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Abstract -- Prediction and optimization of polymer properties is a 
complex and highly non-linear problem with no easy method to 
predict polymer properties directly and accurately.  The problem 
is especially complicated with high molecular weight polymers 
such as engineering plastics which have the greatest use in 
industry.  The effect of modifying a monomer (polymer repeat 
unit) on polymerization and the resulting polymer properties is 
not easy to investigate experimentally given the large number of 
possible changes.  This severely curtails the design of new 
polymers with specific end-use properties.  In this paper we show 
how properties of modified monomers can be predicted using 
Neural Networks.  We utilize a database of polymer properties 
and employ a variety of networks ranging from backpropagation 
networks to unsupervised self-associating maps.  We select 
particular networks that accurately predict specific polymer 
properties.  These networks are classified into groups that range 
from those that provide quick training to those that provide 
excellent generalization.  We also show how the available 
polymer database can be used to accurately predict and optimize 
polymer properties. 
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1. INTRODUCTION 
   Artificial neural networks (ANNs) are model-
free estimators that perform robust multi-
dimensional, non-linear vector mappings [1].  
The most commonly used ANN is the standard 
backpropagation network in which every layer is 
linked or connected to the immediately previous 

layer.  It has been shown that this type of network 
with at most two hidden layers can solve any 
non-linear problem provided there are sufficient 
numbers of hidden nodes [2].  Most polymer 
modeling requires the handling of highly non-
linear problems in which the components are not 
linearly separable.  The relationships between the 
parameters being modeled and the actual 
behavior of these variables in the real world must 
be correlated as precisely as possible.  However, 
in most cases this is not possible and several 
approximations and simplifications are often 
made at various stages.  When dealing with 
sparse, noisy or incomplete data, conventional 
methods (decision theoretic/statistical and 
syntactic [3]) frequently fail.  In addition, 
conventional methods lack generalization, fail to 
incorporate statistical and systematic fluctuations, 
and in most cases are limited to finite state 
spaces.  Thus the important correlations between 
the model developed and the real properties may 
be lost or not captured correctly. 

   High molecular weight polymer systems 
represent complex classes of materials and are 
very difficult to model.  Besides being highly 
non-linear, there are a large number of 
parameters that need to be accurately defined if 
such systems are to be properly characterized.  
Conventional methods can only just begin to 
model: (1) simple polymer systems such as linear 
high polymers, copolymers, and their blends, and 
(2) low molecular weight polymers and 
copolymers.  These methods cannot handle high 
molecular weight binary and ternary blends, 
polymer dispersed liquid crystals, ionomers or 
interpenetrating networks.  We have earlier 
shown that these can be handled using a classic 
example of polymer blend design [4].  In this 
earlier paper, we give an overall approach to 
polymer blend design in which the use of Neural 



Networks was but one stage in a process that also 
made use of Genetic Algorithms and Markov 
chains to accurately predict blend miscibility.  
Here we present the first step: the prediction and 
optimization of modified polymer properties 
using Neural Networks in much greater depth and 
detail. 
 

2. DATA SET AND NEURAL NETWORKS 
   We restrict our studies to modified polymers in 
which we consider replacing pendant side groups 
on the side or main chain of the polymer.  This is 
both experimentally more feasible and exploits 
the information available on existing polymers.  
One or more of the resulting polymers can be 
used as parent polymers in studying miscibility 
and other properties in polymer blend systems. 

   Of the numerous polymers available probably 
the most important are the engineering polymers 
[5]. We concentrate on their properties 
(mechanical, thermal, magnetic, optical, 
electrical, environmental and deteriorative) and 
the relationships with their structures 
(microscopic, mesoscopic and macroscopic).  
The prediction of polymer properties from just 
the structure of the monomer is somewhat 
unreliable.  But trained neural networks that are 
given optimized input data do an excellent job of 
characterizing a new modified polymer.  This 
new polymer can then be easily synthesized.  We 
can predict a wide range of properties using this 
technique, and it is possible to investigate the 
criteria for successful polymerization and 
stability such as the heat of polymerization [6]. 

 
2.1 Polymer Database 

   The polymer database we used was selected 
carefully so as to include all types of polymers 
available.  Within each category, several different 
types of polymers were included to provide a 
comprehensive set of data.  This is given in Table 
I.  The number of different individual polymers 

in each category is given by the number in 
parentheses.  Thus, the total data set consisted of 
440 individual polymers.  For each polymer, 
information stored included its molecular weight 
(polydispersity), mechanical and thermal 
properties, chemical structure, and data reliability 
number. 

TABLE I GOES HERE 

 

Table II gives the description and format of the 
fields.  Fields 15 to 18, and 21 are reported 
average values from the best four sources. 

TABLE II GOES HERE 

 

This is because these values depend on the 
technique used to find them and the 
polydispersity of the samples.  The last two fields 
are codes (integers from 1 to 10) that reflect the 
quality of the data and the extent to which the 
different blend systems for the given polymer 
have been characterized, respectively.  Numbers 
greater than five indicate data that are fairly 
reliable.  Numbers less than five indicate data 
that may be unreliable (due to being out of date, 
or because the experimental or theoretical 
techniques had a high source of error).  All 
polymers had data status codes greater than five. 
The data status codes (DSC) were calculated 
using  

⎥
⎦

⎥
⎢
⎣

⎢
×= ∑

>< 4,1
101

4
1

iCV
DSC    (1) 

where  

100
4
1

4,1
×= ∑

>< i

i
i y

s
CV .     (2) 

is  is the standard deviation, and iy  is the mean 
value for each of the fields 15 to 18, and 21 for 
each polymer.  iCV  is the average value of the 



coefficient of variance for each of the five fields 
15 to 18 and 21.  Note, for each polymer, iCV  
was never greater than 0.10.  The blend status 
code (BSC) of each polymer indicates the 
number of characterized blends having the 
polymer as one component and a DSC value of at 
least 5 for the given blend.  Every polymer has a 
BSC of at least one.  If a given polymer has more 
than 10 characterized blends with it as a 
component and with the DSC value of each of 
these at least 5, the BSC value is set to 10.  Such 
a polymer clearly has its blends well 
characterized.  The use of these codes ensures 
that the dataset is reliable and all the polymers in 
the dataset meet a minimum criterion.

