kN
IV    kN+1

IV…  kN+1
IV 

d1 
      d2     d3   …    dN

     CRC1   … CRC4 

c1 
      c2      c3   …    cN

      cN+1    …  cN+4 

plaintext 
 frame data  

plus CRC 

key sequence generator 
( for given KS, IV) 

802.11 
header IV 

& 
 
 

WEP-encrypted data  
plus ICV 

Figure 7.8-new1:  802.11 WEP protocol New IV for each frame  



WEP decryption overview  
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}  Receiver extracts IV 
}  Inputs IV and shared secret key into pseudo random 

generator, gets keystream 
}  XORs keystream with encrypted data to decrypt data + 

ICV 
}  Verifies integrity of data with ICV 

}  Note that message integrity approach used here is different from 
the MAC (message authentication code) and signatures (using PKI). 

encrypted 

data ICV IV 

MAC payload 

Key 
ID 



WEP Authentication 
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}  Two different auth modes 
}  Open System and Shared Secret 

}  Open System 
}  No real authentication, anybody can associate with AP 
}  After AP association, device needs to have the correct key, otherwise 

packets will be rejected (will fail integrity check) 
}  Shared Secret 

}  Device needs to provide credentials before AP association 

R 

IV, KIV{R} 

want to connect 

OK 

Is there any problem here? (assume attacker records conversation) 
 

see Borisov et al. “Intercepting Mobile Communications: The Insecurity of 802.11” 



WEP Authentication 
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}  Problems with Shared Secret authentication 

}  Eve eavesdropped R and IV, KIV{R} 
}  Thus, Eve knows the key-stream related to IV 

}  Reuse known IV, KIV to authenticate and associate with AP 

R’ 

IV, KIV{R’} 

want to connect 

OK 

 

see Borisov et al. “Intercepting Mobile Communications: The Insecurity of 802.11” 



Breaking 802.11 WEP encryption 

security hole:  
}  24-bit IV, one IV per frame, -> IV’s eventually reused 
}  IV transmitted in plaintext -> IV reuse detected 
}  attack: 

}  Trudy causes Alice to encrypt known plaintext d1 d2 d3 d4 …  
}  Trudy sees: ci = di XOR  ki

IV 

}  Trudy knows ci di, so can compute  ki
IV 

}  Trudy knows encrypting key sequence k1
IV k2

IV k3
IV … 

}  Next time IV is used, Trudy can decrypt! 
}  RC4 does not work well with “weak” IVs 

}  A. Bittau, M. Handley and J. Lackey. The Final Nail in WEP's Coffin.  
Proceedings of the IEEE Symposium on Security and Privacy, 2006 



Kerberos 

192 



Kerberos 
}  Kerberos is an authentication protocol and a software suite 

implementing this protocol.  
}  Kerberos uses symmetric cryptography to authenticate clients 

to services and vice versa.  
}  For example, Windows servers use Kerberos as the primary 

authentication mechanism, working in conjunction with Active 
Directory to maintain centralized user information.  

}  Other possible uses of Kerberos include allowing users to log 
into other machines in a local-area network, authentication for 
web services, authenticating email client and servers, and 
authenticating the use of devices such as printers.  

}  Services using Kerberos authentication are commonly referred 
to as “Kerberized”. 
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Kerberos Components 
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}  Key Distribution Center (KDC) 
}  Runs on a physically secure node on the network 
}  Shares a master key with each principal (i.e., each user and 

each resource/service that will be using Kerberos) 

}  KDC has two components 
}  An authentication server (AS), which performs user 

authentication 
}   A ticket-granting server (TGS), which grants tickets to 

users 



Kerberos Tickets 

}  Kerberos uses the concept of a ticket as a token that proves the 
identity of a user.  

}  Tickets are digital documents that store session keys. They are 
typically issued during a login session and then can be used 
instead of passwords for any Kerberized services. During the 
course of authentication, a client receives two tickets: 
}   A ticket-granting ticket (TGT), which acts as a global identifier for a 

user and a session key 
}   A service ticket, which authenticates a user to a particular service 

}  These tickets include time stamps that indicate an expiration time 
after which they become invalid. This expiration time can be set 
by Kerberos administrators depending on the service. 
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Kerberos Features 

}  The authentication server keeps a database storing the master keys of the 
users and services.  

}  The master key of a user is typically generated by performing a one-way hash 
of the user-provided password.  

}  Kerberos is designed to be modular, so that it can be used with a number of 
encryption protocols, with AES being the default cryptosystem. 

}  Kerberos aims to centralize authentication for an entire network—rather than 
storing sensitive authentication information at each user’s machine, this data is 
only maintained in one presumably secure location. 
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Kerberos v4 at a glance 
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}  Alice logs into her workstation 
}  Enters user name and password 
}  A master key is derived from the password 
}  The workstations asks KDC for a session key SA for Alice, and then forgets the password 

she entered 
}  SA will be used to ask KDC for tickets to access services 
}  SA will expire after a given time (e.g., a few hours) 
}  KDC generates SA and sends KA{SA} and KKDC{“Alice”, SA, timeout} to Alice 
}  KKDC{“Alice”, SA, timeout} is called Ticket Granting Ticket (TGT) 

}  Alice (a user) wants to talk to (or use) Bob (a service) 
}  Alice informs the KDC that she needs Bob, and sends her TGT 
}  KDC decrypts TGT to get SA 
}  KDC generates a session key KAB, encrypts KAB with Alice’s session key SA, encrypts KAB 

with Bob’s key KB, and sends them to Alice 
}  KB{KAB} is called a ticket to Bob 
}  KAB is known only to Alice and Bob (and the KDC), and can be used by Alice and Bob to 

authenticate each other, encrypt and integrity-protect their communication 



Kerberos Authentication 

}  The client and authentication 
server authenticate themselves 
to each other.  

}  The client and ticket-granting 
server authenticate themselves 
to each other.  

}  The client and requested 
service authenticate 
themselves to each other, at 
which point the service will be 
provided to the client. 
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Obtaining a TGT 
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Alice’s master secret 
derived from entered pswd 

Plaintext message 



Ticket to Bob 
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authenticator proves 
Alice knows SA 

Need reasonably synchronized clocks! 



Logging into Bob 
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Provides for mutual auth 



Kerberos Advantages 
}  The Kerberos protocol is designed to be secure even when performed over 

an insecure network.  
}  Since each transmission is encrypted using an appropriate secret key, an 

attacker cannot forge a valid ticket to gain unauthorized access to a service 
without compromising an encryption key or breaking the underlying 
encryption algorithm, which is assumed to be secure.  

}  Kerberos is also designed to protect against replay attacks, where an 
attacker eavesdrops legitimate Kerberos communications and retransmits 
messages from an authenticated party to perform unauthorized actions.  
}  The inclusion of time stamps in Kerberos messages restricts the window in which 

an attacker can retransmit messages.  
}  Tickets may contain the IP addresses associated with the authenticated party to 

prevent replaying messages from a different IP address. 
}  Kerberized services make use of a “replay cache,” which stores previous 

authentication tokens and detects their reuse.  
}  Kerberos makes use of symmetric encryption instead of public-key 

encryption, which makes Kerberos computationally efficient 
}  The availability of an open-source implementation has facilitated the 

adoption of Kerberos. 
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Kerberos Disadvantages 
}  Kerberos has a single point of failure: if the Key 

Distribution Center becomes unavailable, the 
authentication scheme for an entire network may cease to 
function.  
}  Larger networks sometimes prevent such a scenario by having 

multiple KDCs, or having backup KDCs available in case of 
emergency.  

}  If an attacker compromises the KDC, the authentication 
information of every client and server on the network 
would be revealed.  

}  Kerberos requires that all participating parties have 
synchronized clocks, since time stamps are used.  
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