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ABSTRACT

This paper describes a method for mapping a sequence of
notes to a set of guitar fretboard positions (tablature). The
method uses a Genetic Algorithm (GA) to find playable
tablature through the use of a fitness function that assesses
the playability of a given set of fretboard positions. Tests
of the algorithm on a variety of compositions demonstrate
an excellent ability of the GA to discover easily playable
tablature that maintains a high degree of consistency with
published tablatures transcribed by humans. The algo-
rithm is also shown to generally outperform commercial
software designed for the same purpose. We conclude that
the GA can reliably produce good tablature for any piece
of guitar music.

1. INTRODUCTION

Some instruments, such as the piano, have only one way to
produce a given pitch. To play a piece of music on a piano,
one need only read the notes sequentially from the page
and depress the corresponding keys in order. Stringed in-
struments, however, require a great deal of experience and
decision making on the part of the performer. A given note
on the guitar may have as many as six different positions
on the fretboard on which it can be produced. Figure 1
shows a guitar fretboard, and four different fretboard po-
sitions on which a third octave “E” can be played. A fret-
board position is described by two variables, the string and
the fret. To play a piece of music, the performer must de-
cide upon a sequence of fretboard positions that minimize
the mechanical difficulty of the piece to at least the point
where it is physically possible to be executed. This pro-
cess is time-consuming and especially difficult for novice
and intermediate players and, as a result, the task of read-
ing music from a page as a pianist would is limited only
to very advanced guitar players. To address this problem,
a musical notation known as tablature was devised. Tab-
lature describes to the performer exactly how a piece of
music is to be played by graphically representing the six
guitar strings and labeling them with the corresponding
frets for each note, in order.

The goal of our research is to automatically discover
very good tablature for any piece of music. In the next
section we will describe recent commercial and academic
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Figure 1. Four different fretboard positions for the 3rd
octave “E”.

attempts to accomplish the same feat and explain their dis-
advantages. We will then describe our genetic algorithm
approach and offer an explanation for why it is best suited
for this problem. This will be supported with the analysis
of tablatures produced both by our approach and by com-
mercial software. Finally, we will discuss why the relia-
bility of our approach is an advancement towards creating
software that can automatically and intelligently arrange
music for guitar.

2. BACKGROUND

2.1. Commercial Software

Several programs on the market today convert music into
tablature. These programs are, however, notorious for pro-
ducing unplayable or unnecessarily difficult tablatures[6].
This is because they often depend too heavily upon rules
of music theory relating to harmony and guitar composi-
tion[14]. For example, “open” strings are considered to
be easier to play on guitar because they do not require de-
pressing the string on a fret. However, it is often easier
for a note to be played on a depressed string if that string
happens to already be depressed at that point in the music.
Software that we tested also seems to take the inadvisable
approach of creating tablature note by note, rather than de-
vising a strategy for the piece as a whole. In other words,
when the algorithm makes a decision about where to place
a given note on the fretboard, it consults only the locations
of earlier notes and gives no consideration to where future
notes are likely to be played. This is understandable, as



doing otherwise is exceptionally difficult for conventional
algorithms (how does one design a section of tablature to
fit with a section that has not yet been created?). Our ge-
netic algorithm approach, however, is well suited to this
task, as will be explained later. For these reasons, current
commercial software often depends upon the user to edit
a tablature after it has been generated[14].

2.2. Academic Research

The process of creating high quality guitar tablature has
traditionally required human decision-making skills. It re-
quires weighing numerous factors that contribute to diffi-
culty, and deciding upon the best approach from among
several[5]. A method for discovering playable tablature
was described by Samir I. Sayegh of Purdue University[12].
His “optimum path paradigm” describes a sequence of
fretboard positions as a sequence of hand states, the goal
being to find the optimum path through the states. More
recently, there have been algorithms that build upon Sayegh’s
approach at the University of Torino[9] and the University
of Victoria[10]. Both approaches have produced excel-
lent tablatures for the pieces on which they were tested,
but both have limitations. The prototype from the Univer-
sity of Torino cannot account for situations where more
than one note needs to be played simultaneously (a chord).
The program from the University of Victoria was tested
by either manually tuning a set of cost function weights
to more accurately suit a piece, or by “training” the al-
gorithm using other pieces of similar styles with known
(published) tablatures. So while the former can produce
a tablature directly from a sequence of notes, it does not
handle chords, and while the latter can handle any com-
position, it requires customized training for each piece.
Another group from Doshisha University reports success
in generating tablature superior to that of commercial soft-
ware, but once more the program is limited to producing
tablature for melodies without chords[6].