   Fields 1 to 14 represent general characteristics.  
αT  (field 21) is the primary glass-transition 

temperature at which the onset of long-range 
segmental mobility occurs [7] while βT  and γT  
with δT  are lower order relaxation temperatures 
associated with motions in the back-bone and 
side-chain, respectively [8].  The aspect ratio [9, 
10] is a 2-D measure of the asymmetry in a 
monomer (polymer repeat unit) and is the ratio of 
the length of the long axis to the short axis of the 
monomer.  Monomers are three-dimensional 
objects and hence in addition to their topological 
and combinatorial content their 3-D character is 
of profound importance.  The 3-D Weiner 
number is based on the 3-D (geometric, 
topographic) distance matrix, whose elements 
represent the shortest Cartesian distance between 
two ji −  pairs.  The matrix is real and 
symmetric.  The number is extracted from the 
matrix as indicated in reference [11].  For 
engineering plastics, the four transition 
temperatures together with the melting 
temperature, the aspect and Weiner numbers, and 
the elastic modulus with the given polydispersity 
(weight and number average molecular weight) 
serve to provide a comprehensive description of 
the material from the thermal, structural and 
mechanical stand point.  The question of 
reducing the inputs during the training and final 

selection of the networks was not considered as 
all the inputs were important and could not be 
discarded if theoretical accuracy in the modeling 
was desired. 

 

2.1.1 Polymer Properties Selected 

   Impact resistance is very likely the most 
desired property of an engineering plastic [12].  
One indicator of good impact resistance is the 

γα TT /  ratio [13] and the dynamic elastic 
modulus [14].  The higher this ratio is, the better 
the impact resistance is.  However, high impact 
resistance with almost no elastic properties 
results in a brittle polymer that has no 
commercial use.  Therefore, in the complete 
description of the overall mechanical properties 
of a polymer these properties must be included.  
They serve to accurately describe the polymer’s 
mechanical behavior over the entire useful 
temperature range.  While reinforcing a polymer 
and creating cross-linked or composite materials 
yields extremely good materials, the optical 
properties may be sacrificed.  Such materials 
cannot be easily molded and lack any elastic 
properties, greatly reducing their use and 
marketability [15].  In this work we concentrate 
on two engineering plastics and their various 
modifications.  The first, bisphenol-A 
polycarbonate (PC) [16], is commercially 
available as Lexan/Makrolon/Calibre and is 
widely used in bullet-proof glass.  It has a γα TT /  
ratio of 2.5 and a dynamic elastic modulus at 
20 Co  of 91002.5 ×  dynes/cm2.  The second, 
poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) 
[17], is widely used in the electrical industry as 
insulation in wiring and armatures, and in 
capacitors and dielectrics.  Its γα TT / ratio is 1.7 

and its dynamic elastic modulus at 20 Co  is 
91021.6 ×  dynes/cm2. 

   From these two polymers 24 different modified 
PCs and 19 different modified PPOs were 
selected to present to the final trained networks.  



The modifications were made so as to ensure that 
a range of possibilities was considered.  This 
included replacing the backbone and/or side 
chain carbon atoms (C) by silicon atoms (Si).  As 
in the case of poly(silicone), it is well known that 
a silicon substitution not only dramatically 
improves the dynamic mechanical response of the 
polymer, but is also a favorable species for 
polymerization. 

   Other important substitutions are also 
considered.  The effects of amide-type group (-
CO-R-NH) substitutions in the main chain and 
side chain are important.  Poly(amides) like 
Nylon 6 and Nylon 66 contribute to a major class 
of commercial materials.  They have useful 
electrical, optical and mechanical properties. 

   Another important class of polymers are 
poly(urethanes) (-NH-CO-NH-) based on the 
amide-type group.  These polymers have 
extensive commercial applications, high impact 
resistance, and useful high-temperature 
mechanical properties.  They are used as foams, 
and can be readily cross-linked to form densely 
packed, yet flexible, rubbers.  The amide-type 
group is highly polar, a distinct advantage, 
causing favorable intermolecular interactions to 
dominate.  This results in a better van-der-Waals 
type of weak interactive force between the 
polymer chains that directly leads to greater 
dimensional stability.  Further, the amide-type 
groups break the linearity of the polymer chain, 
resulting in better "excluded volume" types of 
interactions. 

   The other types of substitutions were based 
purely on steric factors.  In side chains, the 
effects of replacing methyl (-CH2) groups with 
longer linear molecules like ethyl (-CH2-CH3) or 
even pentyl (-CH2-CH2-CH2-CH2-CH3) will 
result in changes in excluded volume interactions 
without changing the polarity of the polymer.  In 
many cases an increase in impact resistance is 
expected. 

   Besides the amide-type groups mentioned 
above, substitutions involving oxygen and 
halogen atoms are important cases that are also 
considered.  A wide array of polymers like 
poly(esters) and poly(vinyl halides) reflect the 
importance of these atoms in the main and 
pendant side chains.  For each of the 
modifications presented to the trained networks, 
their attractive and repulsive interaction 
parameters were calculated and checked to see 
that they were in the range for the given polymer 
class, thus effectively screening out abstruse 
structures.  Details of this are given in [4].  From 
over 40 different modifications of PC and PPO 
presented to the final trained networks several 
candidates were found with improved properties.  
While the structures of all these polymers are not 
given, those with improved properties are 
presented and discussed in more detail. 

 

2.2 Neural Networks Used 
   The neural networks used here include the 
standard supervised backpropagation network 
with one, two and three hidden layers; the jump-
connected type of network; the recurrent 
networks with feedback; and networks with two 
hidden slabs each with their own activation 
function (see Figure 1).  Specialized supervised 
networks used include the probabilistic type, the 
general regression type, and the polynomial net.  
The only type of unsupervised network used was 
the Kohonen network.  Further, eight different 
activation functions were used: 

f(x) = 1/(1 + e-x) (standard logistic) (f1) 

f(x) = x  (linear)   (f2) 

f(x) = tanh(x)  (hyperbolic tanh) (f3) 

f(x) = tanh(1.5x)    (f4) 

f(x) = sinx  (sine)   (f5) 

f(x) = 2/(1 + e-x) – 1 (symmetric logistic) (f6) 

f(x) = 
2xe−   (Gaussian)  (f7) 



f(x) = 1 - 
2xe−  (Gaussian compliment) (f8) 

Henceforth we shall refer to these functions as f1 
to f8, respectively. 

  

2.2.1 Network Types 
2.2.1.1 Standard Backpropagation Networks 

   The first type of network considered was the 
standard backpropagation network with one, two 
and three hidden layers.  The advantage of more 
hidden layers is that different activation functions 
can be selected.  While the most commonly used 
activation is logistic, in many cases other 
functions or combinations of functions are known 
to perform better. 

The equation for the output in each layer with J 
nodes is 

)( jj ugy = ,        (3) 

where )( jug  is the activation function of ju  
given by (f1)-(f8) above, and 
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I is the number of inputs ix , the ija are weights 
from input i to node j in the layer and ja0  is the 
bias weight of node j. 

   The output of each layer is fed into the next 
layer.  In the backpropagation algorithm the 
weights are adjusted in the backpropagation stage 
so that the error, given by 
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is minimized.  N is the number of examples in the 
data set, K is the number of outputs of the 
network, tkn is the kth target output for the nth 
example and zkn is the kth actual output for the 
nth example.  

   For each layer the error derivative is 
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Subscript j is omitted in (7) as one node is 
involved.  The first and second terms in the 
product in (7) are the change in the network’s 
error with respect to the next layers output node’s 

output )(
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output node’s output with respect to the weighted 

sum of the next layer’s input (
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for the next layer into which the present layer’s 
input goes are generalized from (3) and (4) by a 
change of variables.  Now (7) can be rewritten as 
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where pk is the quantity that is being propagated 
from the nodes in the next layer to the nodes in 

the current layer.  If we set k
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   The second term in the product in (6) depends 
on the form of the activation function (f1-f8).  For 
the case of f1 this is 
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then the weight change for the next epoch m+1 
with respect to the current epoch m is given by 
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and 

mmm dcc ⋅⋅−−⋅= − εµµ )1(1 .    (16) 

µ is the momentum and ε  is the learning rate 
with values in the range 0 to 1.  

   From (3) and (14) we see now that the standard 
backpropagation algorithm involves: (a) a 
forward pass using the forward equation (3) in 
which the outputs for each layer are calculated, 
and (b) a backward error propagation pass using 
the backward equation (14) in which the error is 
minimized and the weights adjusted. 

   The second type of network used was the jump 
connected network [18]. This is a 
backpropagation network in which every layer is 
connected or linked to every previous layer.  As 
shown in Figure 1(a)-(c) there is a choice of one 
to three hidden layers. They are similar to the 

standard backpropagation network except that (4) 
will have an additional term of the type 
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where the index j runs over the links to the 
current node in the given layer from the nodes 
directly (jump connected) from the previous 
layer. xj-J are the I inputs whose links to the 
current layer node have index values running 
from J+1 to J+I.  

   The disadvantage of using more than one 
hidden layer is an increase in training time, but in 
certain cases better models may be obtained. 

   The third type of backpropagation network 
used is a recurrent network [19] (Figure 1(d)-(f)). 
The three types of recurrent networks used are: 
(i) in which the input layer is fed back into the 
input layer itself, (ii) in which the hidden layer is 
fed back into the input layer, and (iii) in which 
the output layer is fed back into the input layer.  
They are most successful when there is a time 
series in the input data.  In the first type, the long-
term memory remembers the new input data and 
uses it when the next pattern is processed.  In the 
second type, the long-term memory remembers 
the hidden layer, which contains features detected 
in the raw data or previous patterns.  In the last 
type, long-term memory remembers outputs 
previously predicted.  If there is no temporal 
structure in the data it may not work. 

   A recurrent network may respond to the same 
input pattern differently at different times, 
depending on the patterns that have been 
presented as inputs at earlier times.  These 
networks are trained the same way as the 
standard backpropagation networks except that 
patterns must always be presented in the same 
order.  During the training it would be interesting 
to see the effect of randomly presenting the 
training data (as in the standard backpropagation 
network) versus grouping the data into the sets 
according to polymer classes and groups and 



presenting the ordered data sequentially to the 
network (as in recurrent networks). 

   The feedback link contains a feedback factor 
that needs to be adjusted carefully.  In case of 
recurrent networks the input-output relationship 
is 

)()1()( 21 nxnyny µµ +−= ,     (18) 

where y(n) is the output of the given layer at 
epoch n and x(n) is the input.  The feedback for 
epoch n-1 is y(n-1).  This can be from the input 
layer (Elman network in Figure 1(d)), the hidden 
layer (Jordan-Elman network in Figure 1(e)), or 
the output layer (Jordan network in Figure 1(f)).  
From (18) we see 
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The first term in (19) is like (20) but the second 
term in (20) depends on 1µ recursively.  Thus, 

1µ is the factor “feedback 1” that goes into long 
term memory and 2µ  is the factor “feedback 2”.  
The factor “feedback 1” indicates what 
proportion of the neuron values goes into long 
term memory, and “feedback 2” indicates what 
proportion of the neuron values in the current 
pattern from either the input, hidden or output 
layer (depending on the network type) are fed 
into the long term memory.  Both of these values 
must add up to one.  If more emphasis is to be 
placed on historical patterns, then a higher 
proportion of neuron values are put on feedback 
1.  If more emphasis is to be placed on recent 
patterns then feedback 2 is set greater than 0.5.  
The same static error criteria as in the case of 
standard backpropagation can be used as fixed 
point learning is carried out. 

