Logical Agents

Chapter 7
Outline

- Knowledge-based agents
- Wumpus world
- Logic in general - models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
Knowledge bases

- Knowledge base = set of **sentences** in a **formal** language
- **Declarative** approach to building an agent (or other system):
 - Tell it what it needs to know
 - Then it can Ask itself what to do - answers should follow from the KB
- Agents can be viewed at the **knowledge level**
 - i.e., what they know, regardless of how implemented
- Or at the **implementation level**
 - i.e., data structures in KB and algorithms that manipulate them
A simple knowledge-based agent

• The agent must be able to:
 – Represent states, actions, etc.
 – Incorporate new percepts
 – Update internal representations of the world
 – Deduce hidden properties of the world
 – Deduce appropriate actions
Wumpus World PEAS description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square

- **Sensors:** Stench, Breeze, Glitter, Bump, Scream
- **Actuators:** Left turn, Right turn, Forward, Grab, Release, Shoot
Wumpus world characterization

- **Fully Observable** No – only local perception
- **Deterministic** Yes – outcomes exactly specified
- **Episodic** No – sequential at the level of actions
- **Static** Yes – Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent?** Yes – Wumpus is essentially a natural feature
Logic in general

- **Logics** are formal languages for representing information such that conclusions can be drawn.
- **Syntax** defines the sentences in the language.
- **Semantics** define the "meaning" of sentences; i.e., define truth of a sentence in a world.

- E.g., the language of arithmetic:
 - $x+2 \geq y$ is a sentence; $x^2+y > \{\}$ is not a sentence.
 - $x+2 \geq y$ is true iff the number $x+2$ is not less than the number y.
 - $x+2 \geq y$ is true in a world where $x = 7$, $y = 1$.
 - $x+2 \geq y$ is false in a world where $x = 0$, $y = 6$.
Entailment

- **Entailment** means that one thing follows from another:
 \[KB \models \alpha \]

- Knowledge base *KB* entails sentence *α* if and only if *α* is true in all worlds where *KB* is true
 - E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won”
 - E.g., \(x+y = 4 \) entails \(4 = x+y \)
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics
Models

• Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

• We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \).

• \(M(\alpha) \) is the set of all models of \(\alpha \).

• Then \(\text{KB} \models \alpha \iff M(\text{KB}) \subseteq M(\alpha) \).

 – E.g. \(\text{KB} = \text{Giants won and Reds won} \) \(\alpha = \text{Giants won} \).
Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices \Rightarrow 8 possible models
Wumpus models
Wumpus models

• $KB = \text{wumpus-world rules} + \text{observations}$
Wumpus models

- \(KB = \) wumpus-world rules + observations
- \(\alpha_1 = "[1,2] is safe" \), \(KB \models \alpha_1 \), proved by model checking
Wumpus models

• $KB = \text{wumpus-world rules + observations}$
• $KB = \text{wumpus-world rules + observations}$
• $\alpha_2 = "[2,2] \text{ is safe", } KB \not\models \alpha_2$
Inference

• $KB \models_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure (inference algorithm) } i$

• **Soundness:** i is sound if whenever $KB \models_i \alpha$, it is also true that $KB \models \alpha$ (aka Truth Preserving)

• **Completeness:** i is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$

• Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which (in some cases) there exists a sound and complete inference procedure.

• That is, the procedure will answer any question whose answer follows from what is known by the KB.
A proposition is a declarative sentence that is either TRUE or FALSE (not both).

Examples:

• The Earth is flat
• $3 + 2 = 5$
• I am older than my mother
• Tallahassee is the capital of Florida
• $5 + 3 = 9$
• Athens is the capital of Georgia
Propositional Logic

A *proposition* is a declarative sentence that is either TRUE or FALSE (not both).

Which of these are propositions?

- What time is it?
- Christmas is celebrated on December 25th
- Tomorrow is my birthday
- There are 12 inches in a foot
- Ford manufactures the world’s best automobiles
- \(x + y = 2 \)
- Grass is green
Propositional Logic

Compound propositions: built up from simpler propositions using logical operators

- Frequently corresponds with compound English sentences.

