
CSCI 4250/6250 – Fall 2015
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

The language of cryptography

2

m plaintext message
KA(m) ciphertext, encrypted with key KA
m = KB(KA(m))

plaintext plaintext ciphertext

K A

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

K B

Basics

}  Alternative Notation
}  Secret key K
}  Encryption function EK(P)
}  Decryption function DK(C)
}  Plaintext length typically the same as ciphertext length
}  Encryption and decryption are permutation functions

(bijections) on the set of all n-bit arrays
}  Efficiency

}  functions EK and DK should have efficient algorithms
}  Consistency

}  Decrypting the ciphertext yields the plaintext
}  DK(EK(P)) = P

12/7/15 Cryptography 3

Simple encryption scheme (Ceasar cipher)

4

substitution cipher: substituting one thing for another
}  monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Key: the mapping from the set of 26 letters to the
set of 26 letters

Substitution Ciphers

12/7/15 Cryptography 5

}  Each letter is uniquely
replaced by another.

}  ROT13 examaple:
}  CIAO à PVNB

}  One popular substitution
“cipher” for some
Internet posts is ROT13.

Public domain image from http://en.wikipedia.org/wiki/File:ROT13.png

Polyalphabetic encryption

6

}  n monoalphabetic cyphers, M1,M2,…,Mn

}  Cycling pattern:
}  e.g., n=4 M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;

}  For each new plaintext symbol, use subsequent
monoalphabetic pattern in cyclic pattern
}  dog: d from M1, o from M3, g from M4

}  Key: the n ciphers and the cyclic pattern

}  Example:
}  Vigenere cipher

Vigenere cipher

7

}  Plaintext
}  ATTACKATDAWN

}  Key
}  LEMON

}  Keystream
}  LEMONLEMONLE…

}  Ciphertext
}  LXFOPVEFRNHR

Example from Wikipedia
http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

Cryptography vs. Cryptanalysis

8

}  Cryptographers invent new clever cryptographic schemes
}  Objective: make it infeasible to recover the plaintext

}  Computational difficulty: efficient to compute cipher-text, but hard to
“reverse” without the key

}  Cryptanalysis studies cryptographic schemes
}  Objective: try to find flaws in the schemes

}  E.g., recover some info about the plaintext, or recover the key

}  Fundamental Tenet of Cryptography
}  “If lots of smart people have failed to solve a problem, then it

probably won’t be solved (soon)”

Breaking an encryption scheme

9

}  Cipher-text only attack:
Trudy has ciphertext that
she can analyze

}  Two approaches:
}  Search through all keys: must be

able to differentiate resulting
plaintext from gibberish

}  Statistical analysis

}  Known-plaintext attack:
trudy has some plaintext
corresponding to some
ciphertext
}  eg, in monoalphabetic cipher,

trudy determines pairings for
a,l,i,c,e,b,o,b

}  Chosen-plaintext attack:
trudy can get the cyphertext
for some chosen plaintext

The crypto algorithms is
typically public. Only thing that
is assumed to be secret is the key.

Attacks

}  Attacker may have
a)  collection of ciphertexts

(ciphertext only attack)
b)  collection of plaintext/

ciphertext pairs (known
plaintext attack)

c)  collection of plaintext/
ciphertext pairs for plaintexts
selected by the attacker
(chosen plaintext attack)

d)  collection of plaintext/
ciphertext pairs for
ciphertexts selected by the
attacker (chosen ciphertext
attack)

10

Hi, Bob.
Don’t
invite Eve
to the
party!
Love, Alice

Encryption
Algorithm

Plaintext Ciphertext

key

Eve

Hi, Bob.
Don’t
invite Eve
to the
party!
Love, Alice

Plaintext Ciphertext

key

ABCDEFG
HIJKLMN
O
PQRSTUV
WXYZ.

Plaintext Ciphertext

key

IJCGA,
CAN DO
HIFFA
GOT
TIME.

Plaintext Ciphertext

key

Eve

001101
110111

(a)

(b)

(c)

(d)

Eve

Eve

Eve

Encryption
Algorithm

Encryption
Algorithm

Encryption
Algorithm

H
ar

de
r

Ea
si

er

Frequency Analysis

12/7/15 Cryptography 11

}  Letters in a natural language, like English, are not uniformly
distributed.

}  Knowledge of letter frequencies, including pairs and triples
can be used in cryptologic attacks against substitution
ciphers.

Types of Cryptography

12

}  Crypto often uses keys:
}  Algorithm is known to everyone
}  Only “keys” are secret

}  Public key cryptography
}  Involves the use of two keys

}  Symmetric key cryptography
}  Involves the use of one key

}  Hash functions
}  Involves the use of no keys
}  Nothing secret: How can this be useful?

Symmetric key cryptography

13

symmetric key crypto: Bob and Alice share same (symmetric)
key: K

}  e.g., key is knowing substitution pattern in mono alphabetic
substitution cipher

Q: how do Bob and Alice agree on key value?

plaintext ciphertext

K S

encryption
algorithm

decryption
algorithm

S

K S

plaintext
message, m

K (m) S
m = KS(KS(m))

Two types of symmetric ciphers

14

}  Stream ciphers
}  encrypt one bit at time

}  Block ciphers
}  Break plaintext message in equal-size blocks
}  Encrypt each block as a unit

Stream Ciphers

15

}  Combine each bit of keystream with bit of plaintext to get bit of
ciphertext
}  m(i) = ith bit of message
}  ks(i) = ith bit of keystream
}  c(i) = ith bit of ciphertext
}  c(i) = ks(i) ⊕ m(i) (⊕ = exclusive or)
}  m(i) = ks(i) ⊕ c(i)

}  Problem:
}  If attacker knows portion of plaintext P, she can replace it with desired

malicious plaintext P’

keystream
generator key keystream

pseudo random

RC4 Stream Cipher

16

}  RC4 is a popular stream cipher
}  Extensively analyzed and considered good
}  Key can be from 1 to 256 bytes
}  Used in WEP for 802.11
}  Can be used in SSL

https://tools.ietf.org/html/rfc7465

Use of RC4 in TLS
is being phased out

One-Time Pads
}  There is one type of substitution cipher that is absolutely

unbreakable.
}  The one-time pad was invented in 1917 by Joseph

Mauborgne and Gilbert Vernam
}  We use a block of shift keys, (k1, k2, . . . , kn), to encrypt a

plaintext, M, of length n, with each shift key being chosen
uniformly at random.

}  Since each shift is random, every ciphertext is equally
likely for any plaintext.

12/7/15 Cryptography 17

One-Time Pads

18

}  Key is as long as the message to be sent
}  Stream of bits generated at random (not pseudo-random)

}  Impossible to crack (perfect security?)
}  H(M) = H(M|C)

}  The ciphertext C provides no information about M
}  Given we only know C, every plaintext message is equally possible

}  Proven by Shannon

}  Impractical
}  Keys need to be known to the receiver
}  Transferred through other means (e.g., paper)
}  Never reuse the same key

Weaknesses of the One-Time Pad

}  In spite of their perfect security,
one-time pads have some
weaknesses

}  The key has to be as long as the
plaintext

}  Keys can never be reused
}  Repeated use of one-time pads

allowed the U.S. to break some of
the communications of Soviet spies
during the Cold War.

12/7/15 Cryptography 19

See graphical example at
https://www.khanacademy.org/computing/computer-science/cryptography/crypt/v/one-time-pad

Block Ciphers
}  In a block cipher:

}  Plaintext and ciphertext have fixed length b (e.g., 128 bits)

}  A plaintext of length n is partitioned into a sequence of m
blocks, P[0], …, P[m-1], where n ≤ bm < n + b

}  Each message is divided into a sequence of blocks and
encrypted or decrypted in terms of its blocks.

12/7/15 Cryptography 20

Plaintext

Blocks of
plaintext

Requires padding
with extra bits.

Padding
}  Block ciphers require the length n of the plaintext to be a multiple

of the block size b
}  Padding the last block needs to be unambiguous (cannot just add

zeroes)
}  When the block size and plaintext length are a multiple of 8, a

common padding method (PKCS#5) is a sequence of identical bytes,
each indicating the length (in bytes) of the padding

}  Example for b = 128 (16 bytes)
}  Plaintext: “Roberto” (7 bytes)
}  Padded plaintext: “Roberto999999999” (16 bytes), where 9 denotes the

number and not the character

}  We need to always pad the last block, which may consist only of
padding (http://tools.ietf.org/html/rfc2898)

12/7/15 Cryptography 21

Block ciphers

22

}  Message to be encrypted is processed in blocks of k
bits (e.g., 64-bit blocks).

}  1-to-1 mapping is used to map k-bit block of plaintext
to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001
 What is the ciphertext for 010110001111 ?

Block ciphers

23

}  How many possible mappings are there for k=3?
}  How many 3-bit inputs?
}  How many permutations of the 3-bit inputs?
}  Answer: 40,320 ; not very many!

}  In general, 2k! mappings; huge for k=64
}  Hard to brute force!

}  Storage Problem:
}  Table approach requires table with 264 entries, each entry with

64 bits
}  It’s like having a key that is 64 x 264 bits long

}  Table too big: instead use function that simulates a
randomly permuted table

Prototype function (Version 1)

24

64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate Loop for
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al

Prototype function (Version 2)

25

64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate

64-bit output
Loop for
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al

Why rounds?

26

}  If only a single round, then one bit of input affects at most
8 bits of output.

}  In 2nd round, the 8 affected bits get scattered (via
permutation) and inputted into multiple substitution
boxes.

}  How many rounds?
}  How many times do you need to shuffle cards
}  Becomes less efficient as n increases

Symmetric key crypto: DES

27

DES: Data Encryption Standard
}  US encryption standard [NIST 1993]
}  56-bit symmetric key (64 – 8 parity bits)
}  64-bit plaintext input blocks
}  Can be used in a cipher block chaining (CBC) setting to

encrypt longer messages

Symmetric key
crypto: DES

28

initial permutation
16 identical “rounds” of

function application,
each using different 48
bits of key

final permutation

DES operation

DES Rounds

29

1-round Encryption and Decryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

DES Rounds

30

1-round Encryption and Decryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

DES Mangler Function

31

Expansion of R from
32 to 48 bits

Expanded R and the Key
are divided into eight 6-bit
Chunks

Each 6-bit chunk is mapped
into a 4-bit block

See Kaufman et al. “Network Security, Private Communication in a Public World”

How does the S-box look like?

32

}  There are 8 S-boxes (48/6)

Generating Per-Round Keys

33

}  Start with 56-bit key (64 - 8 parity bits)
}  Why 56 bits? Unknown…

}  First divide 56-bit key into two 28-bit chunks
}  Rotate bits for 16 rounds…

}  Some rounds rotate only by one bit, others rotate by two bits

See Kaufman et al. “Network Security, Private Communication in a Public World”

Does DES work?

34

DES Security

35

}  How secure is DES?
}  DES Challenge: 56-bit-key-encrypted phrase decrypted (brute

force) in less than a day
}  No known good analytic attack

}  making DES more secure:
}  3DES: encrypt 3 times with 3 different keys (56*3=168 bits)
(actually encrypt, decrypt, encrypt)
}  c = Kc(Kb

-1(Ka(m)))
}  m = Ka

-1(Kb(Kc
-1(c)))

3DES

36

}  In practice only 2 keys are used
}  c = Ka(Kb

-1(Ka(m)))
}  m = Ka

-1(Kb(Ka
-1(c)))

}  It has been shown to be sufficiently secure
}  Avoids overhead of sending over 3 keys

}  In DES we can encrypt by decrypting (???)
}  Using c = Ka(Kb

-1(Ka(m))) allows for inter-operation with DES
}  Use Kb = Ka

}  Why 3DES and not 120DES or 2DES?
}  2DES has been proven not secure (takes only twice the time to

brute-force a single-DES key)
}  120DES would be very expensive from a computational point of view

37

}  xxx

Crypto modes

38

}  Combining use of basic cipher for practical applications

}  An application may need to
}  Be able to parallelize encryption and decryption
}  Preprocess as much as possible
}  Recover from bit errors/loss in the ciphertext
}  …

}  Different modes provide different characteristics

Encrypting a large message

39

}  Why not just break message in 64-bit blocks, encrypt
each block separately?

message

m1 m2 m3 mn

c1 c2 c3 cn

Key

Electronic Code Book (ECB) Encrypt

Decrypt

ECB

40

}  Why not just break message in 64-bit blocks, encrypt each
block separately?
}  The same plaintext always maps to the same ciphertext

}  in theory we can create a precomputed code book (one per key!)
}  Would be useful for random access files

}  ecryption and decryption trivially parallelizable
}  If same block of plaintext appears twice, will give same ciphertext
}  May facilitate cryptanalysis

}  Multiple messages that start with the same structure will give attacker a
number of plaintext-ciphertext pairs to work with

}  we could swap things (e.g., swap salaries)

t=1 m(1) = “HTTP/1.1” block
cipher

c(1) = “k329aM02”

…
t=17 m(17) = “HTTP/1.1” block

cipher
c(17) = “k329aM02”

Strengths and Weaknesses of ECB

12/7/15 Cryptography 41

}  Strengths:
}  Is very simple
}  Allows for parallel

encryptions of the blocks
of a plaintext

}  Can tolerate the loss or
damage of a block

}  Weakness:
}  Documents and images are not

suitable for ECB encryption since
patters in the plaintext are repeated
in the ciphertext:

Weaknesses of ECB

42

}  Example: Assume attacker knows a block of plaintext
and wants to modify or replace it

 Jack Webb $51,000 Jim Cook $12,000
 C1 C2 C3 C4

 Jack Webb $51,000 Jim Cook $51,000

 C1 C2 C3 C2

Encrypting a large message

43

}  How about:
}  Generate random 64-bit number r(i) for each plaintext block m(i)
}  Calculate c(i) = KS(m(i) ⊕ r(i))
}  Transmit c(i), r(i), i=1,2,…
}  At receiver: m(i) = KS(c(i)) ⊕ r(i)
}  Problems:

}  inefficient, need to send c(i) and r(i)

message

m1⊕r1 m2⊕r2 m3⊕r3 mn⊕rn

c1 c2 c3 cn

Key

Electronic Code Book (ECB)

Cipher Block Chaining (CBC)

44

}  CBC generates its own random numbers
}  Have encryption of current block depend on result of previous block
}  c(i) = KS(m(i) ⊕ c(i-1))
}  m(i) = KS(c(i)) ⊕ c(i-1)

}  Forces same plaintext blocks to produce different ciphertext
}  How do we encrypt first block?

}  Initialization vector (IV): random block = c(0)
}  IV does not have to be secret

}  Change IV for each message (or session)
}  Guarantees that even if the same message is sent repeatedly, the

ciphertext will be completely different each time

Cipher Block Chaining

❒  cipher block chaining:
XOR ith input block, m(i),
with previous block of
cipher text, c(i-1)
❍  c(0) transmitted to

receiver in clear
❍  what happens in

“HTTP/1.1” scenario
from above?

+

m(i)

c(i)

block
cipher

c(i-1)

CBC

46

CBC Encryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

CBC

47

CBC Encryption

CBC Decryption

See Kaufman et al. “Network Security, Private Communication in a Public World”

CBC: Threats

48

}  CBC does not eliminate the possibility of somebody modifying the message in transit
}  The attacker cannot swap blocks (e.g., to replace the IT guy’s salary with the CEO

salary), but can modify the ciphertext

}  Example: Assume attacker knows a block of plaintext and wants to modify it
 Jack Webb IT Department $51,000
 Ci-1 Ci Ci+1

}  Changing Ci will modify M(i+1) in a predictable way
}  However, Mi will be most likely garbled

}  The change may be noticeable or not, the attacker may decide to take his chances

}  We may also need to “protect” IV, to avoid predictable changes to M1
}  Example: IV = timestamp; send Ek(IV)

}  One possible defense
}  Attach one checksum block to the plaintext before encrypting
}  Changes in the plaintext will be detected with high probability

Strengths and Weaknesses of CBC

12/7/15 Cryptography 49

}  Weaknesses:
}  CBC requires the reliable

transmission of all the
blocks sequentially

}  CBC is not suitable for
applications that allow
packet losses (e.g., music
and video streaming)

}  Existence of Threats

}  Strengths:
}  Doesn’t show patterns in

the plaintext
}  Is the most common

mode
}  Is fast and relatively simple

Output Feedback Mode

50

}  Use Block Cipher to generate key-stream (ks)
}  K(IV) = [b0…bn]
}  K([b0…bn]) = bn+1…b2n

}  etc.

}  Advantage of OFB
}  If we need to perform per-packet encryption, we don’t need to pad the payload
}  Keystream can be generated in advance, before message to be sent arrives
}  Destination knows IV and K, therefore can generate same keystream

}  Ciphertext generated as usual
}  Encryption: c = m ⊕ ks
}  Decryption: m = c ⊕ ks

}  Potential problem
}  If somebody knows a portion P or the plaintext, that can be replaced with another “malicious”

portion P’

Output Feedback Mode (k-bits)

51
See Kaufman et al. “Network Security, Private Communication in a Public World”

Cipher Feedback Mode

52
See Kaufman et al. “Network Security, Private Communication in a Public World”

Cipher Feedback Mode (CFB)

53

}  Keystream cannot be generated in advance
}  Need to wait for message to arrive

}  Comparison with CBC and OFB
}  OFB: bit errors do not propagate beyond the current k-bit block
}  CBC/OFB: if bits of ciphertext lost in transmission, the entire rest of

transmission is garbled
}  CFB: with 8-bit CFB, as long as the error is an integral number of

bytes, things will re-sync. (1 bit error will affect 9 consecutive bytes)

Counter Mode (CTR)

54

}  Similar to OFM
}  Encrypts increments of IV to generate keystream
}  Advantages:

}  Decryption can start anywhere, as long as you know the block
number you are considering

}  Encryption/decryption can be trivially parallelized
}  Keystream can be preprocessed once IV is known
}  Useful in case of encrypted random access files, for example

See Kaufman et al. “Network Security, Private Communication in a Public World”

Summary

55

From “Applied Cryptography”, 2nd edition
Bruce Schneier
Wiley

AES: Advanced Encryption Standard

56

}  In 1997, the U.S. National Institute for Standards and
Technology (NIST) put out a public call for a replacement
to DES.

