Wireshark Tutorial

Chris Neasbitt
UGA Dept. of Computer Science

Contents

- Introduction
 - What is a network trace?
 - What is Wireshark?
- Basic UI
 - Some of the most useful parts of the UI.
- Packet Capture
 - How do we capture packets?
- Trace Analysis
- Individual Packet Analysis
- •Filters
- Exercises

Introduction

- Network Traffic Trace
 - A recording of the network packets both received by and transmitted from a network interface.
- •What is a pcap file?
 - pcap = Packet Capture
 - File format originally designed for tcpdump/libpcap.
 - Most widely used packet capture format.

Introduction

- •What is Wireshark?
 - A graphical network packet analyser.
 - Found at http://www.wireshark.org
 - The complete manual is located here.
- •What some are it's uses?
 - Troubleshoot network problems.
 - Learn network protocol internals.
 - Debug protocol/program implementation.
 - Examine network-related security issues.

- •File -> Open
 - Opens a packet capture file.
- •View -> Time Display Format
 - Change the format of the packet timestamps in the packet list pane.
 - Switch between absolute and relative timestamps.
 - Change level of precision.
- View -> Name Resolution
 - Allow wireshark to resolve names from addresses at different protocol layers.

- Capture -> Interfaces
 - Available network interfaces for capture.
 - Total packets per interface.
 - Packet rate per interface.

- Capture -> Options
 - Set various capture parameters.
- Promiscous mode
 - On record all packets reaching the interface.
 - Off record only those packets directed to the host.

- Analyze -> Follow TCP Stream
 - Applies a filter to follow a single tcp conversation within the trace.
 - Displays the reassembiled data section of each packet in the conversation.
 - Useful for debugging or analyzing any TCP based application layer protocol.
 - HTTP, FTP, SSH, LDAP, SMTP, etc.

- •Statistics -> Protocol Hierarchy
 - Presents descriptive statistics per protocol.
 - Useful for determining the types, amounts, and relative proportions of protocols within a trace.

- Statistics -> Conversations
 - Generates descriptive statistics about each conversation for each protocol in the trace.

- Statistics -> Flow Graph
 - Generates a sequence graph for the selected traffic.
 - Useful for understanding seq. and ack. calculations.

Packet Capture

- Interface selection
 - Capture -> Interfaces
 - Select the interface from which to capture packets.
 - any captures from all interfaces
 - lo captures from the loopback interface (i.e. from localhost)
 - Set the desired capture parameters under the options menu.
- Start Capture
 - Click the start button next to the desired interface.
 - Captured traffic will be displayed in the packet list pane.

Packet Capture

- Stop Capture
 - Select Capture -> Stop
- Saving Capture
 - Once the capture has been stopped select File ->
 Save As.
 - From the save dialog you can specify file type and which packets to save via the packet range menu.

Trace Analysis

Trace Analysis

Packet list

- Displays all of the packets in the trace in the order they were recorded.
- Columns
 - Time the timestamp at which the packet crossed the interface.
 - Source the originating host of the packet.
 - Destination the host to which the packet was sent.
 - Protocol the highest level protocol that Wireshark can detect.
 - Lenght the lenght in bytes of the packet on the wire.
 - Info an informational message pertaining to the protocol in the protocol column.

Trace Analysis

- Packet list
 - Default Coloring
 - Gray TCP packets
 - Black with red letters TCP Packets with errors
 - Green HTTP Packets
 - Light Blue UDP Packets
 - Pale Blue ARP Packets
 - Lavender ICMP Packets
 - Black with green letters ICMP Packets with errors
 - Colorings can be changed under View -> Coloring Rules

Individual Packet Analysis

Individual Packet Analysis

Packet Details

- Detailed information about the currently selected packet is displayed in the packet details pane.
- All packet layers are displayed in the tree menu.
- Any portion of any layer can be exported via a right click and selecting Export Selected Packet Bytes

Packet Bytes

- Displays the raw packet bytes.
- The selected packet layer is highlighted.

Filters

- Packets captures usually contain many packets irrelevant to the specific analysis task.
- To remove these packets from display or from the capture Wireshark provides the ability to create filters.
- Filters are evaluted against each individual packet.
- Boolean expresions dealing with packet properties.
- Supports regular expressions.
- Can either be manually constructed, composed via the Expressions menu or composed based on a selected packet's properties.

- Expressions Menu
 - Field name selects the packet property.
 - Relation selects the boolean test.
 - Predefined values common values against which the selected packet property is tested.
 - Value Arbitrary Textual or Numeric value against which the selected packet property is tested.

Compound Filters

- Filters can be composed of multiple tests joined with boolean connectives.
 - && logical conjuction (i.e. AND)
 - || logical disjunction (i.e OR)
 - ! logical negation (i.e. NOT)
- Supports the order of operations.
- Regular Expressions
 - Fields can be evaluated against a regular expression using the "matches" test.
 - Uses Perl regex syntax.

•Filter Text Box

- Green valid filter
- Red invalid filter
- Yellow may produce unexpected results

Packet based filters

- Filters can be constructed on the basis of individual packets by right clicking on a packet and selecting either:
 - Prepare as filter creates a filter.
 - Apply as filter creates a filter and applies it to the trace.
 - Follow TCP Stream creates a filter from a TCP packet's stream number and applies it to the trace.

Filter examples

- http.request Display all HTTP requests.
- http.request || http.response Display all HTTP request and responses.
- ip.addr == 127.0.0.1 Display all IP packets whose source or destination is localhost.
- tcp.len < 100 Display all TCP packets whose data length is less than 100 bytes.
- http.request.uri matches "(gif)\$" Display all HTTP requests in which the uri ends with "gif".
- dns.query.name == "www.google.com" Display all DNS queries for "www.google.com".

Questions

Any Questions?

Thank you for your attention!

Exercises

- •Work in groups of 2.
- •Download the trace at http://cs.uga.edu/~neasbitt/files/user1 tcpdump.pcap
- Answer the following questions on a sheet of paper.
 - What is the total number of HTTP Post requests in the trace?
 - What is the status code for the last HTTP response in TCP stream 17?
 - What is the total size in bytes for all packets containing JavaScript Object Notation (JSON) data?
 - Between which two IP address where the most IP packets sent?
 - What is pictured in the image bostonmusic-promo.jpg?

Exercises

- •Work in groups of 2.
- •Download the trace at

http://cs.uga.edu/~neasbitt/files/user1_tcpdump.pcap

- •Answer the following questions on a sheet of paper.
 - What is the total number of HTTP Post requests in the trace?
 - What is the status code for the last HTTP response in TCP stream 17?
 - What is the total size in bytes for all packets containing JavaScript Object Notation (JSON) data?
 - Between which two IP address where the most IP packets sent?
 - What is pictured in the image bostonmusic-promo.jpg?

Question Answers

- 1.8
- 2.302
- 3. 2253
- 4. 10.0.2.15 123.125.114.18
- 5. A stereo system.