Example:

Given

- p: Jack is older than Jill
- q: Jill is female

We can build up

- r: Jack is older than Jill and Jill is female \((p \land q)\)
- s: Jack is older than Jill or Jill is female \((p \lor q)\)
- t: Jack is older than Jill and it is not the case that Jill is female \((p \land \neg q)\)
Propositional logic: Syntax

Let symbols S_1, S_2 represent propositions, also called sentences

If S is a proposition, $\neg S$ is a proposition (negation)

If S_1 and S_2 are propositions, $S_1 \land S_2$ is a proposition (conjunction)

If S_1 and S_2 are propositions, $S_1 \lor S_2$ is a proposition (disjunction)

If S_1 and S_2 are propositions, $S_1 \Rightarrow S_2$ is a proposition (implication) (might sometimes see \rightarrow)

If S_1 and S_2 are propositions, $S_1 \Leftrightarrow S_2$ is a proposition (biconditional) (might sometimes see \leftrightarrow)
Propositional Logic - negation

Let p be a proposition. The \textit{negation} of p is written $\neg p$ and has meaning:

"It is \textbf{not} the case that p."

Truth table for negation:

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Propositional Logic - conjunction

Conjunction operator “∧” (AND):
- corresponds to English “and.”
- is a binary operator in that it operates on two propositions when creating compound propositions.

Def. Let p and q be two arbitrary propositions, the conjunction of p and q, denoted $p \land q$,

is true if both p and q are true, and false otherwise.
Propositional Logic - conjunction

Conjunction operator

\(p \land q \) is true when \(p \) and \(q \) are both true.

Truth table for conjunction:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Propositional Logic - disjunction

Disjunction operator \(\lor \) (or):
- loosely corresponds to English “or.”
- binary operator

Def. Let \(p \) and \(q \) be two arbitrary propositions, the disjunction of \(p \) and \(q \), denoted

\[
p \lor q
\]

is false when both \(p \) and \(q \) are false, and true otherwise.

\(\lor \) is also called *inclusive or*
- *Observe that* \(p \lor q \) is true when \(p \) is true, or \(q \) is true, or both \(p \) and \(q \) are true.
Propositional Logic - disjunction

Disjunction operator

\(p \lor q \) is true when \(p \) or \(q \) (or both) is true.

Truth table for conjunction:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Propositional Logic - XOR

Exclusive Or operator (\oplus):
- corresponds to English “either...or...” (exclusive form of or)
- binary operator

Def.: Let p and q be two arbitrary propositions, the exclusive or of p and q, denoted $p \oplus q$, is true when either p or q (but not both) is true.
Propositional Logic - XOR

Exclusive Or:

$$p \oplus q$$ is true when $$p$$ or $$q$$ (not both) is true.

Truth table for exclusive or:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$$p \oplus q$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Propositional Logic - Implication

Implication operator (\(\rightarrow \)):
- binary operator
- similar to the English usage of “if...then...”, “implies”, and many other English phrases

Def. Let \(p \) and \(q \) be two arbitrary propositions, the implication \(p \rightarrow q \) is false when \(p \) is true and \(q \) is false, and true otherwise.

\[
\begin{align*}
p \rightarrow q & \text{ is true when } p \text{ is true and } q \text{ is true, or } p \\
& \text{ is false.}
\end{align*}
\]

\[
\begin{align*}
p \rightarrow q & \text{ is false when } p \text{ is true and } q \text{ is false.}
\end{align*}
\]

Example:

\(r \) : “The dog is barking.”
\(s \) : “The dog is awake.”
\(r \rightarrow s \) : “If the dog is barking then the dog is awake.”
Propositional Logic - Implication

Truth table for implication:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Propositional Logic - Implication

Truth table for implication:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p → q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- If the temperature is below 10° F, then water freezes.
Propositional Logic - Implication

Some terminology, for an implication \(p \rightarrow q \):

- Its *converse* is: \(q \rightarrow p \).
- Its *inverse* is: \(\neg p \rightarrow \neg q \).
- Its *contrapositive* is: \(\neg q \rightarrow \neg p \).

One of these has the *same meaning* (same truth table) as \(p \rightarrow q \). Which one?
Propositional Logic - Biconditional

Biconditional operator (\leftrightarrow):

- Binary operator
- Partly similar to the English usage of “If and only if

Def. Let p and q be two arbitrary propositions. The *biconditional* $p \leftrightarrow q$ is *true* when q and p have the same truth values and *false* otherwise.

Example:

p: “The dog plays fetch.”
q: “The dog is outside.”

$p \leftrightarrow q$: “The plays fetch if and only if it is outside.”
Propositional Logic - Biconditional

Truth table for biconditional:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Nested Propositions

Use parentheses to group sub-expressions in a compound proposition:

“I’m sick, and I’m going to the doctor or I’m staying home.” = \(p \land (q \lor s) \)

- \((p \land q) \lor s \) would mean something different
Propositional Logic: Precedence

By convention...