}  It narrowed down the list of submissions to five finalists,
and ultimately chose an algorithm that is now known as
the Advanced Encryption Standard (AES).

}  new (Nov. 2001) symmetric-key NIST standard, replacing DES
}  Nice mathematical justification for design choices

}  processes data in 128 bit blocks
}  128, 192, or 256 bit keys
}  brute force decryption (try each key) taking 1 sec on DES,

takes 149 trillion years for AES

The Advanced Encryption Standard (AES)

}  AES is a block cipher that operates on 128-bit blocks. It is designed to
be used with keys that are 128, 192, or 256 bits long, yielding ciphers
known as AES-128, AES-192, and AES-256.

12/7/15 Cryptography 57

AES Round Structure

}  The 128-bit version of the AES
encryption algorithm proceeds in
ten rounds.

}  Each round performs an invertible
transformation on a 128-bit array,
called state.

}  The initial state X0 is the XOR of
the plaintext P with the key K:

}  X0 = P XOR K.
}  Round i (i = 1, …, 10) receives state

Xi-1 as input and produces state Xi.
}  The ciphertext C is the output of

the final round: C = X10.

12/7/15 Cryptography 58

AES Rounds
}  Each round is built from four basic steps:
1.  SubBytes step: an S-box substitution step
2.  ShiftRows step: a permutation step
3.  MixColumns step: a matrix multiplication step
4.  AddRoundKey step: an XOR step with a round key

derived from the 128-bit encryption key

12/7/15 Cryptography 59

Key Exchange

60

}  Enable Alice to communicate with Bob using shared key
}  The key cannot be transmitted in clear
}  It must be either encrypted when transmitted, or derived in a way that a

third party cannot derive the same key
}  Alice and Bob may rely on a trusted third party, e.g., Cathy
}  The cryptosystem and protocols are publicly known

}  First Attempt to Key Exchange
}  Alice and Cathy share a secret Ka
}  Cathy and Bob share a secret Kb

1.  Alice >> Cathy : Ka(request for session key to Bob)
2.  Cathy >> Alice : Ka(Ks) | Kb(Ks)
3.  Alice >> Bob : Kb(Ks)
4.  Alice can now privately send message M to Bob using Ks

1.  Alice >> Bob : Ks(M)

See Bishop “Introduction to Computer Security”

Key Exchange

61

}  Problem: Replay Attack
}  Eve records (3) and Ks(M), which was sent by Alice to Bob
}  Eve >> Bob: Kb(Ks)
}  Eve >> Bob: Ks(M)
}  If M = “Deposit $500k in Roberto’s account”, we have a problem!

}  Needham-Schroeder protocol
1.  Alice >> Cathy : “Alice” | “Bob” | Rand1
2.  Cathy >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks))
3.  Alice >> Bob : Kb(“Alice” | Ks)
4.  Bob >> Alice : Ks(Rand2)
5.  Alice >> Bob : Ks(Rand2-1)

See Bishop “Introduction to Computer Security”

CSCI 4250/6250 – Fall 2015
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Message Integrity

63

}  Allows communicating parties to verify that received
messages are authentic.
}  Content of message has not been altered
}  Source of message is who/what you think it is
}  Message has not been replayed
}  Sequence of messages is maintained

}  Let’s first talk about message digests

Message Digests

64

}  Function H() that takes as input
an arbitrary length message and
outputs a fixed-length string:
“message signature”

}  Note that H() is a many-to-1
function

}  H() is often called a “hash
function”

}  Desirable properties:
}  Easy to calculate
}  Irreversibility: Can’t determine m

from H(m)
}  Collision resistance:

Computationally difficult to
produce m and m’ such that
H(m) = H(m’)

}  Seemingly random output

large
message

m

H: Hash
Function

H(m)

Internet checksum: poor message
digest

65

Internet checksum has some properties of hash function:
➼  produces fixed length digest (16-bit sum) of input
➼  is many-to-one

❒  But given message with given hash value, it is easy to find another
message with same hash value.

❒  Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

Hash Functions

}  A hash function h maps a plaintext x to a fixed-length value x = h(P) called
hash value or digest of P
}  A collision is a pair of plaintexts P and Q that map to the same hash value, h(P)

= h(Q)
}  Collisions are unavoidable
}  For efficiency, the computation of the hash function should take time

proportional to the length of the input plaintext

}  Example of application: Hash table
}  Search data structure based on storing items in locations associated with their

hash value
}  Chaining deals with collisions
}  Domain of hash values proportional to the expected number of items to be

stored
}  The hash function should spread plaintexts uniformly over the possible hash

values to achieve constant expected search time

12/7/15 Cryptography 66

Cryptographic Hash Functions

}  A cryptographic hash function satisfies additional properties
}  Preimage resistance (aka one-way)

}  Given a hash value x, it is hard to find a plaintext P such that h(P) = x

}  Second preimage resistance (aka weak collision resistance)

}  Given a plaintext P, it is hard to find a plaintext Q such that h(Q) = h(P)

}  Collision resistance (aka strong collision resistance)

}  It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P)

}  Collision resistance implies second preimage resistance

}  Hash values of at least 256 bits recommended to defend
against brute-force attacks

12/7/15 Cryptography 67

How to build a Hash Function

68

}  Can we use a block cipher + CBC?
}  How?

How to build a Hash Function

69

}  Can we use a block cipher + CBC?
}  How?

}  Problem
}  Not very efficient!

Use as
H(m)

Fixed IV

Fixed Key

Hash Function Algorithms

70

}  MD5 hash function widely used (RFC 1321)
}  computes 128-bit message digest in 4-step process.

}  SHA-1 is also used.
}  US standard [NIST, FIPS PUB 180-1]
}  160-bit message digest

Often, no good justification
for design choices in Hash
functions.

Message-Digest Algorithm 5 (MD5)
}  Developed by Ron Rivest in 1991
}  Uses 128-bit hash values
}  Still widely used in legacy applications although considered

insecure
}  Various severe vulnerabilities discovered
}  Chosen-prefix collisions attacks found by Marc Stevens, Arjen

Lenstra and Benne de Weger
}  Start with two arbitrary plaintexts P and Q
}  One can compute suffixes S1 and S2 such that P||S1 and Q||S2

collide under MD5 by making 250 hash evaluations
}  Using this approach, a pair of different executable files or PDF

documents with the same MD5 hash can be computed

12/7/15 Cryptography 71

Problems with MD5

72

}  Hash collisions created this way are usually not directly
applicable to attack widespread document formats or
protocols.

}  Attacks are possible by abusing dynamic constructs present in
many formats
}  E.g., a malicious document would contain two different messages in

the same document, but conditionally displays one or the other
}  Computer programs have conditional constructs (if-then-else)

that allow testing whether a location in the file has one value
or another.

}  Some document formats like PostScript, or macros in
Microsoft Word, also have conditional constructs.

}  Finding such colliding docs/programs may take just a few
seconds on modern CPUs

Secure Hash Algorithm (SHA)

}  Developed by NSA and approved as a federal standard by
NIST

}  SHA-0 and SHA-1 (1993)
}  160-bits
}  Considered insecure
}  Still found in legacy applications
}  Vulnerabilities less severe than those of MD5

}  SHA-2 family (2002)
}  256 bits (SHA-256) or 512 bits (SHA-512)
}  Still considered secure despite published attack techniques

}  Public competition for SHA-3 announced in 2007

12/7/15 Cryptography 73

Iterated Hash Function
}  A compression function works on input values of fixed length

}  Inputs: X,Y with len(X)=m, len(Y)=n; Output: Z with len(Z)=n

}  An iterated hash function extends a compression function to inputs
of arbitrary length
}  padding, initialization vector, and chain of compression functions
}  inherits collision resistance of compression function

}  MD5 and SHA are iterated hash functions

74

|
|

|
|

|
|

|
|

P1 P2 P3 P4

IV digest

Hashing Time

0
0.01
0.02
0.03
0.04
0.05
0.06

0 100 200 300 400 500 600 700 800 900 1000
Input Size (Bytes)

m
se

c

SHA-1
MD5

Question

75

}  Assume we want to send a message
}  We are not concerned with confidentiality, only integrity

}  What if we send
}  m’ = m || MD5(m)
}  The receiver can extract m, compute MD5(m), and check if this

matches the MD5 that was sent

}  Does this guarantee integrity?

