Constraint Satisfaction Problems

Chapter 6
Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs
Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state – any data structure that supports successor function, heuristic function, and goal test

- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map-Coloring

- **Variables**: WA, NT, Q, NSW, V, SA, T
- **Domains**: $D_i = \{\text{red, green, blue}\}$
- **Constraints**: adjacent regions must have different colors
 - e.g., $WA \neq NT$, or (WA, NT) in $\{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})\}$
Example: Map-Coloring

- Solutions are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints
Varieties of CSPs

- Discrete variables
 - finite domains:
 - n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_3$

- Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., $SA \neq \text{green}$

- **Binary** constraints involve pairs of variables,
 - e.g., $SA \neq WA$

- **Higher-order** constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
Example: Cryptarithmetic

- **Variables:** $FTUW\ \ \ \ \ \ \ \ \ \ \ \ ROX\ X_1X_2X_3$
- **Domains:** $\{0,1,2,3,4,5,6,7,8,9\}$
- **Constraints:** $\text{Alldiff (F,T,U,W,R,O)}$
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - $X_3 = F, T \neq 0, F \neq 0$
Example: Cryptarithmetic

- **Variables**: \(FTUW\)
- **Domains**: \(\{0,1,2,3,4,5,6,7,8,9\}\)
- **Constraints**: \(\text{Alldiff } (F,T,U,W,R,O)\)
 - \(O + O = R + 10 \cdot X_1\)
 - \(X_1 + W + W = U + 10 \cdot X_2\)
 - \(X_2 + T + T = O + 10 \cdot X_3\)
 - \(X_3 = F, T \neq 0, F \neq 0\)

\[
\begin{array}{c}
T \ W \ O \\
+ \ T \ W \ O \\
\hline \\
F \ O \ U \ R
\end{array}
\]

\[
7 \ 6 \ 5 \\
\hline \\
1 \ 5 \ 3 \ 0
\]

(how many more solutions are there?)
Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling

Notice that many real-world problems involve real-valued variables
Let's start with the straightforward approach, then fix it.

States are defined by the values assigned so far:

- **Initial state**: the empty assignment \{ \}
- **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment → fail if no legal assignments
- **Goal test**: the current assignment is complete

1. This is the same for all CSPs
2. Every solution appears at depth \(n \) with \(n \) variables → use depth-first search
3. Path is irrelevant, so can also use complete-state formulation
4. \(b = (n - l)d \) at depth \(l \) hence \(n! \cdot d^n \) leaves

Standard search formulation (incremental)
Backtracking search

- Variable assignments are commutative}, i.e., [WA = red then NT = green] same as [NT = green then WA = red]

- Only need to consider assignments to a single variable at each node → $b = d$ and there are d^n leaves

- Depth-first search for CSPs with single-variable assignments is called backtracking search

- Backtracking search is the basic uninformed algorithm for CSPs

- Can solve n-queens for $n \approx 25$
Backtracking search

function Backtracking-Search(csp) returns a solution, or failure
 return Recursive-Backtracking({}, csp)

function Recursive-Backtracking(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
 for each value in Order-Domain-Values(var, assignment, csp) do
 if value is consistent with assignment according to Constraints[csp] then
 add { var = value } to assignment
 result ← Recursive-Backtracking(assignment, csp)
 if result ≠ failure then return result
 remove { var = value } from assignment
 return failure
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable: choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV) heuristic
Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable: choose the variable with the most constraints on remaining variables
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes 1000 queens feasible
Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

![Diagram of Forward Checking]
Forward checking

Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

![Diagram of Forward Checking with states WA, NT, Q, NSW, V, SA, T]
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- **Constraint propagation** repeatedly enforces constraints locally
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
 for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc **consistent**
- \(X \rightarrow Y \) is consistent iff
 for every value \(x \) of \(X \) there is some allowed \(y \)
Arc consistency

- Simplest form of propagation makes each arc consistent

- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be rechecked
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

 - If X loses a value, neighbors of X need to be rechecked
 - Arc consistency detects failure earlier than forward checking
 - Can be run as a preprocessor or after each assignment
Arc consistency algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
  (X_i, X_j) ← REMOVE-FIRST(queue)
  if RM-INCONSISTENT-VALUES(X_i, X_j) then
    for each X_k in NEIGHBORS[X_i] do
      add (X_k, X_i) to queue

function RM-INCONSISTENT-VALUES(X_i, X_j) returns true iff remove a value
removed ← false
for each x in DOMAIN[X_i] do
  if no value y in DOMAIN[X_j] allows (x, y) to satisfy constraint(X_i, X_j)
    then delete x from DOMAIN[X_i]; removed ← true
return removed
```

- Time complexity: $O(n^2d^3)$
Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with \(h(n) = \) total number of violated constraints
Example: 4-Queens

- **States:** 4 queens in 4 columns \((4^4 = 256 \text{ states}) \)
- **Actions:** move queen in column
- **Goal test:** no attacks
- **Evaluation:** \(h(n) = \) number of attacks

Given random initial state, can solve \(n \)-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))
Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice