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ABSTRACT

Diagnosis is the process of determining the correct problem from a collection of problems
given a set of symptoms that indicate a problem exists. Common experiences with this process
include visits to the physician in order to determine our illness (disease) and visits to our local
mechanic to determine the cause (fault) of a poorly operating car. In either case, we report the
symptoms of the problem to the diagnostician (physician or mechanic) who determines the most
likely cause that best explains these symptoms (an example of abductive reasoning). In terms of
the complexity of finding the correct problem, the diagnostician must find a diagnosis from a set
of possible diagnoses. That is, if a total of 10 problems are being considered where only one of
these is the correct one then at most 10 diagnoses will need to be evaluated.

However, in the more typical case where several problems (diseases/faults) may occur
simultaneously, the complexity of finding a proper diagnosis increases exponentially with the
number of problems. For example, using the 10 problems considered above, the situation
changes to where any. of the 1024 possible combinations* of problems may turn out to be the
correct diagnosis. In this paper, we discuss an automated method for diagnosing multiple simul-
taneous problems. In particular, we focus on the Genetic Algorithm heuristic (testing only a
small percentage of the total combinations, yet finding a satisfactory diagnosis).

INTRODUCTION

In medicine as well as electronics and other domains, multiple problem diagnosis, hen-
ceforth called multiple fault diagnosis, is the identification of a set of problems (disorders,
diseases or faulty components) that best corresponds to or explains some observed abnormal
behavior that is indicated by a set of symptoms (manifestations) [Peng87a, Reit87). This type of
problem solving is commonly referred to as abductive inference, and automating this approach
has been the focus of extensive research efforts [Davi84, deKI87, Gene84, Jose&7, Peng87a,
Peng87b, Regg83, Reit87]. Common among these research efforts is the nature of their systems.
Namely, these approaches to diagnosis follow the “reasoning from first principles" paradigm
where a description of some physical system’s structure and behavior is maintained and com-
pared to abnormal behavior. This is in sharp contrast to the "experiential” paradigm which is
driven by the problem solving rules of thumb or heuristics acquired from a human expert

* Actually, there are only 1023 combinations considered as possible diagnoses since the combina-
tion indicating a normally functioning system need not be evaluated.
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diagnostician [Reit87]. The MYCIN expert system is based on the experiential approach.

A closer look at multiple fault diagnosis reveals three major stumbling blocks between a
diagnostic problem and a "reasonable" automated solution:

1} the large number of possible diagnoses,
2) measuring the relative “goodness" of a particular diagnosis,
3) the search strategy used to find highly reliable diagnoses.

In this discussion, the "most reasonable" solution corresponds to the diagnosis or diagnoses that
best explain the observed symptoms. This best explanation is determined and wholly dependent
on the calculation of the goodness of a diagnosis. We call a diagnosis reliable or optimal if
according to the goodness measure, no better diagnosis exists.

Consider for example the small hypothetical situation where we have 20 components in a
telephone communications system, each component may exhibit faulty behavior via a wmgnoon say,
10 alarms or symptoms, and that we have some mechanism for ranking each of the 27 (that’s
1,048,576) possible diagnoses. An intuitively appealing representation for a diagnosis is a 20-bit
binary string where each of the 20 components is associated with one of the bit positions; com-
ponent | with position 1, component 2 with position 2,’and so on. In a diagnosis, a 0 in a partic-
ular bit position means that the corresponding component is not considered to be at fault while a
1 means that this component helps explain some or all of the symptoms. ‘

One possible approach for finding the best diagnosis is to simply generate each of the 2
diagnoses, calculate the goodness of each, and report the best one. However, for systems with
more than about 25 components (that’s over 33.5 million possible diagnoses), this approach
becomes infeasible, especially if the system is in an aircraft or spacestation where quick diag-
nosis followed by correction would be crucial. In practice, it is not unusual for a medium-sized
system to have upwards of 50 to 75 components, similar to medical domains that have large
numbers of diseases or causes to consider [Regg83]. [Specialized heuristic search strategies
have been proposed as alternatives to the exhaustive search strategy [deKI187, Jose87, Peng87b,
Pott90, Reit87] when combined with a mechanism for distinguishing the goodness of a diag-
nosis.|

Exhaustive search may be speeded up by using a limited exhaustive search. In this
approach, only the disorders (diseases/components) associated with the manifestations (symp-
toms) observed are considered. In the worst case where all disorders are indicated, this approach
reverts to the regular exhaustive search. However, for those times when only a subset of the
disorders are indicated, this method can be relatively fast and, of course, reliable.

In terms of reliability, another approach is the branch and bound method. It too 1S an
approach that is guaranteed to find the optimal solution. Essentially, what we do in this
approach is determine the possible next moves toward a solution and eliminate those moves that
are more costly than the cheapest accumulated thus far in the search. For example, in a
minimum route finding problem such as the traveling salesman problem where the best solution
is the one with the shortest distance to travel, we keep track of a solution and terminate explor-
ing an alternate solution whenever its distance exceeds the current tracked solution. Shorter
solutions replace the current solution and we continue the search until there are no possible solu-
tions that may displace our current best solution.

A good heuristic method used to attack the problem of multiple fault diagnosis is based on
the genetic algorithm [Gold89, Holl75]. This strategy incorporates the determination of a

20
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goodness measure or "likelihood" that a particular diagnosis explains the observable symptoms.
The genetic algorithm follows the notion of natural selection in nature. That is, a small popula-
tion of solutions is randomly generated. The individual solutions that are the most promising
(most likely to explain the observed symptoms) are used to determine or create another popula-
tion (the next generation). This evolutionary process continues until no improvement in the
likelihood of some best solution is observed.

Each of these methods has advantages and disadvantages for diagnosing problems with sys-
terms where more than one problem may occur at the same time. Before continuing further, we
briefly describe the Probabilistic Causal Model from Parsimonious Covering Theory developed
by Peng and Reggia [Peng87a, Peng87b, Regg83]. The reason for this digression is because we
use a "goodness” measure for a diagnosis, regardless of the diagnostic strategy, that is based on
their "relative likelihood" measure. Our goodness measure is called the modified relative likeli-
hood [Pott90].

THE PROBABILISTIC CAUSAL MODEL

One of the leading theories of diagnosis is based on the notion of parsimoniously covering
a set of observable symptoms [Regg83], that is, finding a minimal set covering* (i.e., a set of
diseases in their medical domain) that explains a given set of symptoms. The fact that a cover is
necessary in order to explain the symptoms is intuitively clear but minimality is another matter
and, in some typical cases, is inappropriate. In order to overcome this major shortcoming, Peng
and Reggia introduced the probabilistic causal model (PCM) [Peng87a, Peng87b]. The PCM
integrates "symbolic cause-effect inference with numeric probabilistic inference" to solve multi-

ple fault diagnosis problems.
In their approach, a multiple fault diagnosis problem is characterized as a 4-tuple:

<D,M.C,M">

where
D s afinite nonempty set of disorders (i.e., diseases or faulty components).

M  is afinite nonempty set of manifestations (i.e., symptoms).

C  is a relation, called the tendency matrix, which is a subset of D x M. This relation pairs
diseases with associated symptoms such that (d, m) € C means that disease d may cause
symptom nt .

M is a subset of M which identifies the observed manifestations. Note that manifestations not
identified in M are assumed to be absent.

A diagnosis DI Am subset of D) identifies :ﬁ disorders that are possibly responsible for %n

symptoms in M. Diagnosis DI covers M" if each of the individual BmEmmmEso:m in M*

associated with at least one of the disorders in DI as determined using C. As with M7, a.mo_.an_,m

not identified in DI are assumed to be absent.
Associated with each disorder & in D is a prior ﬁqo_um_u;:w p; where 0 <p. < 1. Values
are assumed to exist and disorders i _: D are assumed to be independent. Associated with each

"causal association” in C is a causal strength c;; such that 0<c;; =1 and represents how

* See [Edmo62]) and [Gare79] for a description of the set covering problem and the membership
of minimal set covering in the class of NP-complete problems, respectively.
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frequently a disorder d; causes manifestation m;. One of their major contributions centers on
the fact that ¢;; is not nnEEm_m:H to the no:n::o:m_ probability P (m; | ;) used in earlier Baye-
sian approaches. The causal strength does represent the oosan:m_ probability
wQ causes m, _ & ), which has the advantage of being unaffected by coincident disorders, that
is, we may expect :ﬁ frequency with which d; causes m m:ﬁ: d; to remain stable. An addi-
tional assumption stipulates that no Bm:_momS:o: may exist in M* c:_nvm it is actually caused by
some disorder in D .

Now, we have | D| prior probabilities and | D| x|M| causal strengths. Using these <p_cmw
Peng and Reggia derive a formula for calculating the ' RE:E likelihood," denoted L (DI, M™),
of a diagnosis DI given observable manifestations M". The likelihood is the product of three

terms:
LDI, MYy = L, L, L,

where

Ly=T1 |1- ITU-¢p

meM*t d;eDi

is the likelihood that disorders in DI cause the manifestations in M. For diagnoses that do not
cover M, L, evaluates to O thus forcing L to 0. Unfortunately, this denies any analysis of non-
cover diagnoses. This limitation is avoided in our modified relative likelihood calculation.

L= TI T (l-cy,
d;eDl myeeffects (d;)-M~
is the likelihood that disorders in DI do not cause manifestations outside of M* (e.g., in
M-M J. In their words, L, is "a weight based on manifestations expected with DI but which
are actually absent." Ideally, a good diagnosis has an L, value that is close to 1. Unfortunately,
this term denies any analysis of super-cover diagnoses. Again, our modified relative likelihood
calculation avoids this limitation.
Pj
Li= 11 1 ’
depr (1 7P;)
is the likelihood that a highly probable (very common) disorder d; contributes significantly in
the overall likelihood of a diagnosis DI containing d;.

To summarize, L, forces L to focus in on only diagnoses that cover or explain all manifes-
tations in M™, L, encourages L to focus on "irredundant” and "relevant" covers, and L forces L
to focus on more likely or common disorders rather than on rare or less likely disorders (a rea-
sonable but sometimes risky strategy in medical diagnosis). Irredundant covers do not contain
any excess disorders which could be removed and still be left with a cover. Relevant covers
(which contain the set of irredundant covers) ensure that disorders associated with manifesta-
tions in M~ are the most seriously considered.

The Genetic Algorithm approach is dominated by the goodness of a diagnosis, also called
the objective function. For this reason, we use the modified relative likelihood [Pott90], a variant
of the relative likelihood (RL) of Peng and Reggia because the RL: 1) has a solid theoretical
foundation, 2) has an efficient implementation within the search algorithms, 3) uses a relatively
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small amount of data to operate (number of disorders times the sum of one plus the number of
manifestations), 4) uses data that may originate as subjective expert certainty factors but then
evolve into statistically justifiable probabilities, and 5) is easily modified without affecting its
fundamental nature or incurring any computational expense.

Our modified relative likelihood (MRL) allows the search to converge on a global max-
imum using diagnoses that are not covers (e.g., do not completely explain the manifestations) as
well as diagnoses that are super-covers {e.g., contain redundant disorders). The reason for this
modification is to allow progress whenever the search space terrain resembles Monument Valley
with a generally large flat surface except for occasional very thin high peaks or needle-like struc-
tures. A search strategy may become "lost" in the flat area and never "see" a nearby peak
without some broad convergence mechanism. This corresponds to a restricted diagnostic prob-
lem where very few covers for the manifestation set exist. With an unmodified RL, all non-
cover diagnoses would have a zero likelihood and would provide almost no search improvement
information. This situation is avoided by ensuring that term L | 15 never zero (recall
L (DI, Mm* )=L,L 2 £4). That is, term L, is forced to zero in the RL whenever the causal associ-
ations between moBm disorder in the diagnosis and symptoms in the manifestation set are equal
to zero, but these associations are set to a value very close to zero in the MRL computation.
Therefore, the differentiating factors become the disorder prior probability and the expected but
absent manifestations associated with a diagnosis. Also, L, significantly increases as more of
the manifestations are explained.

The other modification that aids convergence is associated with term L,. In certain cases
using the RL, L, is forced to zero in the event of a redundant or irrelevant cover diagnosis. This
occurs primarily when some disorder in a diagnosis has a unit causal association with a manifes-
tation that is not present in the observed manifestation set. The modified relative likelihood sub-
stitutes a value very close to one for these situations. This allows diagnoses to be evaluated and
compared in order for the search strategies to converge to a global maximum because terms L,
and L, cause MRL values to be less than optimal (but not zero) when evaluating non-covers and
super-covers, respectively.