Message Authentication Code (MAC)

76

}  Authenticates sender
}  Verifies message integrity
}  No encryption !
}  Also called “keyed hash”
}  Notation: MDm = H(s||m) ; send m||MDm

}  Is this secure? It seems like

m
es

sa
ge

H()

s

m
es

sa
ge

m
es

sa
ge

s

H()

compare

s = shared secret

Not so fast!

77

}  Because most hash functions are iterated hash functions
}  Trudy knows the message m and MD(s||m)
}  She could append something to m to get m’ = m||a, and use

 MD(s||m) to initialize the computation of MD(s||m’)

|
|

|
|

|
|

|
|

m1 m2 m3 a

IV digest

MD(s||m) MD(s||m’)

HMAC***

78

}  Popular MAC standard
}  Addresses some subtle flaws

1.  Concatenates secret to front of
message.

2.  Hashes concatenated message
3.  Concatenates the secret to front

of digest
4.  Hashes the combination again.

s 0

m

HMAC(s,m)

xor c1

xor

c2

H()

H()

Padding to 512 bits

HMAC(s,m) = H(s||H(s||M))

Other nifty things to do with a hash

79

}  Hashing passwords
}  Document/Program fingerprint
}  Authentication

}  Encryption

Alice Bob

Ra
H(Kab|Ra)

H(Kab|Rb)
Rb

b1 = H(Kab|IV) c1 = p1 xor b1
b2 = H(Kab|c1) c2 = p2 xor b2
b3 = H(Kab|c2) c3 = p3 xor b3
…

MAC Transfer $1M
from Bill to Trudy

MAC Transfer $1M
from Bill to Trudy

Playback attack
MAC =
f(msg,s)

Playback

“I am Alice”

R

MAC Transfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

CSCI 4250/6250 – Fall 2015
Computer and Networks Security

INTRODUCTION TO CRYPTO
CHAPTER 8 (Goodrich)

CHAPTER 2-6 (Kaufman)
CHAPTER 8 (Kurose)

Slides adapted from Kurose et al., Goodrich et al., and Kaufman et al.

Public Key Cryptography

symmetric key crypto
}  requires sender, receiver

know shared secret key

}  Q: how to agree on key in
first place (particularly if
never “met”)?

83

public key cryptography
❒  radically different

approach [Diffie-
Hellman76, RSA78]

❒  sender, receiver do
not share secret key

❒  public encryption key
known to all

❒  private decryption
key known only to
receiver

Public key cryptography

84

plaintext
message, m

ciphertext encryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message K (m) B

+

K B
+

Bob’s private
key

K B
-

m = K (K (m)) B
+

B
-

Public key encryption algorithms

85

need K () and K () such that B B

given public key K , it should be
impossible to compute private
key K B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
B B

- +

+

-

RSA: getting ready

86

}  A message is a bit pattern.
}  A bit pattern can be uniquely represented by an integer

number.
}  Thus encrypting a message is equivalent to encrypting a

number.
Example
}  m= 10010001

}  This message is uniquely represented by the decimal number 145.
}  To encrypt m, we encrypt the corresponding number, which gives a

new number (the cyphertext).

RSA: Creating public/private key pair

87

1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each, to avoid brute force given n)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z. (e, z are “relatively prime”).

4. Choose d (with d<n) so that ed-1 is divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

K B
+ K B

-

RSA: Creating public/private key pair

88

1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each, to avoid brute force given n)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z. (e, z are “relatively prime”).

4. Choose d (with d<n) so that ed-1 is divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

K B
+ K B

-

e can be
relatively small

d should be large

RSA: Encryption, decryption

89

0. Given (n,e) and (n,d) as computed above

1. To encrypt message m (<n), compute
c = m mod n e

2. To decrypt received bit pattern, c, compute
m = c mod n d

m = (m mod n) e mod n d Magic
happens!

c

public private

RSA example:

90

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z)
ed-1 = 144, 144/24=6

bit pattern m m e c = m mod n e

0000l000 12 24832 17

c m = c mod n d

17 481968572106750915091411825223071697 12
c d

encrypt:

decrypt:

Encrypting 8-bit messages.

Prerequisite: modular arithmetic

91

}  x mod n = remainder of x when divide by n
}  Facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

}  Thus
 (a mod n)d mod n = ad mod n
}  Example: x=14, n=10, d=2:

}  (x mod n)d mod n = 42 mod 10 = 6
}  xd = 142 = 196 and xd mod 10 = 6

Multiplicative Inverses (1)
}  The residues modulo a positive integer n are the set

 Zn = {0, 1, 2, …, (n - 1)}
}  Let x and y be two elements of Zn such that

 xy mod n = 1
 We say that y is the multiplicative inverse of x in Zn and we
write y = x-1

}  Example:
}  Multiplicative inverses of the residues modulo 10

12/7/15 Cryptography 92

x 0 1 2 3 4 5 6 7 8 9
x-1 1 7 3 9

Multiplicative Inverses (2)
Theorem

 An element x of Zn has a multiplicative inverse if and only if x and n are
relatively prime

}  Example
}  The elements of Z10 with a multiplicative inverse are 1, 3, 7, 9

Corollary
 If p is prime, every nonzero residue in Zp has a multiplicative inverse

}  Example:
}  Multiplicative inverses of the residues modulo 11

12/7/15 Cryptography 93

x 0 1 2 3 4 5 6 7 8 9 10
x-1 1 6 4 3 9 2 8 7 5 10

Euler’s Theorem
}  The multiplicative group for Zn, denoted with Z*n, is the subset of elements of

Zn relatively prime with n
}  The totient function of n, denoted with φ(n), is the size of Z*n
}  Example

 Z*10 = { 1, 3, 7, 9 } φ(10) = 4
}  If p is prime, we have

 Z*p = {1, 2, …, (p - 1)} φ(p) = p - 1
Euler’s Theorem

 For each element x of Z*n, we have xφ(n) mod n = 1
}  Example (n = 10)

 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1
7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1
9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1

}  Consequence
}  xy mod n = xy mod φ(n) mod n

12/7/15 Cryptography 94

Why?

95

}  Remember
}  [(a mod n)(b mod n)] mod n = (ab) mod n
}  (a mod n)d mod n = ad mod n

}  Then
}  xy mod n = x(kφ(n)+r) mod n = xkφ(n) xr mod n =

[(xkφ(n) mod n)(xr mod n)] mod n = xy mod φ(n) mod n

=1 if x in Z*n

Why does RSA work?

96

}  Remember that
}  p and q are two large primes
}  n = pq; z = (p-1)(q-1) = φ(n)
}  ed mod z = 1

}  z is equal to the totient of n
}  the number of numbers < n that are relatively prime to n

}  Fact: for any x and y, xy mod n = x(y mod z) mod n

}  We need to show that cd mod n = m, where c = me mod n

 cd mod n = (me mod n)d mod n
 = med mod n
 = m(ed mod z) mod n
 = m1 mod n
 = m (notice that m in [0, n-1])

RSA: another important property

97

The following property will be very useful later:

K (K (m)) = m
B B

- +
K (K (m)) B B
+ -

=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

98

Follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
 = mde mod n
 = (md mod n)e mod n

K (K (m)) = m
B B

- +
K (K (m)) B B
+ -

= Why ?

Why is RSA Secure?

99

}  Suppose you know Bob’s public key (n,e). How hard is
it to determine d?

}  Essentially need to find factors of n without knowing
the two factors p and q.

}  Fact: factoring a big integer is hard
}  Even harder for large semiprime numbers (product of two

large primes)

Algorithmic Issues

}  The implementation of the
RSA cryptosystem
requires various
algorithms

}  Overall
} Representation of integers of
arbitrarily large size and
arithmetic operations on
them

}  Encryption
} Modular power

}  Decryption
} Modular power

}  Setup
} Generation of random
numbers with a given number
of bits (to generate candidates
p and q)

} Primality testing (to check that
candidates p and q are prime)

} Computation of the GCD (to
verify that e and φ(n) are
relatively prime)

} Computation of the
multiplicative inverse (to
compute d from e)

12/7/15 Cryptography 100

https://tools.ietf.org/html/rfc3447

Session keys

101

}  In practice RSA key between 1024 and 4096 bits (GPG)
}  128 to 512 bytes
}  Effective msg length is less, due to padding

}  Exponentiation is computationally intensive
}  DES is at least 100 times faster than RSA
Session key, KS

}  Bob and Alice use RSA to exchange a symmetric key KS

}  Once both have KS, they use symmetric key cryptography

Diffie-Hellman

102

}  Public key cryptosystem
}  First known public key-based system
}  Useful to perform key exchange when communication channel is not

private

}  Alice and Bob first agree on a large prime p and another number
g < p (some subtle restrictions apply…), then
1.  g and p can be published (no need to keep them secret)
2.  Alice chooses a random number Sa, and Bob a rand num Sb
3.  Alice computes Ta = gSa mod p, Bob computes Tb = gSb mod p
4.  Alice and Bob exchange Ta and Tb (in public)
5.  Alice and Bob compute TbSa mod p and TaSb mod p, respectively
6.  They will get the same number (the exchanged key)