3. TABLATURE GENERATOR OVERVIEW

The duty of the generator is to accept as an input some
representation of the note sequence that defines a piece of
music and to generate a tablature as output. Our gener-
ator currently accepts a text string of all the notes in or-
der, but could be modified to extract notes from a MIDI
file or an ASCII tablature. Figure 2 is an example of an
ASCII tablature of “Stairway to Heaven” by Jimmy Page
and Robert Plant[1]. The strings are represented as dashed
lines and the numbers indicate the fret on which the string
needs to be depressed. A zero indicates that the string is
to be played without depressing a fret. After the generator
has evolved a playable tablature using the genetic algo-
rithm, the tablature is printed to the screen or to a file in
the ASCII format.

|- - - 5-7- - -7-8- - -8-2- - -2-0- - - -0- - - - - -|
|- - 5- - -5- - - -5- - - -3- - - -1- -1 - 1- -0-1-1-|
|- 5- - - - -5 - - - 5- - - -2- - - -2- - - -2-0-2-2-|
|7- - - -6- - -  5- - - -4-- - - 3- - - - - - - - - -|
|- - - - - - - - - - - - - - - - - - - - - - - 2-0-0-|
|- - - - - - - - - - - - - -  - - - - - - - - - - - -|
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Figure 2. ASCII tablature of “Stairway to Heaven” by
Jimmy Page and Robert Plant[1].

4. THE GENETIC ALGORITHM APPROACH
FOR TABLATURE GENERATION

4.1. The Genetic Algorithm

A Genetic Algorithm (GA)[7][8] is a stochastic search al-
gorithm that aims to find good solutions to difficult prob-
lems by applying the principles of evolutionary biology.
Evolutionary concepts such as natural selection, mutation
and crossover are applied to a “population” of solutions
in order to evolve a very good solution. Problems suited
for a GA are those whose number of possible solutions
(search space) is so large that finding good solutions by
exhaustive search techniques is computationally imprac-
tical. The genetic algorithm is also useful for tackling
search spaces with many scattered maxima and minima.
Imagine a search space as a mountain range, where the
goal is to get to the highest point(say, Mt. Everest). Each
mountain peak is the local optimal solution for the sec-
tion of the search space it occupies, but Mt. Everest is the
global optimal solution and is considerably higher than
many of the other peaks. Local optima in the search space
can lead many search algorithms to prematurely conclude
that the best solution has been found. Genetic Algorithms,
however, are very effective at exploring the search space.
This property of GAs is essential to an intelligent search
for playable guitar tablature.

4.2. Why the GA is useful for this problem

4.2.1. Large search space with many optima

Because a note can be played on many different positions
on the fretboard, the number of possible tablatures for a
piece of music is enormous. Estimating that a note can
be played in an average of three fretboard positions, a
song with n notes has3n possible tablatures. A phrase
with just 40 notes, for example, would have approximately
1.2 ∗ 10

19 possible tablatures. However, only a small per-
centage are playable and only a handful could be con-
sidered to be desirable. This property of stringed instru-
ments creates an excellent search space for a Genetic Al-
gorithm. Additionally, the search space for a piece of mu-
sic can have a large number of optima throughout. A given
piece of music may have good tablatures nearly identical
in terms of difficulty but with very few fretboard positions
in common. These tablatures are reflected in the search
space as widely scattered optima.



4.2.2. Implicit Parallelism

The implicit parallelism of a genetic algorithm refers to
its ability to search for the best “parts” of an individual
simultaneously[7]. This is not to say that there is any sort
of distributed processing being performed, but only that
a GA tries to improve upon each gene in the individuals
simultaneously. The beginning of the ideal tablature may
be located in one individual, the middle in another, and
the end in yet another. By themselves, perhaps these parts
only make the individual in which they are contained only
slightly more fit than other individuals, but that is all that
is needed. These individuals are then more likely to be
selected for mating, and crossover can combine the bene-
ficial parts into an offspring even more fit than either of the
parents. When the GA has finished, it is likely that parts
of the tablature at the beginning of the piece have been di-
rectly influenced by the parts in the middle or at the end.
This results in the robust search capability characteristic
of GAs. This is vastly preferable to creating tablature lin-
early from beginning to end, because decisions made at
the beginning of a tablature may turn out to be very in-
appropriate when the tablature has been completed. This
weakness will be demonstrated to be a major downfall for
other approaches.