<table>
<thead>
<tr>
<th>Logical Operator</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg)</td>
<td>1</td>
</tr>
<tr>
<td>(\land)</td>
<td>2</td>
</tr>
<tr>
<td>(\lor)</td>
<td>3</td>
</tr>
<tr>
<td>(\rightarrow)</td>
<td>4</td>
</tr>
<tr>
<td>(\leftrightarrow)</td>
<td>5</td>
</tr>
</tbody>
</table>

Examples:

\(-\ p \land q \rightarrow r\) is equivalent to \(((\neg p) \land q) \rightarrow r\)

\(p \leftrightarrow q \rightarrow r \land s\) is equivalent to \(p \leftrightarrow (q \rightarrow (r \land s))\)
Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. \(P_{1,2} \) \(P_{2,2} \) \(P_{3,1} \)

false true false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model \(m \):

\[\neg S \] is true iff \(S \) is false

\(S_1 \land S_2 \) is true iff \(S_1 \) is true and \(S_2 \) is true

\(S_1 \lor S_2 \) is true iff \(S_1 \) is true or \(S_2 \) is true (or both)

\(S_1 \Rightarrow S_2 \) is true iff \(S_1 \) is false or \(S_2 \) is true

i.e., is false iff \(S_1 \) is true and \(S_2 \) is false (only case)

\(S_1 \Leftrightarrow S_2 \) is true iff \(S_1 \Rightarrow S_2 \) is true and \(S_2 \Rightarrow S_1 \) is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \text{true} \land (\text{true} \lor \text{false}) = \text{true} \land \text{true} = \text{true} \]
Truth tables for connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Not the preferred form of a Truth Table (right, this one is upside down)
Propositional Logic

Proving the equivalence using truth tables

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$q \rightarrow p$</th>
<th>$\neg q \rightarrow \neg p$</th>
<th>$\neg p \rightarrow \neg q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i, j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

$\neg P_{1,1}$
$\neg B_{1,1}$
$B_{2,1}$

- "Pits cause breezes in adjacent squares"
 $B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 $B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
Truth tables for inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>KB</th>
<th>α_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Awk!
Inference by enumeration

- Depth-first enumeration of all models is sound and complete

```python
function TT-ENTAILS?(KB, α) returns true or false
    symbols ← a list of the proposition symbols in KB and α
    return TT-CHECK-ALL(KB, α, symbols, [])
```

```python
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
    if EMPTY?(symbols) then
        if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
        else return true
    else do
        P ← FIRST(symbols); rest ← REST(symbols)
        return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
        TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
```

- For n symbols, time complexity is $O(2^n)$, space complexity is $O(n)$
Two sentences are logically equivalent if they are true in the same set of models. Also, $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

$$(\alpha \land \beta) \equiv (\beta \land \alpha)$$\hspace{1cm}\text{commutativity of } \land

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha)$$\hspace{1cm}\text{commutativity of } \lor

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$$\hspace{1cm}\text{associativity of } \land

$$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$$\hspace{1cm}\text{associativity of } \lor

$$\neg(\neg \alpha) \equiv \alpha$$\hspace{1cm}\text{double-negation elimination}

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$\hspace{1cm}\text{contraposition}

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$\hspace{1cm}\text{implication elimination}

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$\hspace{1cm}\text{biconditional elimination}

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$\hspace{1cm}\text{de Morgan}

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$\hspace{1cm}\text{de Morgan}

$$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$$\hspace{1cm}\text{distributivity of } \land \text{ over } \lor

$$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$$\hspace{1cm}\text{distributivity of } \lor \text{ over } \land
Propositional Equivalences

- **A tautology** is a proposition that is always true.
 - Ex.: \(p \lor \neg p \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \lor \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- **A contradiction** is a proposition that is always false.
 - Ex.: \(p \land \neg p \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \land \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

- **A contingency** is a proposition that is neither a tautology nor a contradiction.
 - Ex.: \(p \rightarrow \neg p \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \rightarrow \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Propositional Logic: Logical Equivalence

If p and q are propositions, then p is logically equivalent to q if their truth tables are the same.

- “p is equivalent to q.” is denoted by $p \equiv q$

p, q are logically equivalent if their biconditional $p \leftrightarrow q$ is a tautology.
Propositional Logic: Logical Equivalence

How do we prove that two compound propositions are logically equivalent?

