Intelligent Agents

Chapter 2

Outline

\diamond Agents and environments
\diamond Rationality
\diamond PEAS (Performance measure, Environment, Actuators, Sensors)
\diamond Environment types
\diamond Agent types

Agents and environments

Agents include humans, robots, softbots, thermostats, etc.
The agent function maps from percept histories to actions:

$$
f: \mathcal{P}^{*} \rightarrow \mathcal{A}
$$

The agent program runs on the physical architecture to produce f

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]
Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
$[$ A, Clean $]$	Right
$[$ A, Dirty $]$	Suck
$[$ B, Clean $]$	Left
$[$ B, Dirty $]$	Suck
$[$ A, Clean $],[A$, Clean $]$	Right
$[$ A, Clean $],[$ A, Dirty $]$	Suck
\vdots	\vdots

function Reflex-Vacuum-Agent([location,status]) returns an action
if status $=$ Dirty then return Suck
else if location $=A$ then return Right
else if location $=B$ then return Left

What is the right function?
Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T ?
- one point per clean square per time step, minus one per move?
- penalize for $>k$ dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational \neq omniscient

- percepts may not supply all relevant information

Rational \neq clairvoyant

- action outcomes may not be as expected

Hence, rational \neq successful
Rational \Rightarrow exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment
Consider, e.g., the task of designing an automated taxi:
Performance measure??
Environment??
Actuators??
Sensors??

PEAS

To design a rational agent, we must specify the task environment
Consider, e.g., the task of designing an automated taxi:
Performance measure?? safety, destination, profits, legality, comfort, ...
Environment?? US streets/freeways, traffic, pedestrians, weather, ...
Actuators?? steering, accelerator, brake, horn, speaker/display, ...
Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Internet shopping agent

Performance measure??
Environment??
Actuators??
Sensors??

Internet shopping agent

Performance measure?? price, quality, appropriateness, efficiency
Environment?? current and future WWW sites, vendors, shippers
Actuators?? display to user, follow URL, fill in form
Sensors?? HTML pages (text, graphics, scripts)

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??				
Static??				
Discrete??				
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??				
Discrete??				
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??				
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

The environment type largely determines the agent design
The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Agent types

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Simple reflex agents

Example

function REFLEX-VACUUM-AGENT([location,status]) returns an action
if status $=$ Dirty then return Suck
else if location $=A$ then return Right
else if location $=B$ then return Left

Reflex agents with state

Example

function REFLEX-VACUUM-AGENT([location, status]) returns an action static: last_ $A, l_{\text {last_ }} B$, numbers, initially ∞
if status $=$ Dirty then \ldots

Goal-based agents

Utility-based agents

Learning agents

Summary

Agents interact with environments through actuators and sensors
The agent function describes what the agent does in all circumstances
The performance measure evaluates the environment sequence
A perfectly rational agent maximizes expected performance
Agent programs implement (some) agent functions
PEAS descriptions define task environments
Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based