 TbSa = gSbSa mod p = gSaSb mod p = TaSb

Diffie-Hellman

103

}  Why is this secure?
}  Nobody else can calculate gSaSb, even if they separately know

Ta = gSa mod p and Tb = gSb mod p

}  To get Sa or Sb an attacker would need to compute discrete
logarithms

¨  E.g.: Sb = dlog(Tb | g, p)
}  Computing exponentials module a prime is easy
}  Discrete logarithms are very hard to compute
}  Mathematicians have not yet figured out how to do it efficiently

}  Vulnerable to man-in-the-middle attack in certain scenarios
}  Alice and Bob do not authenticate each other
}  Attacker may intercept and replace Ta and Tb
}  To solve (or mitigate) problem, Ta and Tb should be stored in a

secure repository of “public numbers”

DH – Man-in-the-Middle Attack

104

gSa = 8389 gSb = 9267

gSe = 5876

8389

9267

5876

5876

Alice-Eve
Shared Key
5876Sa = 8389Se

Bob-Eve
Shared Key
5876Sb = 9267Se

Does it help if Alice and Bob try to verify their identity
by sending each other a pre-shared password?

DH – Man-in-the-Middle Defense

105

}  Published DH numbers
}  p and g are agreed upon
}  Each party chooses a fixed secret number Si and publishes her

(Ti = gSi mod p) in a reliable place
}  Assumption: the attacker cannot change/forge the published

numbers

}  Authenticated DH, examples
}  Alice can sign her Ta
}  Alice can encrypt her Ta with Bob’s pub key
}  After DH, Alice sends Bob a hash HMAC(S|Ta), where S is a

pre-shared secret (e.g., a password)

DH – Man-in-the-Middle Defense

106

}  Bob is a server, and has a priv/pub key
}  Alice knows (and trusts) Bob’s pub key, Kb

+

Kb
+(Ta)

Tb

Ks(r1)

Ks(r1+1)

Ks(M)

(Eve can still pretend to be Alice)

Ks=TaSb mod p Ks=TbSa mod p

Perfect Forward Secrecy

107

}  A protocol is said to have PFS if it is impossible for Trudy
to decrypt a message m sent between Alice and Bob, even
if Trudy, after m is sent, breaks into both Alice’s and Bob’s
machines and steals their private keys

}  This can be achieved by using session keys that
}  Are chosen independently from the private/public keys
}  Alice and Bob forget the session key as soon as the

communication is over

Perfect Forward Secrecy

108

Kb
+(Ks)

Ks(M1)

Ks(M2)

Alice chooses a
random key Ks

After message exchange
both Alice and Bob forget Ks

Alice Bob

Does this provide PFS?
Eve records the
entire conversation

Bob has his own
Kb

+ and Kb
-

Perfect Forward Secrecy

109

}  PFS can be attained using Diffie-Hellman
}  Why?

gSb = 9267 gSa = 5876

9267

5876

Alice-Bob
Shared Key
5876Sb = 9267Sa

Perfect Forward Secrecy

110

}  PFS can be attained using Diffie-Hellman
}  Alice and Bob forget their Sa and Sb after end of session

gSb = 9267 gSa = 5876

9267

5876

Alice-Bob
Shared Key
5876Sb = 9267Sa

Zero-Knowledge Proof Systems

111

}  Used only for authentication
}  Allows you to prove that you know a secret without

actually revealing the secret
}  E.g.: RSA is a zero-knowledge proof system

}  You can prove you know the “secret” associated with your
public key without revealing your private key

}  There exist ZKPSs that are much more efficient than RSA

Digital Signatures

112

Cryptographic technique analogous to hand-written
signatures.

}  sender (Bob) digitally signs document, establishing he is
document owner/creator.

}  verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice), must
have signed document

}  Goal is similar to that of a MAC, except now use public-
key cryptography

Digital Signatures

113

Simple digital signature for message m:
}  Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m) - -

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key K B

-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
- (m)

Alice verifies signature and integrity
of digitally signed message:

114

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

KB(H(m)) -

encrypted
msg digest

KB(H(m)) -

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

Digital Signatures (more)

115

}  Suppose Alice receives msg m, digital signature KB(m)
}  Alice verifies m signed by Bob by applying Bob’s public key KB to

KB(m) then checks KB(KB(m)) = m.
}  If KB(KB(m)) = m, whoever signed m must have used Bob’s private

key.

Alice thus verifies that:
➼  Bob signed m.
➼  No one else signed m.
➼  Bob signed m and not m’.

Non-repudiation:
ü  Alice can take m, and signature KB(m) to court and prove

that Bob signed m.

+ +

-

-

- -

+

-

Public-key certification

116

}  Motivation: Trudy plays pizza prank on Bob
}  Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank
you, Bob

}  Trudy signs order with her private key
}  Trudy sends order to Pizza Store
}  Trudy sends to Pizza Store her public key, but says it’s Bob’s

public key.
}  Pizza Store verifies signature; then delivers four pizzas to Bob.
}  Bob doesn’t even like Pepperoni

Certification Authorities

}  Certification authority (CA): binds public key to particular
entity, E.

}  E (person, router) registers its public key with CA.
}  E provides “proof of identity” to CA.
}  CA creates certificate binding E to its public key.
}  certificate containing E’s public key digitally signed by CA – CA says

“this is E’s public key”

117

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

Certification Authorities

}  When Alice wants Bob’s public key:
}  gets Bob’s certificate (Bob or elsewhere).
}  apply CA’s public key to Bob’s certificate, get Bob’s public

key

118

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

Alternative: symmetric crypto + KDC

119

}  KDC = Key Distribution Center
}  Trusted Node
}  When Alice and Bob want to talk

}  Alice asks KDC for a symmetric session key to be shared with Bob

}  Reduces the number of keys that need to be distributed
}  If a new node joins the network, we need to generate n new keys
}  With KDC, only the new node and the KDC need to agree on a key

without KDC with KDC

Key Exchange via KDC

120

}  Needham-Schroeder protocol
1.  Alice >> KDC : “Alice” | “Bob” | Rand1
2.  KDC >> Alice : Ka(“Alice” | “Bob” | Rand1 | Ks | Kb(“Alice” | Ks))
3.  Alice >> Bob : Kb(“Alice” | Ks)
4.  Bob >> Alice : Ks(Rand2)
5.  Alice >> Bob : Ks(Rand2-1)

See Bishop “Introduction to Computer Security”

KDC vs. CA

121

}  KDC = Key Distribution Center
}  KDC can eavesdrop conversations
}  Single point of failure

}  CA = Certification Authority
}  CA signs Alice’s and Bob’s pub keys
}  CA cannot decrypt communications between Alice and Bob

}  It does not have a copy of their private keys
}  If CA is compromised, attacker cannot gain access to the plaintext

}  Even if CA stops functioning, Alice and Bob can still
communicate

Certificates: summary

122

}  Primary standard X.509 (RFC 2459)
}  Certificate contains:

}  Issuer name
}  Entity name, address, domain name, etc.
}  Entity’s public key
}  Digital signature (signed with issuer’s private key)

}  Public-Key Infrastructure (PKI)
}  Certificates and certification authorities
}  Certificate Revocation List
}  Often considered “heavy”

Components of a PKI

123

}  Certificates
}  Repository from which certificates can be retrieved
}  A method for revoking certificates

}  E.g., see https://wiki.mozilla.org/CA:ImprovingRevocation
}  An “anchor of trust” (root certificate)
}  A method for verifying a chain of certificates up to the anchor of trust

}  Browser example:
}  Browsers ship with many trust anchors (i.e., public key of trusted CAs)

}  Can we really trust the CAs?
}  http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
}  http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-

man-in-middle.html
}  It may be possible to trick users to add a trust anchor into the default set
}  The browser itself may be compromised an forced to add a malicious trust

anchor

PKI problems

124

}  https://www.eff.org/deeplinks/2011/09/post-mortem-
iranian-diginotar-attack

}  http://www.zdnet.com/article/trustwave-sold-root-
certificate-for-surveillance/

}  https://www.eff.org/observatory
}  https://www.eff.org/files/colour_map_of_cas.pdf

Secure e-mail

Alice:
q  generates random symmetric private key, KS.
q  encrypts message with KS (for efficiency)
q  also encrypts KS with Bob’s public key.
q  sends both KS(m) and KB(KS) to Bob.

q  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail

Bob:
q  uses his private key to decrypt and recover KS
q  uses KS to decrypt KS(m) to recover m

q  Alice wants to send confidential e-mail, m, to Bob.

KS() .

KB() . +

+ -

KS(m)

KB(KS) +

m

KS KS

KB +

KS() .

KB() . -

KB -

KS

m
KS(m)

KB(KS) +

Secure e-mail (continued)
•  Alice wants to provide sender authentication message
integrity.

•  Alice digitally signs message.
•  sends both message (in the clear) and digital signature.

H() . KA() . -

+ -

H(m) KA(H(m)) -
m

KA -

m

KA() . +

KA +

KA(H(m)) -

m
H() . H(m)

compare

Secure e-mail (continued)
•  Alice wants to provide secrecy, sender authentication,
 message integrity.

Alice uses three keys: her private key, Bob’s public key, newly
created symmetric key

H() . KA() . -

+

KA(H(m)) -
m

KA -

m

KS() .

KB() . +

+

KB(KS) +

KS

KB +

KS

SSL: Secure Sockets Layer

129

}  Widely deployed security protocol
}  Supported by almost all browsers

and web servers
}  https
}  Tens of billions $ spent per year

over SSL
}  Originally designed by Netscape in

1993
}  Number of variations:

}  TLS: transport layer security, RFC
2246

}  Provides
}  Confidentiality
}  Integrity
}  Authentication

}  Original goals:
}  Had Web e-commerce transactions

in mind
}  Encryption (especially credit-card

numbers)
}  Web-server authentication
}  Optional client authentication
}  Minimum hassle in doing business

with new merchant
}  Available to all TCP applications

}  Secure socket interface

SSL and TCP/IP

130

Application

TCP

IP

Normal Application

Application

SSL

TCP

IP

Application
 with SSL

•  SSL provides application programming interface (API)
to applications
•  C and Java SSL libraries/classes readily available

Could do something like PGP:

131

•  But want to send byte streams & interactive data
• Want a set of secret keys for the entire connection
•  Want certificate exchange part of protocol:
 handshake phase

H() . KA() . -

+

KA(H(m)) -
m

KA -

m

KS() .

KB() . +

+

KB(KS) +

KS

KB +

KS

SSL: a simple secure channel

132

}  Handshake: Alice and Bob use their certificates and
private keys to authenticate each other and exchange
shared secret
}  In most practical cases, only one-way authentication!

}  Key Derivation: Alice and Bob use shared secret to derive
set of keys

}  Data Transfer: Data to be transferred is broken up into a
series of records

}  Connection Closure: Special messages to securely close
connection

A simplified handshake using (RSA)

133

}  MS = master secret
}  EMS = encrypted master secret

hello

certificate

KB
+(MS) = EMS

A simplified handshake (Diffie-Hellman)

134

}  MS = master secret

hello

certificate

Bob’s DH public parameters (signed)

Alice’s DH public parameters Compute MS Compute MS

Key derivation

135

}  Considered bad to use same key for more than one
cryptographic operation
}  Use different keys for message authentication code (MAC) and

encryption

}  Four keys (both Alice and Bob will have all 4 keys):
}  Kc = encryption key for data sent from client to server
}  Mc = MAC key for data sent from client to server
}  Ks = encryption key for data sent from server to client
}  Ms = MAC key for data sent from server to client

}  Keys derived from key derivation function (KDF)
}  Takes master secret and (possibly) some additional random data and

creates the keys

Data Records

136

}  Why not encrypt data in constant stream as we write it to
TCP?
}  Where would we put the MAC? If at end, no message integrity until

all data processed.
}  For example, with instant messaging, how can we do integrity check

over all bytes sent before displaying?
}  Instead, break stream in series of records

}  Each record carries a MAC
}  Receiver can act on each record as it arrives

}  Issue: in record, receiver needs to distinguish MAC from
data
}  Want to use variable-length records

length data MAC

Sequence Numbers

137

}  Attacker can capture and replay or re-order records
}  Solution: put sequence number into MAC:

}  MAC = MAC(Mx, sequence||data)
}  Note: no sequence number field

}  Attacker could still replay all of the records
}  Use random nonce

Control information

138

}  Truncation attack:
}  attacker forges TCP connection close segment
}  One or both sides thinks there is less data than there

actually is.

}  Solution: record types, with one type for closure
}  type 0 for data; type 1 for closure

}  MAC = MAC(Mx, sequence||type||data)

length type data MAC

Encrypted

SSL: summary ***

139

hello

certificate, nonce

KB
+(MS) = EMS

type 0, seq 1, data
type 0, seq 2, data

type 0, seq 1, data

type 0, seq 3, data
type 1, seq 4, close

type 1, seq 2, close

en
cr

yp
te

d

bob.com

This version of SSL isn’t complete

140

}  How long are the fields?
}  What encryption protocols?
}  No negotiation

}  Allow client and server to support different encryption
algorithms

}  Allow client and server to choose together specific algorithm
before data transfer

Most common symmetric ciphers in SSL

141

}  DES – Data Encryption Standard: block
}  3DES – Triple strength: block
}  RC2 – Rivest Cipher 2: block
}  RC4 – Rivest Cipher 4: stream

Public key encryption
}  RSA

SSL Cipher Suite

142

}  Cipher Suite
}  Public-key algorithm
}  Symmetric encryption algorithm
}  MAC algorithm

}  SSL supports a variety of cipher suites
}  Negotiation: client and server must agree on cipher suite
}  Client offers choices; server picks one

Real SSL: Handshake (1)

143

Purpose
1.  Server authentication
2.  Negotiation: agree on crypto algorithms
3.  Establish keys
4.  Client authentication (optional)

Real SSL: Handshake (2)

144

1.  Client sends list of algorithms it supports, along with client
nonce

2.  Server chooses algorithms from list; sends back: choice +
certificate + server nonce

3.  Client verifies certificate, extracts server’s public key,
generates pre_master_secret, encrypts with server’s public
key, sends to server

4.  Client and server independently compute encryption and
MAC keys from pre_master_secret and nonces

5.  Client sends a MAC of all the handshake messages
6.  Server sends a MAC of all the handshake messages

Real SSL: Handshake (2)

145

S = pre-master

K = master

K

K

Real SSL: Handshaking (3)

146

Last 2 steps protect handshake from tampering
}  Client typically offers range of algorithms, some strong,

some weak
}  Man-in-the middle could delete the stronger algorithms

from list
}  Last 2 steps prevent this

}  Last two messages are encrypted

Real SSL: Handshaking (4)

147

}  Why the two random nonces?
}  Suppose Trudy sniffs all messages between Alice &

Bob.
}  Next day, Trudy sets up TCP connection with Bob,

sends the exact same sequence of records,.
}  Bob (Amazon) thinks Alice made two separate orders for

the same thing.
}  Solution: Bob sends different random nonce for each

connection. This causes encryption keys to be different on
the two days.

}  Trudy’s messages will fail Bob’s integrity check.

Real SSL: Key derivation

148

}  Client nonce, server nonce, and pre-master secret input into
pseudo random-number generator.
}  Produces master secret

}  Master secret and nonces used to generate session keys
}  client MAC key
}  server MAC key
}  client encryption key
}  server encryption key
}  client initialization vector (IV)
}  server initialization vector (IV)

SSL Record Protocol

149

data

data
fragment

data
fragment MAC MAC

encrypted
data and MAC

encrypted
data and MAC

record
header

record
header

record header: content type; version; length
MAC: includes sequence number, MAC key Mx

Fragment: each SSL fragment max 214 bytes (~16 Kbytes)

SSL Record Format

150

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

Data and MAC encrypted (symmetric algo)

Cryptographically protected records

151

Sequence number is not explicitly sent, but is part of MAC

Real
Connection

152

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchange ChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application_data

application_data

Alert: warning, close_notify TCP Fin follow

Everything
henceforth
is encrypted

SSL/TLS handshake

153

}  RFC: https://tools.ietf.org/html/rfc2246
}  ChangeCipherSpec

}  The change cipher spec message is sent by both the client
and server to notify the receiving party that subsequent
records will be protected under the newly negotiated
CipherSpec and keys

}  TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
}  DHE = Ephemeral Diffie-Hellman signed with RSA
}  EDE = Encrypt-Decrypt-Encrypt

What is confidentiality at the network-
layer?

154

Between two network entities:
}  Sending entity encrypts the payloads of datagrams.

Payload could be:
}  TCP segment, UDP segment, ICMP message, OSPF message,

and so on.

}  All data sent from one entity to the other would be
hidden:
}  Web pages, e-mail, P2P file transfers, TCP SYN packets, and so

on.

}  That is, “blanket coverage”.

Virtual Private Networks (VPNs)

155

}  Institutions often want private networks for security.
}  Costly! Separate routers, links, DNS infrastructure.

}  With a VPN, institution’s inter-office traffic is sent over
public Internet instead.
}  But inter-office traffic is encrypted before entering public

Internet

156

IP
header

IPsec
header

Secure
payload

IP

he
ad

er

IP
se

c
he

ad
er

Se

cu
re

pa

yl
oa

d

headquarters
branch office

salesperson
in hotel

Public
Internet laptop

w/ IPsec

Router w/
IPv4 and IPsec

Router w/
IPv4 and IPsec

Virtual Private Network (VPN)

IPsec services

157

}  Confidentiality
}  Data integrity
}  Origin authentication
}  Replay attack prevention

}  Two protocols providing different service models:
}  AH = Authentication Header
}  ESP = Encapsulated Security Payload

IPsec Transport Mode

158

}  Useful when IPsec is applied end-to-end

IPsec IPsec

IP header Payload

IP header Payload IPSec header

Transport
mode

IPsec – tunneling mode (1)

159

}  End routers are IPsec aware. Hosts need not be.

IPsec IPsec

IP header Payload

IP header Payload IPSec header

Tunnel
mode

new IP hdr

IPsec – tunneling mode (2)

160

}  Also tunneling mode.

IPsec
IPsec

Two protocols

161

}  Authentication Header (AH) protocol
}  provides source authentication & data integrity but not confidentiality

}  Encapsulation Security Protocol (ESP)
}  provides source authentication, data integrity, and confidentiality
}  more widely used than AH

}  Why doe we need AH at all, then?
}  AH does not encrypt the payload

}  Offers integrity protection on payload + part of IP header (excluding TTL,
fragment info, etc…), while ESP offers integrity only on payload

}  TCP/UDP header are accessible
}  This works well with firewalls and NAT, which often look at

transport layer to decide if/how packets should go through

Four combinations are possible!

Host mode

with AH

Host mode
with ESP

Tunnel mode

with AH

Tunnel mode

with ESP

162

Most common and
most important

Security associations (SAs)

163

}  Before sending data, a virtual connection is established from
sending entity to receiving entity.

}  Called “security association (SA)”
}  SAs are simplex: for only one direction

}  Both sending and receiving entities maintain state information
about the SA
}  Recall that TCP endpoints also maintain state information.
}  IP is connectionless; IPsec is connection-oriented!

}  How many SAs in VPN w/ headquarters, branch office, and n
traveling salesperson?

Example SA from R1 to R2

164

R1 stores SA
}  32-bit identifier for SA: Security Parameter Index (SPI)

}  SPI is included in IPSec header, allows for fast lookups

}  the origin interface of the SA (200.168.1.100)
}  destination interface of the SA (193.68.2.23)
}  type of encryption to be used (for example, 3DES with CBC)
}  encryption key
}  type of integrity check (for example, HMAC with MD5)
}  authentication key

193.68.2.23 200.168.1.100

172.16.1/24
172.16.2/24

SA

Internet Headquarters
Branch Office

R1
R2

Example SA

165

Example SA

SPI: 12345
Source IP: 200.168.1.100
Dest IP: 193.68.2.23
Protocol: ESP
Encryption algorithm: 3DES-cbc
HMAC algorithm: MD5
Encryption key: 0x7aeaca…
HMAC key:0xc0291f…

166

Security Association Database (SAD)

❒  Endpoint holds state of its SAs in a SAD, where it can
locate them during processing.

❒  With branch office and n salespersons
❒  Headquarter router stores 2 + 2n SAs in R1’s SAD

❒  When sending IPsec datagram, R1 accesses SAD to

determine how to process datagram.

❒  When IPsec datagram arrives to R2, R2 examines SPI
in IPsec datagram, indexes SAD with SPI, and
processes datagram accordingly.

IPsec datagram

167

Focus for now on tunnel mode with ESP

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
header SPI Seq

IV

4 4 1 1

What happens?

168

193.68.2.23

200.168.1.100

172.16.1/24
172.16.2/24

SA

Internet Headquarters
Branch Office

R1
R2

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
header SPI Seq

IV

R1 converts original datagram
into IPsec datagram

169

}  Appends an “ESP trailer” field to back of original datagram
(which includes original header fields!)

}  Encrypts result using algorithm & key specified by SA.
}  Appends the “ESP header” to front of this encrypted quantity
}  Creates authentication MAC over the obtained datagram, using

algorithm and key specified in SA;
}  Appends MAC to back, forming payload;
}  Creates brand new IP header, with all the classic IPv4 header

fields, which it appends before payload.

Inside the enchilada:

170

}  ESP trailer: Padding for block ciphers
}  ESP header:

}  SPI, so receiving entity knows what to do
}  Sequence number, to thwart replay attacks

}  MAC in ESP auth field is created with shared secret key

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
header SPI Seq

IV

IPsec sequence numbers

171

}  For new SA, sender initializes seq. # to 0
}  Each time datagram is sent on SA:

}  Sender increments seq # counter
}  Places value in seq # field

}  Goal:
}  Prevent attacker from sniffing and replaying a packet

}  Receipt of duplicate, authenticated IP packets may disrupt service

}  Method:
}  Destination checks for duplicates
}  But doesn’t keep track of ALL received packets; instead uses a window

Security Policy Database (SPD)

172

}  Policy: For a given datagram, sending entity needs to know
if it should use IPsec.

}  Needs also to know which SA to use
}  May use: source and destination IP address; protocol number.

}  Info in SPD indicates “what” to do with arriving datagram;
}  Info in the SAD indicates “how” to do it.

Summary: IPsec services

173

}  Suppose Trudy sits somewhere between R1 and R2. She
doesn’t know the keys.
}  Will Trudy be able to see contents of original datagram? How

about source, dest IP address, transport protocol, application
port?

}  Flip bits without detection?
}  Masquerade as R1 using R1’s IP address?
}  Replay a datagram?

Internet Key Exchange

174

}  In previous examples, we assumed the IPsec SAs was manually
established (configured) at the endpoints:

Example SA
SPI: 12345
Source IP: 200.168.1.100
Dest IP: 193.68.2.23
Protocol: ESP
Encryption algorithm: 3DES-cbc
HMAC algorithm: MD5
Encryption key: 0x7aeaca…
HMAC key:0xc0291f…

}  Such manual keying is impractical for large VPN with, say,
hundreds of sales people.

}  Instead use IPsec IKE (Internet Key Exchange)

IKE Phases

175

}  IKE has two phases
}  Phase 1:

}  Performs mutual authentication and establishment of session keys
}  Also called ISAKMP security association

}  Phase 2:
}  used to securely negotiate the IPsec pair of SAs
}  Sends info used to derive the actual session keys used for ESP/AH

}  Phase 1 has two modes: aggressive mode and main mode
}  Aggressive mode uses fewer messages
}  Main mode provides identity protection and is more flexible

}  No party needs to reveal their actual identity in plaintext

IKE Phase-1: Main Mode (simplified)

176

Tb = gb mod p K = gab mod p K = gab mod p
K{“Alice”, proof I’m Alice (certificate)}

crypto I choose

Ta = ga mod p

crypto I support

K{“Bob”, proof I’m Bob (certificate)}

http://tools.ietf.org/html/rfc2409

IKE Phase-1: Aggressive Mode (simplified)

177

Tb = gb mod p, crypto choice, K{proof I’m Bob}

K = gab mod p K = gab mod p K{proof I’m Alice}

I’m Alice, Ta = ga mod p, crypto proposal

http://tools.ietf.org/html/rfc2409

IKE: PSK and PKI

178

}  Authentication (proof of who you are) with either
}  pre-shared secret (PSK) or
}  with PKI (pubic/private keys and certificates).

}  With PSK, both sides start with secret:
}  then run IKE to authenticate each other and to generate

IPsec SAs (one in each direction), including encryption and
integrity keys

}  With PKI, both sides start with public/private key pair
and certificate.
}  run IKE to authenticate each other and obtain IPsec SAs

(one in each direction).
}  Similar to handshake in SSL.

IKE Phase-1
Signature vs. Public Key Encryption

179

}  Signature
}  Does not require Alice to know Bob’s pub key in advance
}  She will receive Bob’s certificate in the last message
}  Identity may be revealed to an attacker who is trying to

impersonate one of the parties

}  Pub key encryption
}  Alice must know Bob’s pub key
}  Both sides reveal their identity only to whom they intend to

authenticate themselves

Summary of IPsec

180

}  IKE message exchange for algorithms, secret keys, SPI numbers
}  Either the AH or the ESP protocol (or both)
}  The AH protocol provides integrity and source authentication
}  The ESP protocol (with AH) additionally provides encryption
}  IPsec peers can be two end systems, two routers/firewalls, or a

router/firewall and an end system

Source: Stallings – “Cryptography and Network Security, Principles and Practice”

Wired Equivalent Privacy

WEP Design Goals

182

}  Symmetric key crypto
}  Confidentiality
}  Station authorization
}  Data integrity

}  Self synchronizing: each packet separately encrypted
}  Given encrypted packet and key, can decrypt; can continue to decrypt

packets when preceding packet was lost
}  Unlike Cipher Block Chaining (CBC) in block ciphers

}  Efficient
}  Can be implemented in hardware or software

Review: Symmetric Stream Ciphers

183

}  Combine each byte of keystream with byte of plaintext to
get ciphertext

}  m(i) = ith unit of message
}  ks(i) = ith unit of keystream
}  c(i) = ith unit of ciphertext
}  c(i) = ks(i) ⊕ m(i) (⊕ = exclusive or)
}  m(i) = ks(i) ⊕ c(i)
}  WEP uses RC4

keystream
generator key keystream

Attacks on Stream Ciphers

}  Repetition attack
}  if key stream reused, attacker obtains XOR of two plaintexts

(P1 xor P2)
}  If P1 is known, P2 is also known
}  Even if no plaintext is known, there are known attacks based

on PI xor P2 (e.g., frequency attacks)

12/7/15 Cryptography 184

Stream cipher and packet independence

185

}  Recall design goal: each packet separately encrypted
}  If for frame n+1, use keystream from where we left off for

frame n, then each frame is not separately encrypted
}  Need to know where we left off for packet n

}  WEP approach: initialize keystream with key + new IV for
each packet:

keystream
generator Key+IVpacket keystreampacket

WEP encryption (1)

186

}  Sender calculates Integrity Check Value (ICV) over data
}  four-byte hash/CRC for data integrity

}  Each side has 104-bit shared key
}  Sender creates 24-bit initialization vector (IV), appends to key: gives

128-bit key
}  Sender also appends keyID (in 8-bit field)
}  128-bit key inputted into pseudo random number generator to get

keystream
}  data in frame + ICV is encrypted with RC4:

}  Bytes of keystream are XORed with bytes of data & ICV
}  IV & keyID are appended to encrypted data to create payload
}  Payload inserted into 802.11 frame

encrypted

data ICV IV

MAC payload

Key
ID

WEP encryption (2)

187

IV
(per frame)

KS: 104-bit
secret

symmetric
key k1

IV k2
IV k3

IV … kN
IV kN+1

IV… kN+1
IV

d1
 d2 d3 … dN

 CRC1 … CRC4

c1
 c2 c3 … cN

 cN+1 … cN+4

plaintext
 frame data

plus CRC

key sequence generator
(for given KS, IV)

802.11
header IV

&

WEP-encrypted data
plus ICV

Figure 7.8-new1: 802.11 WEP protocol New IV for each frame

WEP decryption overview

188

}  Receiver extracts IV
}  Inputs IV and shared secret key into pseudo random

generator, gets keystream
}  XORs keystream with encrypted data to decrypt data +

ICV
}  Verifies integrity of data with ICV

}  Note that message integrity approach used here is different from
the MAC (message authentication code) and signatures (using PKI).

encrypted

data ICV IV

MAC payload

Key
ID

WEP Authentication

189

}  Two different auth modes
}  Open System and Shared Secret

}  Open System
}  No real authentication, anybody can associate with AP
}  After AP association, device needs to have the correct key, otherwise

packets will be rejected (will fail integrity check)
}  Shared Secret

}  Device needs to provide credentials before AP association

R

IV, KIV{R}

want to connect

OK

Is there any problem here? (assume attacker records conversation)

see Borisov et al. “Intercepting Mobile Communications: The Insecurity of 802.11”

WEP Authentication

190

}  Problems with Shared Secret authentication

}  Eve eavesdropped R and IV, KIV{R}
}  Thus, Eve knows the key-stream related to IV

}  Reuse known IV, KIV to authenticate and associate with AP

R’

IV, KIV{R’}

want to connect

OK

see Borisov et al. “Intercepting Mobile Communications: The Insecurity of 802.11”

Breaking 802.11 WEP encryption

security hole:
}  24-bit IV, one IV per frame, -> IV’s eventually reused
}  IV transmitted in plaintext -> IV reuse detected
}  attack:

}  Trudy causes Alice to encrypt known plaintext d1 d2 d3 d4 …
}  Trudy sees: ci = di XOR ki

IV

}  Trudy knows ci di, so can compute ki
IV

}  Trudy knows encrypting key sequence k1
IV k2

IV k3
IV …

}  Next time IV is used, Trudy can decrypt!
}  RC4 does not work well with “weak” IVs

}  A. Bittau, M. Handley and J. Lackey. The Final Nail in WEP's Coffin.
Proceedings of the IEEE Symposium on Security and Privacy, 2006

Kerberos

192

Kerberos
}  Kerberos is an authentication protocol and a software suite

implementing this protocol.
}  Kerberos uses symmetric cryptography to authenticate clients

to services and vice versa.
}  For example, Windows servers use Kerberos as the primary

authentication mechanism, working in conjunction with Active
Directory to maintain centralized user information.

}  Other possible uses of Kerberos include allowing users to log
into other machines in a local-area network, authentication for
web services, authenticating email client and servers, and
authenticating the use of devices such as printers.

}  Services using Kerberos authentication are commonly referred
to as “Kerberized”.

193

Kerberos Components

194

}  Key Distribution Center (KDC)
}  Runs on a physically secure node on the network
}  Shares a master key with each principal (i.e., each user and

each resource/service that will be using Kerberos)

}  KDC has two components
}  An authentication server (AS), which performs user

authentication
}  A ticket-granting server (TGS), which grants tickets to

users

Kerberos Tickets

}  Kerberos uses the concept of a ticket as a token that proves the
identity of a user.

}  Tickets are digital documents that store session keys. They are
typically issued during a login session and then can be used
instead of passwords for any Kerberized services. During the
course of authentication, a client receives two tickets:
}  A ticket-granting ticket (TGT), which acts as a global identifier for a

user and a session key
}  A service ticket, which authenticates a user to a particular service

}  These tickets include time stamps that indicate an expiration time
after which they become invalid. This expiration time can be set
by Kerberos administrators depending on the service.

195

Kerberos Features

}  The authentication server keeps a database storing the master keys of the
users and services.

}  The master key of a user is typically generated by performing a one-way hash
of the user-provided password.

}  Kerberos is designed to be modular, so that it can be used with a number of
encryption protocols, with AES being the default cryptosystem.

}  Kerberos aims to centralize authentication for an entire network—rather than
storing sensitive authentication information at each user’s machine, this data is
only maintained in one presumably secure location.

196

Kerberos v4 at a glance

197

}  Alice logs into her workstation
}  Enters user name and password
}  A master key is derived from the password
}  The workstations asks KDC for a session key SA for Alice, and then forgets the password

she entered
}  SA will be used to ask KDC for tickets to access services
}  SA will expire after a given time (e.g., a few hours)
}  KDC generates SA and sends KA{SA} and KKDC{“Alice”, SA, timeout} to Alice
}  KKDC{“Alice”, SA, timeout} is called Ticket Granting Ticket (TGT)

}  Alice (a user) wants to talk to (or use) Bob (a service)
}  Alice informs the KDC that she needs Bob, and sends her TGT
}  KDC decrypts TGT to get SA
}  KDC generates a session key KAB, encrypts KAB with Alice’s session key SA, encrypts KAB

with Bob’s key KB, and sends them to Alice
}  KB{KAB} is called a ticket to Bob
}  KAB is known only to Alice and Bob (and the KDC), and can be used by Alice and Bob to

authenticate each other, encrypt and integrity-protect their communication

Kerberos Authentication

}  The client and authentication
server authenticate themselves
to each other.

}  The client and ticket-granting
server authenticate themselves
to each other.

}  The client and requested
service authenticate
themselves to each other, at
which point the service will be
provided to the client.

198

Obtaining a TGT

199

Alice’s master secret
derived from entered pswd

Plaintext message

Ticket to Bob

200

authenticator proves
Alice knows SA

Need reasonably synchronized clocks!

Logging into Bob

201

Provides for mutual auth

Kerberos Advantages
}  The Kerberos protocol is designed to be secure even when performed over

an insecure network.
}  Since each transmission is encrypted using an appropriate secret key, an

attacker cannot forge a valid ticket to gain unauthorized access to a service
without compromising an encryption key or breaking the underlying
encryption algorithm, which is assumed to be secure.

}  Kerberos is also designed to protect against replay attacks, where an
attacker eavesdrops legitimate Kerberos communications and retransmits
messages from an authenticated party to perform unauthorized actions.
}  The inclusion of time stamps in Kerberos messages restricts the window in which

an attacker can retransmit messages.
}  Tickets may contain the IP addresses associated with the authenticated party to

prevent replaying messages from a different IP address.
}  Kerberized services make use of a “replay cache,” which stores previous

authentication tokens and detects their reuse.
}  Kerberos makes use of symmetric encryption instead of public-key

encryption, which makes Kerberos computationally efficient
}  The availability of an open-source implementation has facilitated the

adoption of Kerberos.
202

Kerberos Disadvantages
}  Kerberos has a single point of failure: if the Key

Distribution Center becomes unavailable, the
authentication scheme for an entire network may cease to
function.
}  Larger networks sometimes prevent such a scenario by having

multiple KDCs, or having backup KDCs available in case of
emergency.

}  If an attacker compromises the KDC, the authentication
information of every client and server on the network
would be revealed.

}  Kerberos requires that all participating parties have
synchronized clocks, since time stamps are used.

203