1. Construct the truth table of both compound propositions
2. Check if their truth-values are the same whenever the truth value of their propositions agree.
Propositional Logic: Logical Equivalence

\[p \equiv \neg \neg p \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(\neg p)</td>
<td>(\neg \neg p)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

The equivalence holds since these two columns are the same.
Propositional Logic: Logical Equivalence

\[p \rightarrow q \equiv \neg p \lor q \]
Propositional Logic: Logical Equivalence

Is $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$?
Propositional Logic: Logical Equivalences

• **Identity**

 \[p \land T \equiv p \]
 \[p \lor F \equiv p \]

• **Domination**

 \[p \lor T \equiv T \]
 \[p \land F \equiv F \]

• **Idempotence**

 \[p \lor p \equiv p \]
 \[p \land p \equiv p \]

• **Double negation**

 \[\neg\neg p \equiv p \]
Propositional Logic: Logical Equivalences

- **Commutativity:**
 \[p \lor q \equiv q \lor p \]
 \[p \land q \equiv q \land p \]

- **Associativity:**
 \[(p \lor q) \lor r \equiv p \lor (q \lor r) \]
 \[(p \land q) \land r \equiv p \land (q \land r) \]
Propositional Logic: Logical Equivalences

• **Distributive:**

\[p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \]
\[p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \]

• **De Morgan’s:**

\[\neg(p \land q) \equiv \neg p \lor \neg q \quad (De \ Morgan’s \ I) \]
\[\neg(p \lor q) \equiv \neg p \land \neg q \quad (De \ Morgan’s \ II) \]
DeMorgan’s Identities

DeMorgan’s can be extended for simplification of negations of complex expressions

Conjunctonal negation:

\[\neg(p_1 \land p_2 \land \ldots \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n) \]

Disjunctonal negation:

\[\neg(p_1 \lor p_2 \lor \ldots \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n) \]
Propositional Logic: Logical Equivalences

• **Excluded Middle:**
 \[p \lor \neg p \equiv T \]

• **Uniqueness:**
 \[p \land \neg p \equiv F \]

• A useful LE involving \(\rightarrow \):
 \[p \rightarrow q \equiv \neg p \lor q \]
Propositional Logic

Use known logical equivalences to prove that two propositions are logically equivalent

Example:

\[\neg(\neg p \land \neg q) \equiv p \lor q \]

We will use the LE,

\[\neg\neg p \equiv p \]

\[\neg(p \land q) \equiv \neg p \lor \neg q \]

Double negation
(De Morgan’s II)
Propositional Logic

Applying logical equivalences to prove tautologies:

Is \((p \land (p \rightarrow q)) \rightarrow q\) a tautology?
Validity and satisfiability

A sentence is **valid** if it is true in **all** models, (remind you of something)
e.g., $True$, $A \lor \neg A$, $A \implies A$, $(A \land (A \implies B)) \implies B$

Validity is connected to inference via the **Deduction Theorem**:
$KB \models \alpha$ if and only if $(KB \implies \alpha)$ is valid, i.e., $(KB \implies \alpha) \equiv True$

A sentence is **satisfiable** if it is true in **some** model
e.g., $A \lor B$, C

A sentence is **unsatisfiable** if it is true in **no** models
e.g., $A \land \neg A$

Satisfiability is connected to inference via the following:
$KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable (i.e., proof by contradiction)
Monotonicity

If $KB \models \alpha$ then $KB \land \beta \models \alpha$

If we add an additional known fact or derivable conclusion to the knowledge base, then the knowledge base still entails any and all of its previous results. That is, there’s no way to override a previous conclusion, or allow for exceptions.

This is a nice property of typical logical systems but it’s not really how humans do things. So, we need something better like defeasible reasoning.
Proof methods

• Proof methods divide into (roughly) two kinds:

 – **Application of inference rules**
 • Legitimate (sound) generation of new sentences from old
 • **Proof** = a sequence of inference rule applications
 Can use inference rules as operators in a standard search algorithm
 • Typically require transformation of sentences into a normal form

 – **Model checking**
 • truth table enumeration (always exponential in \(n \))
 • improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
 • heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms
Resolution

Conjunctive Normal Form (CNF)

conjunction of clauses (disjunctions of literals)