As an example, consider the situation where we have a tendency matrix with 15 disorders
and 10 manifestations, see Figure 1. Given the observed manifestations

M=
={m,my,myms,mg,mg,mg,m )

We find that the terms and modified (or adapted) relative likelihood, L, adapred of the optimal
diagnosis are:

L, =1.99315527715718¢ —01
L,=12.11844640547108¢ 01
= 1.82012538561086¢ +00

Logoprea (DI, M) = 7.68528401831913¢ -02
where

DI =001100001001100.
This indicates that {d4, d,, dg,d 5, d |3} gives us the best explanation for the observed
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manifestations.
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d, dy dy dy ds dg dy dy dy 4 d) diy dp dy dis
Pi 0.2 014 03% 064 001 02! 026 019 059 029 006 047 056 041 006
ny 058 000 000 000 000 025 000 0% 000 000 085 000 074 000 038
ny 000 0.00 000 000 000 015 081 000 032 000 036 077 030 061 000
mj 000 000 044 _ 000 000 000 000 011 000 097 064 000 063 085 000
ny 043 067 079 000 026 072 007 000 000 000 084 000 000 042 064
ms 046 010 000 058 000 000 046 000 057 040 000 051 000 097 000
me 091 000 000 000 000 100 028 000 000 000 000 0.00 000 000 0.2
ny 09 094 007 028 000 000 000 000 097 000 000 009! 048 023 072
ny 000 000 014 017 024 000 030 000 026 000 000 005 000 0.00 0.00
my 000 000 0.3 012 017 0.04 000 000 097 000 000 000 043 008 0.00
myp 000 063 007 075 .12 000 000 045 000 088 02 000 045 086 0.19

Figure 1. Prior Probability & Tendency Matrix: 10x15 One-Half Dense.

THE GENETIC ALGORITHM

Genetic Algorithms [Holl75, Gold89] are heuristic search routines that are guided by a
model of Darwin’s theory of natural selection or the survival of the fittest. Here the fittest means
the most highly ranked solution in a large solution space. The basic idea behind the genetic
search strategy is to generate solutions that converge on the global maximum (i.e., the best solu-
tion in the search space) regardless of the "terrain" of the search space. A typical terrain might
resemble the Great Smoky Mountains with many peaks and valleys, an area that is relatively flat,
and a highest peak (Clingman’s Dome). One characteristic of genetic algorithms is that they are
relatively unaffected by hill-climbing or being misled by some local maximum such as ascend-
ing Mt. LeConte and assuming that you are on the highest peak in the Smokies since other
nearby peaks appear lower, depending on visibility. Likewise, with genetic algorithms the key
to finding the global maximum lies in the ability to evaluate and compare possible optimal solu-
tions.
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The basic operations involved in a genetic algorithm (GA} are: 1) mate selection, 2) cross-
over, and 3) mutation. Typically, the major data structure is a binary string representing the pos-
sible solutions. In GA terms, a bit string corresponds to an individual, and a set of individuals is
called a population. The fitness or strength of an individual is computed using some objective or
fitness function, and is used to compare an individual with other individuals in the same popula-
tion. During mate selection, parent strings are stochastically selected according to their fitness
from the current population and "mated” to produce offspring for the next generation. Fitter
parents contribute more offspring to the next generation than weaker parents because they have a
higher probability of being selected for mating. This is the step that models the process of
natural selection in nature.

Crossover, the second operation, determines the characteristics of a "child" or next genera-
tion individual. In nature, children inherit good as well as bad features of their parents in vary-
ing degrees of dominance. Crossover performs this same function in a GA. One of the simplest
crossover approaches is to split each parent string at the same randomly chosen location and
swap their tail sections. This ensures a certain amount of inheritance and ideally, the
good/strong features will dominate the children. The inheritance of features that produce
stronger children throughout the generations is the source of the GA’s ability to converge on the
global maximum in a relatively short time.

The last basic operation is called mutation. Mutation is that extremely rare "glitch” in the
inheritance mechanism that introduces or modifies some feature with unpredictable conse-
quences. Mutation occurs in a GA immediately after the creation of a next generation individual
yet before the next generation has become static. Once the new generation becomes static, we
move forward in order for it to become the new current generation. Ideally, mutants would con-
tain some useful features that may have been inadvertently lost in earlier generations.