   The last backpropagation network used was one 
with multiple hidden layers (Figure 1(g)-(i)).  
The hidden layers act like feature detectors.  
Different activation functions applied to the 
hidden layer detect different features as a pattern 
processes through a network.  A Gaussian 
function (f7) in one hidden slab detects features in 
the mid-range of the data while the Gaussian 
compliment (f8) in another hidden slab detects 
features in the upper and lower extremes of the 
data.  Combining the results leads to better 
prediction.  When each slab has different 
activation functions it offers three ways of 
viewing data.  The output layer receives two 
different views of the data's features as detected 
in the hidden slabs plus the original inputs.  Data 
that have their multi-dimensional distribution 
surfaces uniform or flat with small local 
fluctuations are ideally suited for these networks.  
The equations are similar to the standard 
backpropagation case with jump connections and 
can be easily generalized.  For each layer there is 
an equal division of the outputs/inputs if there are 
two slabs in a given layer.  

2.2.1.2 Probabilistic Networks 

   In addition to the above backpropagation 
networks, four other networks not based on the 
backpropagation algorithm were used.  The first 
of these was the probabilistic network [20] 
(PNN).  PNN's are known for their ability to train 
quickly on sparse data sets.  A PNN separates 
data into a specified number of output categories.  
They are three layer networks wherein the 
training patterns are presented to the input layer 
and the output layer has one neuron for each 
possible category.  The network produces 
activations in the output layer corresponding to 
the probability density function estimator for that 
category.  The highest output represents the 
probable category.  Two main calibration 
techniques are used here: iterative and genetic 
adaptive. 



2.2.1.3 General Regression Neural Network 

   Another network we use that is able to train 
quickly on sparse data sets is the General 
Regression Neural Network [21] (GRNN).  As 
with a PNN, the calibration criteria for a GRNN 
is the same: iterative and genetic adaptive.  

2.2.1.4 Group Method of Data Handling Neural 
Network 

   This is the Polynomial network, also known as 
the Group Method of Data Handling (GMDH) 
Network [22].  A by-product of GMDH is that it 
recognizes (and can present to the user) the most 
significant variables as it trains. 

2.2.1.5 Kohonen Network 

   The last network used is the unsupervised 
Kohonen network [23].  The pattern presentation 
is based on rotation where each pattern is applied 
to the network one at a time. 

2.2.2 Training Method 

   The most important criterion for successful 
network training and optimization is accurate 
generalization.  Care must be taken to prevent the 
memorization of input data.  An evaluation set is 
created either from the training data or a separate 
set of data with known outputs.  This is then used 
to check the accuracy of the trained network.  
The process of selecting the final network, and 
the training and optimization involved, covers a 
number of steps.  For various values of 
momentum, learning rate, initial weight 
distribution, number of nodes in the various 
layers and the number of layers itself, a 
significant amount of trial and error is involved 
to test every type of network for the best 
combination of parameters.  The training set must 
be varied and contain the entire spectrum for the 
given problem to be represented.  To stop 
training, the correlation coefficient and R2 
coefficient are monitored.  Training stops when 
they are within predefined values.  The 
correlation coefficient “r” is a statistical measure 
of the strength of the relationship between the 
actual versus predicted results.  It ranges from -1 

to +1.  The closer r is to 1, the stronger the 
positive linear relationship, and the closer r is to -
1, the stronger the negative linear relationship.  
When r is near 0 there is no linear relationship. 
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patterns, x refers to the set of actual outputs, and 
y refers to the predicted outputs. 

   The second coefficient, R2, is a statistical 
indicator usually applied to multiple regression 
analysis.  It compares the accuracy of the model 
to the accuracy of a trivial benchmark model 
wherein the prediction is just the mean of all of 
the samples.  A perfect fit would result in an R2 
value of 1, a very good fit near 1, and a very poor 
fit less than 0.  If the neural model predictions are 
worse than predictions obtained by just using the 
mean of the sample case outputs, the R2 value 

will be less than 0.  
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2)~( yye ∑ −=σ  and 2)( yym ∑ −=σ .  y~  is the 
predicted value of the actual value y, and y  is the 
mean of the y values. 

   Other parameters monitored are the percentage 
of the network answers that are within 5%, 10%, 
20%, 30%, and over 30% of the actual answers 
used to train the networks.  The mean squared 
error, mean absolute error, minimum absolute 
error, and maximum absolute error are also 
tracked.  For each type of neural network there is 
much experimentation needed to find the best 
network.  Then, from among the different 
network types that can be used we have to select 
the one that is best for the given problem.  

   The inputs for training the backpropagation 
networks and the GRNN network were taken 



from the polymer database shown in Table II as 
fields numbered 6 to 9, 11 to 18, 20, 26, and 27.  
The number of neurons in the input layer was the 
number of inputs in every case.  The outputs for 
training of these types of nets were fields 
numbered 25 and 28, and were the number of 
neurons in the output layer.  In all, the original 
pattern file had 440 patterns.  80% were extracted 
at random to form the training set (352 patterns), 
and 20% were used in the test set (88 patterns).  
It was found that the multi-layer backpropagation 
networks gave the best results as compared to the 
other types of networks considered (PNN, 
GRNN, GMDH and Kohonen).  In the case of the 
PNN and Kohonen networks, the inputs were the 
same as above, however there was no need for 
outputs.  After training and testing, the inputs for 
the 24 modified PCs and 19 modified PPOs were 
presented to the final trained PNN network.  The 
network classified each of these into one of the 
440 polymers.  Thus PNN and Kohonen networks 
provided only a rough estimate of the mechanical 
properties of the modified polymers.  However, 
this was a tremendous help in verifying the 
viability of a particular modified polymer before 
being presented to the other networks.  The 
modified PCs and PPOs were finally selected 
only if these nets successfully classified them in 
their polymer groups.  The number of inputs and 
the number of neurons in the input layer of the 
GMDH network were the same as in the case of 
PNN and GRNN nets.  However, the number of 
outputs was always one.  The first output was the 
field numbered 25 followed by 28.  Thus, two 
final GMDH networks were created to which the 
modified polymers were presented. 

 

3. RESULTS AND DISCUSSIONS 
   As shown in Figure 1 and discussed above, 
there are several possible networks.  In the end, 
one network with a given set of parameters must 
be selected to make the predictions.  This 
involves a considerable amount of training with 
all the different networks for all possible values 

of the parameters.  Another method would be to 
take the predictions from the various best nets 
found for each type of network and average the 
values.  However, in this case, there is a 
drawback in that the averaging process can 
actually lead to the deterioration of the final 
predicted values.  As discussed in [4], polymer 
blend miscibility is very sensitive to the 
interaction parameters.  These must be predicted 
extremely accurately for predicting miscibility.  
We have seen that the ratio γα TT /  is extremely 
sensitive and important to predicting good 
mechanical properties.  Thus we do not average 
our predictions of this value over other network 
predictions.  We select one network from a single 
network architecture that we use for our final 
predictions.  For the sake of comparison we also 
present results from the other network 
architectures.  The main advantage of this 
comparison enables us to select networks that 
train quickly and provide acceptable results as 
compared to the best network we found.  Further, 
some network architectures like the Kohonen and 
PNN networks serve a useful purpose in deciding 
which modified polymers to investigate further. 

 

3.1 Final Networks 
   The best network found for this problem was 
the multi-layer backpropagation network. The 
bottom-up technique for selecting the number of 
hidden nodes was used in favor of the top-down 
method.  The number of calibration events was 
50 and training was saved based on the best test 
set.  The training ended when the number of 
events since the minimum average error exceeded 
500,000.  As indicated by equations (14) to (16), 
weight updates were dictated by the learning rate, 
momentum, and a portion of the previous weight 
changes.  Pattern selection was random during 
training. 

   Figure 2 shows the effects of varying the 
number of hidden nodes for a single hidden layer 
backpropagation network.  From this we see that 



the mean squared error and the correlation 
coefficient were best for 17 hidden nodes.  A 
higher number of hidden nodes did not appear to 
improve these values further.  Thus the number 
of hidden nodes was fixed at 17.  In this region, 
the ‘Percent above 30%’ (of the actual values) 
also shows a minimum while the correlation 
coefficient exhibited a maximum.  In Figure 3 the 
results of varying the initial weights are given, 
while in Figure 4 the effects of varying 
momentum are shown.  Figure 5 shows the effect 
of varying the learning rate.  The activation 
functions f1, f3, f4 and f6 were tried.  f1 gave the 
best results. 

   The addition of a second hidden layer did not 
improve the results.  For the ‘Percent within 5%’ 
and the ‘Percent over 30%’ values, the case when 
the number of nodes was equal to 17 (N17) gave 
better results than the case when the number of 
nodes was equal to 100 (N100).  The N100 case 
gave marginally better R2, r2, and correlation 
coefficient values.  The N17 case also had the 
lowest mean squared error and mean absolute 
error.  Given such narrow differences made 
making choices difficult, but finally considering 
the fact that additional nodes may cause 
redundancy in many weights, and that the N17 
case did have the lowest mean square error, mean 
absolute error and better ‘Percent within 5%’ and 
‘Percent over 30%’ values as compared to the 
N100 case, it was selected.  It also had the second 
highest value for the correlation coefficient.  
Note that the graphs in Figure 2 tended to flatten 
out after 15 nodes, suggesting some statistical 
fluctuations when using more than 15 nodes.  
This may indicate that the (near) optimum 
number of nodes for accurately defining the 
given problem was reached.  Genetic algorithms 
or other combinatorial optimization methods 
could also be effectively used, but in terms of 
simplicity this was the better approach.  Figure 3 
shows the results obtained when varying the 
initial weights from 0.3.  The number of hidden 
nodes was fixed at 17.  All other parameters 
including the learning rate and momentum were 

the same as in the case above.  As compared to 
the case of 0.3 for 17 nodes in Figure 2, all the 
values for correlation coefficient, r2, and mean 
squared error are not as good.  Figure 4 gives the 
results of varying the momentum with learning 
rate fixed. All other parameters were the same as 
in the first case with the number of hidden nodes 
fixed at 17.  Momentum of 0.4 gave only a 
marginally poorer value of correlation 
coefficient, r2, and mean squared error as 
compared to a momentum of 0.5.  Lower or 
higher values of momentum gave poor results.  
Figure 5 gives the results of varying learning rate 
keeping momentum fixed at 0.5.  The number of 
hidden nodes was 17, and all other parameters 
were the same as in the first case.  Increasing the 
learning rate caused further deterioration in the 
values of correlation coefficient, r2, and mean 
squared error, from gradual to more rapid as the 
learning rate increased. 

   Finally, adding a second hidden layer to the 
network did not show any improvements as can 
be seen from Table III.  All parameters are the 
same as in the first case.  The number of hidden 
nodes in the first hidden layer is 17.  While 
increasing the number of hidden nodes in the 
second layer did improve the results, they were in 
all cases not as good as the final selected model.  
Figure 3(a) and Figure 3(d) show the reason an 
initial weight of 0.3 was chosen in the final 
model.  This value gave the smallest mean 
squared error (Figure 3(c)), and highest ‘Percent 
< 5%’ values (Figure 3(b)).  For momentum of 
0.5, Figure 4(a) shows a maxima, and the mean 
squared error was minimal (Figure 4(c)).  For this 
value, as seen in Figure 4(d), the graph flattened 
out. From Figure 4(b), ‘Percent < 5%’ gave a 
maximum with a corresponding minimum for 
‘Percent > 30%’.  This value appeared to be a 
(near) optimal number and was selected in the 
final model. 

   Figure 5 shows that a choice of learning rate of 
0.05 leads to the deterioration of the results with 
an increase in learning rate.  The details of the 



final selected model are given in Table IV.  The 
min/max values of each of the input variables 
were set by scanning the input before being 
applied to the network.  File extraction was 
random.  Figure 6 gives a scatter plot of the 
actual versus predicted output when the trained 
network is applied to the production file with 88 
patterns randomly selected from the 440 patterns 
in the database where the exact values are known 
and can be compared with the predicted values 
from the final model.  Note that this set differed 
from the 88 pattern testing set. 

TABLE III GOES HERE 

   In Figure 6, points on the straight line indicate 
that the actual and predicted output were 
identical.  If most of the points lie on this line, 
there is a danger of memorization and lack of 
generalization by the network.  Similarly, wide 
deviations from the straight line indicate a poorly 
trained network that may not give accurate 
predictions.  

   Table V to Table VIII give the details of the 
best nets for the other network architectures.  
While the final predictions using these were not 
as good as the case when the final selected model 
was used (Table IV), several important points 
were noted.  In the case of the jump connection 
nets (Table V), the training time increased as the 
number of hidden layers increased.  The number 
of nodes in each hidden layer also increased.  
This indicates that jump connections added a 
degree of complexity that was not particularly 
useful. 

   In the case of the recurrent networks (Table 
VI), the final network shown in Table VI(c) was 
the network that trained the fastest compared to 
the rest of the networks used.  The predictions 
using this network however were no better than 
those for the final selected model (Table IV).  
Table VII gives the details of the final nets with 
two hidden layers with the possibility of using 
different activation functions in the two hidden 
layers.  A typical choice of activation function 

would be one of the Gaussian functions, f7 or f8.  
However the final model did not find any hidden 
features or improve the final predictions. 

   In Table VIII, the best GRNN and GMDH 
networks found are listed.  Both of these 
networks failed to give better results than the 
final best model.  Training times were as high as 
in the case of jump connected networks.  Note 
that all training times given for the various 
networks are rounded to the nearest 1000 epochs. 

 

TABLE IV GOES HERE 

TABLE V GOES HERE 

TABLE VI GOES HERE 

TABLE VII GOES HERE 

TABLE VIII GOES HERE 

 

An epoch is one complete training cycle for a 
given set of inputs until the next set of weight 
adjustments (backpropagation networks), or 
coefficient adjustments (GRNN and GMDH 
networks).  To compare the different networks 
and select the final model, the 88 pattern testing 
set was used.  Training time was not a concern 
here as accuracy in prediction was more 
important.  As is shown, the best network was the 
final model which gave slightly better values for 
all the statistical parameters considered as 
compared to the other networks (Figure 7).  
Although one or two statistical parameters of the 
other models were slightly better, the selected 
final model was consistently better, overall.  

 



3.2 Predicted Properties 
   Table IX gives the results when the final 
selected model is used.  Figure 8 gives their 
structures.  We found that for these modifications 
better γα TT /  ratios and dynamic mechanical 
modulus values were predicted as compared to 
the parent polymers.  For the other cases both the 
values were not as good as for the parent.  On the 
basis of these results, we were able to conclude 
that both steric factors, and the intra- and inter- 
molecular polarities of the polymer play a vital 
role in the final outcome of the prediction of the 
mechanical properties of the polymers tested. 

 

TABLE IX GOES HERE 

 

   From steric considerations, we were able to 
conclude that symmetry and slight increases in 
the excluded volume improved the mechanical 
properties.  Modification PC-5 with symmetric 
butyl groups (-CH2-CH2-CH2-CH3) gave an 
improvement, but when these groups were pentyl 
or higher there was a drastic loss in the dynamic 
mechanical modulus.  Similarly removing one 
such group had a detrimental effect on the 
mechanical properties. 

   We also predicted better mechanical properties 
when silicon, Si, substitutions were made, as can 
be seen in the case of modification PC-2, 
modification PC-3, and modification PPO-1.  
Silicon, like carbon, exhibits sp3 hybridization 
(both have similar ionization potentials).  
However, silicon has a bigger atomic radius and 
hence larger bonding and anti-bonding orbitals, 
resulting in larger bond lengths.  This appears to 
increase the excluded volume interactions, which 
directly enhances the weak van-der-Waals type 
attractive forces between the polymers.  As a 
result, we see a better mechanical response.  
There does appear to be a critical limit beyond 
which increases in the excluded volume actually 
begin to have a reverse effect. 

   The addition of oxygen, or halide atoms on 
main or pendant side groups, did not result in 
better mechanical properties.  The strong 
dependence of good mechanical properties due to 
Si substitutions is established from the results of 
modification PC-1, 2, 3, and 5 and modification 
PPO-1.  Also we have found that substitutions 
involving amino-type groups with the constraint 
that they are symmetric on the backbone 
(modification PC-4, and modification PPO-2) 
favor an increase in the mechanical properties as 
compared to the parents.  In fact the polarities 
and the resulting charge distributions of the mer 
appear to be more important than steric factors.  
This again reiterates the fact that polymer 
dynamics are mainly characterized by inter-
molecular interactions like the weak van-der-
Waals type of attractive forces. Steric factors, 
though important, appear to be secondary factors 
in polar polymers like PC and PPO.  This is one 
reason why we now use these modifications [4] 
where blend miscibility is governed by intra- and 
inter-molecular interactions between the polymer 
species through the models on blending. 

 

4. CONCLUSIONS 
   We show how neural networks can be 
successfully used to predict polymer properties.  
We have demonstrated that the complex 
structure-property relationships in polymers can 
be captured effectively by neural networks.  In 
addition, we can use networks to fine tune 
polymers to exhibit desired properties.  While 
Kohonen and PNN networks provide a general 
indication of the feasibility of a given polymer 
modification, specialized networks can be built 
with a high degree of accuracy or via quick 
training to predict polymer properties.  Further 
the large amount of available information on 
polymers can be used.  The study of the detailed 
complex polynomials and the coefficients built 
by GRNN and GMDH networks help to quantify 
the structure-property relationships between the 
different classes of polymers.  These can easily 
be compared to theoretical models built such as 



the Takayanagi model for the mechanical 
properties of polymers [9], and is the subject of 
further investigation.  Finally, as shown in [4], 
we are not restricted to using this method 
exclusively but can complement other techniques 
in very useful ways.  Also, we are not restricted 
to a particular set of parameters, but can study 
other areas of polymer design including 
polymerization kinetics, stability and degradation 
to name just a few. 
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TABLE I: List of the 440 polymers in the polymer database. 
1.Main-chain Acyclic Carbon Polymers 
            Poly(dienes) (4) 
            Poly(alkenes) (7) 
            Poly(acrylic acid) (11) 
            Poly(acrylic acid ester) (9) 
            Poly(acrylamides) (2) 
            Poly(methacrylic acid) (4) 
            Poly(methacrylic acid ester) (4) 
            Poly(methacrylamides) (2) 
            Poly(vinyl ether) (2) 
            Poly(vinyl thioether) (1) 
            Poly(vinyl alcohol) (5) 
            Poly(vinyl ketones) (2) 
            Poly(vinyl halides) (5) 
            Poly(vinyl nitriles) (5) 
            Poly(vinyl esters) (25) 
            Poly(styrenes) (48) 
2.Main-chain Carbocyclic Polymers 
            Poly(phenylenes) (19) 
3.Main-chain Acyclic Hetroatom Polymers 
     3.1)Main-chain -C-O-C Polymer 
            Poly(oxides) (22) 
            Poly(carbonates) (46) 
            Poly((esters) (70) 
            Poly(anhydirdes) (1) 
            Poly(urethanes) (32) 
      3.2)Main-chain O-Heteroatom Polymers 
            Poly((sulphonates) (1) 
            Poly(siloxanes) (15) 
      3.3)Main-chain -C-(S)-C- and -C-S-N- Polymers 
            Poly(sulphides) (8) 
            Poly((thioesters) (1) 
            Poly(sulphones) (2) 
            Poly(sulphonamides) (2) 
      3.4)Main-chain -C-N-C Polymers 
            Poly(amides) (63) 
            Poly(imides) (3) 
            Poly(ureas) (4) 
            Poly(ureas) (4) 
            Poly(phosphazenes) (4) 
            Poly(silanes) (1) 
            Poly(silazanes) (1) 
4.Main-chain Hetrocyclic Polymers 
            Poly(acetals) (3) 
            Poly(carboranes) (2) 
            Poly(piperazines) (2) 
            Poly(oxadiazoles) (2) 

 



TABLE II: Description of the fields in the database for each polymer. 

No Field Name Data Type Description 
1 ID Auto No Primary Key 
2 Polymer_Class Text Class of Polymer 
3 Polymer_Name Text IUPAC Polymer Name 
4 Mer_Chemical_Form

ula 
Text Chemical Formula of Mer 

5 No_C_atoms Number No of C Atom Bonds in Mer 
6 No_C-C_bonds Number No of C-C Single Bonds in Mer 
7 No_C-H_bonds Number No of C-H Single Bonds in Mer 
8 No_C-2-C_bonds Number No of C-C Double Bonds in Mer
9 No_C-3-C_bonds Number No of C-C Triple Bonds in Mer 
10 No_H_atoms Number No of H Atom Bonds in Mer 
11 No_Si_atoms Number No of Si Atom Bonds in Mer 
12 No_Halide_atoms Number No of Halide Atom Bonds in Mer
13 No_P_atoms Number No of P Atom Bonds in Mer 
14 No_N_atoms Number No of N Atom Bonds in Mer 
15 No_O_atoms Number No of O Atom Bonds in Mer 
16 No_S_atoms Number No of S Atom Bonds in Mer 
17 No_TransitionMetal_

atoms 
Number No of  Transition Metal  

Atom Bonds in Mer 
18 No_Cyclic_Rings Number No of Cyclic Rings in Mer 
19 Mol_Wt_Num_Avg Number No average molecular weight 
20 Mol_Wt_Wt_Avg Number Weight average mol weight 
21 T_alpha Number αT  (oK) 
22 T_beta Number 

βT  (oK) 
23 T_gamma Number 

γT  (oK) 
24 T_delta Number δT  (oK) 
25 T_alpha_T_gamma Number 

γα TT /  
26 Mer_Aspect_Ratio Number Aspect Ratio of Mer 
27 Mer_3d_Weiner_Nu

mber 
Number 3-D Weiner Number of Mer 

28 Dynamic_Modulus Number Dynamic Modulus 
(20oC, dynes/cm2) 

29 Tm Number Melting Point (oK) 
30 Data_Status_Code Number Data Status Code 
31 Blend_Status_Code Number Blend Status Code 

 



 
 

 
TABLE III: Effect of adding a second layer to the standard
backpropagation single hidden layer neural network. All activation 
functions are logistic (f1). Input scaling function is logistic (f1). 
Number of hidden nodes in first hidden layer = 17. Learning Rate =
0.05. Momentum = 0.5. Initial Weights = 0.3. 
 
Second Hidden Layer Nodes 5 10 15 
R2 0.854 0.919 0.893 
r2 0.913 0.922 0.919 
Mean Squared Error 0.072 0.068 0.069 
Mean Absolute Error 0.285 0.226 0.225 
Min. Absolute Error 0.008 0.007 0.007 
Max. Absolute Error 0.300 0.285 0.289 
Correlation coefficient 0.924 0.936 0.939 
Percent within 5% 32.56 34.58 34.74 
Percent within 5% to 10% 32.27 33.04 32.95 
Percent within 10% to 20% 17.54 18.59 19.01 
Percent within 20% to 30% 8.32 7.38 6.39 
Percent over 30% 9.31 6.41 6.91 
Training Time (epochs) 3,478,000 3,965,000 4,219,000 



 
TABLE IV: Details of final selected model. 
 

Type of Neural Network Standard 
Backpropagation 

Number of Hidden Layers 1 
Number of input nodes 14 
Number of hidden nodes 17 

Number of output nodes 2 

Activation function Logistic (f1) 
Scaling function Logistic (f1) 

Weight updates Momentum 

Pattern Selection Random 
Initial Weights 0.3 

Learning Rate 0.05 

Momentum 0.5 
Percent over 30% 9.31 

Training Time 1,573,000 epochs 

 



 
TABLE V: Details of best nets for the different neural network 
architectures. (a) Three layers with a jump connection. (b) Four 
layers with jump connections. (c) Five layers with jump 
connections. 
a)   
Type Three layers - jump 

connection 
Hidden Layers 1 
Input nodes 14 
Hidden nodes 86 
Output nodes 2 
Activation function Logistic (f1) 
Scaling function Logistic (f1) 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.1 
Learning Rate 0.025 
Momentum 0.2 
Training Time 4,678,000 epochs 
b)   
Type Four Layers - jump 

connection 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 86 
Second hidden layer nodes 138 
Output nodes 2 
Activation function Logistic (f1) 
Scaling function Logistic (f1) 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.15 
Learning Rate 0.01 
Momentum 0.3 
Training Time 5,346,000 epochs 
c)   
Type Four Layers - jump 

connection 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 86 
Second hidden layer nodes 138 
Third hidden layer nodes 215 
Output nodes 2 
Activation function Logistic (f1) 
Scaling function Logistic (f1) 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.2 
Learning Rate 0.005 
Momentum 0.4 
Training Time 12,387,000epochs 