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- Resolution inference rule (for CNF):

\[
l_1 \lor \ldots \lor l_k, \quad m_1 \lor \ldots \lor m_n
\]

\[
\underbrace{l_1 \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_k \lor m_1 \lor \ldots \lor m_{j-1} \lor m_{j+1} \lor \ldots \lor m_n}_{\text{where } l_i \text{ and } m_j \text{ are complementary literals.}}
\]

E.g., \(P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2}\)

\[
P_{1,3}
\]

- Resolution is sound and complete for propositional logic
Resolution

Soundness of resolution inference rule:

\[\neg (\ell_1 \lor \ldots \lor \ell_{i-1} \lor \ell_{i+1} \lor \ldots \lor \ell_k) \Rightarrow \ell_i \]

\[\neg m_j \Rightarrow (m_1 \lor \ldots \lor m_{j-1} \lor m_{j+1} \lor \ldots \lor m_n) \]

\[\neg (\ell_1 \lor \ldots \lor \ell_{i-1} \lor \ell_{i+1} \lor \ldots \lor \ell_k) \Rightarrow (m_1 \lor \ldots \lor m_{j-1} \lor m_{j+1} \lor \ldots \lor m_n) \]
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).
2. \((B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \)
3. Eliminate \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).
 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \)
4. Move \(\neg \) inwards using de Morgan's rules and double-negation:
 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \)
5. Apply distributive law (\(\land \) over \(\lor \)) and flatten:
 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \)
Resolution algorithm

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```plaintext
function PL-RESOLUTION(KB, \alpha) returns true or false

    clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
    new ← { }
    loop do
        for each $C_i, C_j$ in clauses do
            resolvents ← PL-RESOLVE($C_i, C_j$)
            if resolvents contains the empty clause then return true
            new ← new \cup resolvents
        if new \subseteq clauses then return false
    clauses ← clauses \cup new
```
Resolution example

\[KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \land \alpha = \neg P_{1,2} \]
Forward and backward chaining

• **Horn Form** (restricted)
 \[\text{KB} = \text{conjunction of Horn clauses} \] (just like prolog)

 – Horn clause =
 • proposition symbol; or
 • (conjunction of symbols) \(\Rightarrow \) symbol
 – E.g., \(C \land (B \Rightarrow A) \land (C \land D \Rightarrow B) \)

• **Modus Ponens** (for Horn Form): complete for Horn KBs

\[
\begin{align*}
\alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \ldots \land \alpha_n & \Rightarrow \beta \\
\hline
\beta
\end{align*}
\]

• Can be used with **forward chaining** or **backward chaining**.
• These algorithms are very natural and run in **linear** time.
Forward chaining

• Idea: fire any rule whose premises are satisfied in the KB,
 – add its conclusion to the KB, until query is found

\[P \Rightarrow Q \]
\[L \land M \Rightarrow P \]
\[B \land L \Rightarrow M \]
\[A \land P \Rightarrow L \]
\[A \land B \Rightarrow L \]
\[A \]
\[B \]
Forward chaining algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
    local variables: count, a table, indexed by clause, initially the number of premises
                   inferred, a table, indexed by symbol, each entry initially false
                   agenda, a list of symbols, initially the symbols known to be true
    
    while agenda is not empty do
        p ← POP(agenda)
        unless inferred[p] do
            inferred[p] ← true
            for each Horn clause c in whose premise p appears do
                decrement count[c]
                if count[c] = 0 then do
                    if HEAD[c] = q then return true
                    PUSH(HEAD[c], agenda)
            end
        end
    end
    return false
```

• Forward chaining is sound and complete for Horn KB
Forward chaining example
Forward chaining example
Forward chaining example
Forward chaining example

Diagram showing a network with nodes labeled L, A, B, M, P, and Q, connected by directed edges with labels 0 and 1.
Forward chaining example
Forward chaining example
Forward chaining example
Forward chaining example
Proof of completeness

- FC derives every atomic sentence that is entailed by KB
 1. FC reaches a fixed point where no new atomic sentences are derived
 2. Consider the final state as a model m, assigning true/false to symbols
 3. Every clause in the original KB is true in m
 \[a_1 \land \ldots \land a_k \Rightarrow b \]
 4. Hence m is a model of KB
 5. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

Idea: work backwards from the query q:
- to prove q by BC, check if q is known already, or
- prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward chaining example
Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be **much less** than linear in size of KB
Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms
- DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
 - WalkSAT algorithm
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination
 A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
 Pure symbol: always appears with the same "sign" in all clauses.
 e.g., In the three clauses \((A \lor \neg B)\), \((\neg B \lor \neg C)\), \((C \lor A)\), A and B are pure, C is impure.
 Make a pure symbol literal true.

3. Unit clause heuristic
 Unit clause: only one literal in the clause
 The only literal in a unit clause must be true.
The DPLL algorithm

function DPLL-SATISFIABLE?(s) **returns** true or false

inputs: s, a sentence in propositional logic

\[
\begin{align*}
\text{clauses} & \leftarrow \text{the set of clauses in the CNF representation of } s \\
\text{symbols} & \leftarrow \text{a list of the proposition symbols in } s \\
\text{return} & \text{ DPLL(clauses, symbols, [\])}
\end{align*}
\]

function DPLL(clauses, symbols, model) **returns** true or false

if every clause in clauses is true in model **then** **return** true

if some clause in clauses is false in model **then** **return** false

\[
P, \text{value} \leftarrow \text{FIND-PURE-SYMBOL(symbols, clauses, model)}
\]

if P is non-null **then** **return** DPLL(clauses, symbols–P, [P = \text{value}|model])

\[
P, \text{value} \leftarrow \text{FIND-UNIT-CLAUSE(clauses, model)}
\]

if P is non-null **then** **return** DPLL(clauses, symbols–P, [P = \text{value}|model])

\[
P \leftarrow \text{FIRST(symbols)}; \text{rest} \leftarrow \text{REST(symbols)}
\]

return DPLL(clauses, rest, [P = true|model]) **or**

\[
\text{DPLL(clauses, rest, [P = false|model])}
\]
The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness
The **WalkSAT** algorithm

```python
function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
  inputs: clauses, a set of clauses in propositional logic
           p, the probability of choosing to do a “random walk” move
           max-flips, number of flips allowed before giving up

  model ← a random assignment of true/false to the symbols in clauses
  for i = 1 to max-flips do
    if model satisfies clauses then return model
    clause ← a randomly selected clause from clauses that is false in model
    with probability p flip the value in model of a randomly selected symbol
               from clause
    else flip whichever symbol in clause maximizes the number of satisfied clauses
  return failure
```
Hard satisfiability problems

• Consider random 3-CNF sentences. e.g.,
 \[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

 \[m = \text{number of clauses}\]
 \[n = \text{number of symbols}\]

 – Hard problems seem to cluster near \(m/n = 4.3\) (critical point)
Hard satisfiability problems
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

\[
\neg P_{1,1} \\
\neg W_{1,1} \\
B_{x,y} \iff (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y}) \\
S_{x,y} \iff (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y}) \\
W_{1,1} \lor W_{1,2} \lor \ldots \lor W_{4,4} \\
\neg W_{1,1} \lor \neg W_{1,2} \\
\neg W_{1,1} \lor \neg W_{1,3} \\
\ldots
\]

\Rightarrow 64 \text{ distinct proposition symbols, 155 sentences}
function PL-WUMPUS-AGENT(percept) returns an action

inputs: percept, a list, [stench, breeze, glitter]

static: KB, initially containing the “physics” of the wumpus world
 x, y, orientation, the agent’s position (init. [1,1]) and orient. (init. right)
 visited, an array indicating which squares have been visited, initially false
 action, the agent’s most recent action, initially null
 plan, an action sequence, initially empty

update x, y, orientation, visited based on action
if stench then TELL(KB, Sx,y) else TELL(KB, ¬ Sx,y)
if breeze then TELL(KB, Bx,y) else TELL(KB, ¬ Bx,y)
if glitter then action ← grab
else if plan is nonempty then action ← POP(plan)
else if for some fringe square [i,j], ASK(KB, (¬ Pi,j ∧ ¬ Wi,j)) is true or
 for some fringe square [i,j], ASK(KB, (Pi,j ∨ Wi,j)) is false then do
 plan ← A*-GRAPH-SEARCH(Route-PB([x,y], orientation, [i,j], visited))
 action ← POP(plan)
else action ← a randomly chosen move

return action
Expressiveness limitation of propositional logic

• KB contains "physics" sentences for every single square

• For every time t and every location $[x,y]$,\
 \[L_{x,y}^t \land FacingRight^t \land Forward^t \Rightarrow L_{x+1,y}^t \]

• Rapid proliferation of clauses
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions
• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences
• Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
• Resolution is complete for propositional logic
 Forward, backward chaining are linear-time, complete for Horn clauses
• Propositional logic lacks expressive power