The simple genetic algorithm described in [Gold89] follows these three basic steps. Addi-
tional operations and modifications are described as well. One major modification to the simple
crossover approach, called two-point crossover, has been shown to be an easily implemented and
effective alternate to simple crossover. With two-point crossover, an individual bit string is
viewed as a ring and sections of parents are interchanged. This is like cutting equal sized sec-
tions from two donuts and swapping the sections to form a new (more appetizing) pair of snacks.
Another effective crossover approach is the "greedy" approach described in [LiepS0].

Regarding the internal operating parameters of the GA, Goldberg recommends a population
size between 50 and 200. The majority of our experiments have been performed with population
sizes of 50, 100, and 150. Other features and characteristics of the GAs include a crossover pro-
bability of 0.6, and a standard mutation probability of 0.0333. The crossover probability
identifies the likelihood that parents will have offspring. The standard mutation probability
identifies the likelihood of a bit in an individual string being changed. In addition, several
jmprovements to the simple GA have been incorporated either to improve the efficiency of the
GA or to improve the reliability of the GA results. Finding improvements that equal or surpass
our results are left to the reader, good luck.
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Potter, et al. Heuristic Diagnogis

L(DI,M*) = L{L,Ls

where

L= 1 - (I =cip) |,
i B@E !

Emm§+

1s the likelihood that disorders in DI cause the manifestations in M+,
For diagnoses that do not cover M+, L evaluates to 0 thus forcing L

to 0. Unfortunately, this denies any analysis of non-cover diagnoses.

Ly= I (1-c¢p),
&%Wmua mieef fects (d;)—-M+ !

is the likelihood that disorders in D/ do not cause manifestations out-
side of M* (e.g.,, iIn M —M™). L, is "a weight based on manifesta-
tions expected with D/ but which are actually absent." Ideally, we
prefer L, values that are close to 1.

@.
L= b
? .&WT:JEV

is the likelihood that a highly probable (very common) disorder &,
contributes significantly in the overall likelihood of a diagnosis D/

containing d; .



Multiple Fault Diagnosis -- Experiment SetUp

Phase 1 (individual diagnosis):

Prepare your GA using simple parameter settings. Run individual diagnosis tests by entering
M+, a bit string representing the symptoms our patient has, and outputting the diagnosis (bit
string) and fitness value of the solution proposed by the GA. Repeat Phase 1 several times in
order to convince yourself that your GA is working properly. Discuss your results in class at the

soonest possible class meeting.

Phase 2 (reliability phase): _
Here we will run a set of trials where each trial has different parameter settings. Of course, we
need to run each trial at least 10 times and use the average result (be sure to track best, worst, and
average). You may use additional parameter settings but be sure to include the following:
Population sizes: {80, 120, 160}
Crossover probabilities: {0.4, 0.6, 0.8}
Mutation probabilities: {0.001, 0.006, 0.011}
Elitism: {with, without}
Roulette wheel selection
This amounts to 54 standard trials (one for each parameter setting combination), yet 540
complete trials (recall, we repeat each standard trial 10 times).

You will need to decide your own convergence criteria and stopping criteria. For example, you
might decide to recognize convergence when the average population fitness fails to change by
some amount over five generations. Another example would be to recognize convergence when
there is no improvement in the best individual after five generations. A possible stopping criteria
might be to simply terminate the GA after 30 generations. Just make sure that whatever you use,

it’s reasonable.

Each trial constitutes a reliability run. In a reliability run, we run the GA on each of the 1023
M+, symptom set combinations. Base line statistics we want to track include (you may include

additional statistics):
Optimal Reliability: number of times the GA found the optimal solution divided by 1023.

Runner Up Reliability: times the GA found the runner up solution / 1023.
2" Runner Up Reliability: times the GA found the 2™ runner up solution / 1023,

Examples of additional statistics you may want to track include:
Generation when the best individual was found.
Average population fitness when convergence occurred.

Results should be organized and presented in a “laboratory report” that resembles a draft
research publication. You will want to include an abstract, introduction, background, experiment
setup, justification, visual and narrative results, conclusions, implications, and possible future

work.

Submit your first draft as soon as possible. It’s typical for initial drafts to be returned for
revisions in order to become acceptable.



