Intelligent Agents Chapter 2 ### Outline - ♦ Agents and environments - \Diamond Rationality - ♦ PEAS (Performance measure, Environment, Actuators, Sensors) - ♦ Environment types - ♦ Agent types ### Agents and environments Agents include humans, robots, softbots, thermostats, etc. The agent function maps from percept histories to actions: $$f: \mathcal{P}^* \to \mathcal{A}$$ The agent program runs on the physical architecture to produce f ### Vacuum-cleaner world Percepts: location and contents, e.g., [A, Dirty] Actions: Left, Right, Suck, NoOp #### A vacuum-cleaner agent | Percept sequence | Action | |------------------------|--------| | [A, Clean] | Right | | [A, Dirty] | Suck | | [B, Clean] | Left | | [B, Dirty] | Suck | | [A, Clean], [A, Clean] | Right | | [A,Clean], $[A,Dirty]$ | Suck | | : | : | ``` function Reflex-Vacuum-Agent([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left ``` What is the **right** function? Can it be implemented in a small agent program? #### Rationality Fixed performance measure evaluates the environment sequence - one point per square cleaned up in time T? - one point per clean square per time step, minus one per move? - penalize for > k dirty squares? A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date Rational \neq omniscient percepts may not supply all relevant information Rational \neq clairvoyant - action outcomes may not be as expected Hence, rational \neq successful Rational \Rightarrow exploration, learning, autonomy #### **PEAS** To design a rational agent, we must specify the task environment Consider, e.g., the task of designing an automated taxi: Performance measure?? **Environment??** Actuators?? Sensors?? #### PEAS To design a rational agent, we must specify the task environment Consider, e.g., the task of designing an automated taxi: Performance measure?? safety, destination, profits, legality, comfort, . . . Environment?? US streets/freeways, traffic, pedestrians, weather, . . . Actuators?? steering, accelerator, brake, horn, speaker/display, . . . Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, . . . # Internet shopping agent Performance measure?? **Environment??** Actuators?? Sensors?? ### Internet shopping agent Performance measure?? price, quality, appropriateness, efficiency **Environment??** current and future WWW sites, vendors, shippers Actuators?? display to user, follow URL, fill in form Sensors?? HTML pages (text, graphics, scripts) | | Solitaire | Backgammon | Internet shopping | Taxi | |------------------------|-----------|------------|-------------------|------| | Observable?? | | | | | | Deterministic?? | | | | | | Episodic?? | | | | | | Static?? | | | | | | Discrete?? | | | | | | Single-agent?? | | | | | | | Solitaire | Backgammon | Internet shopping | Taxi | |------------------------|-----------|------------|-------------------|------| | Observable?? | Yes | Yes | No | No | | <u>Deterministic??</u> | | | | | | Episodic?? | | | | | | Static?? | | | | | | Discrete?? | | | | | | Single-agent?? | | | | | | | Solitaire | Backgammon | Internet shopping | Taxi | |------------------------|-----------|------------|-------------------|------| | Observable?? | Yes | Yes | No | No | | <u>Deterministic??</u> | Yes | No | Partly | No | | Episodic?? | | | | | | Static?? | | | | | | Discrete?? | | | | | | Single-agent?? | | | | | | | Solitaire | Backgammon | Internet shopping | Taxi | |-------------------------|-----------|------------|-------------------|------| | Observable?? | Yes | Yes | No | No | | Deterministic ?? | Yes | No | Partly | No | | Episodic?? | No | No | No | No | | Static?? | | | | | | Discrete?? | | | | | | Single-agent?? | | | | | | | Solitaire | Backgammon | Internet shopping | Taxi | |-------------------------|-----------|------------|-------------------|------| | Observable?? | Yes | Yes | No | No | | Deterministic ?? | Yes | No | Partly | No | | Episodic?? | No | No | No | No | | Static?? | Yes | Semi | Semi | No | | Discrete?? | | | | | | Single-agent?? | | | | | | | Solitaire | Backgammon | Internet shopping | Taxi | |-------------------------|-----------|------------|-------------------|------| | Observable?? | Yes | Yes | No | No | | Deterministic ?? | Yes | No | Partly | No | | Episodic?? | No | No | No | No | | Static?? | Yes | Semi | Semi | No | | Discrete?? | Yes | Yes | Yes | No | | Single-agent?? | | | | | | | Solitaire | Backgammon | Internet shopping | Taxi | |-------------------------|-----------|------------|-----------------------|------| | Observable?? | Yes | Yes | No | No | | Deterministic ?? | Yes | No | Partly | No | | Episodic?? | No | No | No | No | | Static?? | Yes | Semi | Semi | No | | Discrete?? | Yes | Yes | Yes | No | | Single-agent?? | Yes | No | Yes (except auctions) | No | #### The environment type largely determines the agent design The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent ### Agent types Four basic types in order of increasing generality: - simple reflex agents - reflex agents with state - goal-based agents - utility-based agents All these can be turned into learning agents ## Simple reflex agents ### Example ``` function Reflex-Vacuum-Agent([location,status]) returns an action ``` if status = Dirty then return Suck else if location = A then return Right **else** if location = B then return Left ## Reflex agents with state ## Example function Reflex-Vacuum-Agent([location, status]) returns an action static: $last_A$, $last_B$, numbers, initially ∞ if status = Dirty then . . . ## Goal-based agents ### Utility-based agents ### Learning agents #### Summary Agents interact with environments through actuators and sensors The agent function describes what the agent does in all circumstances The performance measure evaluates the environment sequence A perfectly rational agent maximizes expected performance Agent programs implement (some) agent functions PEAS descriptions define task environments Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent? Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based