 



 
TABLE VI: Details of best nets for the different neural network 
architectures. (a) Recurrent Net with input layer dampened 
feedback. (b) Recurrent Net with hidden layer dampened 
feedback. (c) Recurrent Net with output layer dampened 
feedback. 
a)   
Type Recurrent Net (Input layer feedback 

to input layer) 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 40 
Second hidden layer nodes 40 
Output nodes 2 
Activation function Logistic (f1) 
Scaling function Logistic (f1) 
Feedback factor 0.5 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.1 
Learning Rate 0.05 
Momentum 0.2 
Training Time 967,000 epochs 
b)   
Type Recurrent Net (Hidden layer 

feedback to input layer) 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 32 
Second hidden layer nodes 32 
Output nodes 2 
Activation function Logistic (f1) 
Scaling function Logistic (f1) 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.2 
Learning Rate 0.05 
Momentum 0.3 
Training Time 1,873,000 epochs 
c)   
Type Recurrent Net (Output layer feedback 

to input layer) 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 30 
Second hidden layer nodes 30 
Output nodes 2 
Activation function Logistic (f1) 
Scaling function Logistic (f1) 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.3 
Learning Rate 0.05 
Momentum 0.4 
Training Time 902,000 epochs 



 
TABLE VII: Best nets. (a) Two hidden slabs with two activation 
functions. (b)Three hidden slabs with three activation functions. (c) 
Two hidden slabs with two activation functions and a jump connection. 
a)   
Type Two hidden layers 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 35 
Second hidden layer nodes 35 
Output nodes 2 
Activation function (first hidden layer) f7 
Activation function (second hidden layer) f8 
Scaling function Logistic 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.5 
Learning Rate 0.01 
Momentum 0.1 
Training Time 5,207,000 epochs 
b)   
Type Three hidden layers 
Hidden Layers 3 
Input nodes 14 
First hidden layer nodes 55 
Second hidden layer nodes 225 
Third hidden layer nodes 55 
Output nodes 2 
Activation function (first hidden layer) f7 
Activation function (second hidden layer) f1 
Activation function (third hidden layer) f8 
Scaling function Logistic 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.5 
Learning Rate 0.01 
Momentum 0.1 
Training Time 5,993,000 epochs 
c)   
Type Two hidden layers with 

a jump connection 
Hidden Layers 2 
Input nodes 14 
First hidden layer nodes 90 
Second hidden layer nodes 90 
Output nodes 2 
Activation function (first hidden layer) f7 
Activation function (second hidden layer) f8 
Scaling function Logistic 
Weight updates Momentum 
Pattern Selection Random 
Initial Weights 0.5 
Learning Rate 0.05 



Momentum 0.1 
Training Time 6,007,000 epochs 

 



 
TABLE VIII: Details of best nets for the different neural 
network architectures. (a) GRNN. (b) GMDH. 
a)   
Type GRNN 
Hidden Layers 1 
Input nodes 14 
Hidden layer nodes 440 
Output nodes 2 
Calibration Iterative 
Training Time 24,003,000 epochs 
b)   
Type GMDH 
Hidden Layers 1 
Input nodes 14 
Output nodes 1 
Selection Criteria Regularity[22] 
Training Time 35,325,000 epochs 

 



 
TABLE IX: a) Results of applying the final model to 24 
modified bisphenol-A polycarbonates. b) Results of applying 
the final model to 19 modified poly(2,6-dimethyl-1,4-
phenylene oxide) 

  Monomer 
γα TT /  Dynamic Modulus 

(20oC, dynes/cm2) 
a)       
  Modification PC-1 3.13 5.67 x 109 

  Modification PC-2 2.70 5.22 x 109 
  Modification PC-3 2.74 5.38 x 109 
  Modification PC-4 3.37 6.39 x 109 
  Modification PC-5 2.58 5.06 x 109 
b)       
  Modification PPO-1 1.98 6.32 x 109 
  Modification PPO-2 2.29 6.59 x 109 

 



 
FIGURE 1: Neural Network architectures based on the standard backpropagation algorithm: (a) Three layers with a jump connection. (b) 
Four layers with jump connections. (c) Five layers with jump connections. (d) Recurrent Net with input layer dampened feedback. (e) 
Recurrent Net with hidden layer dampened feedback. (f) Recurrent Net with output layer dampened feedback. (g) Two hidden slabs with 
possibility of two activation functions. (h) Three hidden slabs with possibility of three activation functions. (i) Two hidden slabs with 
possibility of two activation functions and a jump connection. 



 
FIGURE 2: Error plots for variation of number of hidden nodes in a single hidden layer backpropagation neural network. 



 
FIGURE 3: Effect of varying the initial weights. 



 
FIGURE 4:  Effect of varying momentum. 



 
FIGURE 5:  Effect of varying learning rate. 



 
FIGURE 6: Actual versus predicted output when final model is applied to the 88 pattern testing set. 



 
FIGURE 7: Comparisons of the different best networks. (Net Type: 1. Final Selected Model, 2. Three layers with a jump connection, 3. 
Four layers with jump connections, 4. Five layers with jump connections, 5. Recurrent Net with input layer dampened feedback, 6. 
Recurrent Net with hidden layer dampened feedback, 7. Recurrent Net with output layer dampened feedback, 8. Two hidden slabs with 
possibility of two activation functions, 9. Three hidden slabs with possibility of three activation functions, 10. Two hidden slabs with 
possibility of two activation functions and a jump connection, 11. GRNN, and 12. GMDH.) 



 
FIGURE 8: Structures of the mers of PC and PPO with their modifications predicted to have better mechanical properties. 