4.3. Implementation

The population for our GA is a collection of tablatures
that are valid, though not necessarily desirable, for a given
piece of music. The initial population is generated ran-
domly. A tablature “chromosome” is defined as a sequence
of chords. A chord is a “gene” and consists of fretboard
positions for all the notes in that chord. A chord, in this
sense, is any combination of notes that are played simulta-
neously. Quite often notes are played by themselves, and
these are considered to be chords composed of only one
note and hence only one position on the fretboard.

The parameters for the GA are those which have led
to convergence on the most fit individuals. A single run
of the GA takes only a few seconds on a fast PC, so we
can afford to fortify the GA with a healthy population size
of 300 individuals. The GA is generational, which means
that each generation is replaced by the subsequent gener-
ation all at once, rather than replacing the tablatures in-
dividually. Parents are selected using Binary Tournament
Selection, whereby two potential parents are selected ran-
domly and the most fit of the two becomes a mate. Once
two mates have been selected by this process, there is a
sixty percent chance that they will create children through
two-point crossover. Two-point crossover divides the chro-
mosomes of the parents into three sections of random size
and gives a child different sections from each parent. The
sections that are not used to create the first child are then
combined to make a second child. Forty percent of the
time the parents do not crossover and simply become “chil-
dren” themselves. After the children have been generated,
whether through crossover or not, they then face a seven
percent chance of mutation. If a child is selected for muta-
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Figure 3. Obtaining children from two parents. Music
from “Stairway to Heaven”[1].

tion, then a random chord in the tablature is switched to an
alternative fingering. These operators are demonstrated in
figure 3. The process of “selection-crossover-mutation” is
repeated until 300 new individuals have been created for
the next generation. The GA terminates when it seems to
have converged upon a solution.

To increase the overall performance of the program,
we found it useful to run the GA several times for 100
generations and save all of the most fit individuals found.
We then run the GA once more with a population com-
posed predominately of these individuals. Very often this
final run will produce an individual more fit than any other
found so far. This is often, but not always, the optimal in-
dividual as defined by our fitness function. The chance
that this individual is optimal varies with the length of
the piece and the complexity of the corresponding search
space.

4.4. Fitness Function

The fitness function determines the fitness of an individ-
ual. A more fit individual is more likely to be selected
for breeding. Our function analyzes a tablature in many
different ways to assess its playability. This assessment is
partially informed using the analysis of finger-positioning
complexity by Heijink and Meulenbroek[5]. The function
can be thought of as calculating two separate classes of
tablature complexity, difficulty of hand/finger movement
and difficulty of hand/finger manipulation.

4.4.1. Hand Movement

These calculations essentially estimate the total amount of
hand and finger movement across the fretboard that is nec-



essary to perform a tablature by executing simple calcula-
tions on the fret numbers. The more movement that is re-
quired, the more the function penalizes the tablature’s fit-
ness. Some factors whose values penalize the function in-
clude the total number of times strings must be depressed
by a finger, the fret-wise distance between adjacent notes
or chords, and the fret-wise distance of a position from the
average of the surrounding notes. A factor that rewards the
fitness of the tablature is the number of open notes, as they
do not require any lateral movement by the left hand to be
executed.

4.4.2. Hand Manipulation

This portion of the fitness function attempts to analyze
what the left hand itself is doing and assess the difficulty
of the requisite hand positions. There are two predominant
methods by which a guitarist can finger multiple notes.
The first is the open chord method, where each note is de-
pressed individually with one of the four fingers (thumbs
are generally not used). The second method is to place the
index finger across a fret over several strings, and to use
the remaining three fingers for any other notes on higher
frets. This is known as a barre chord. The function looks
for both of these chord types and rewards the fitness of a
tablature proportionally to the chord’s difficulty and how
long the position can be held without having to move the
hand.

5. EXPERIMENT SETUP AND RESULTS

5.1. Experiment Setup

A common metric for establishing the success or failure
of a tablature generator is the percentage of fretboard po-
sitions in the generated tablature that are consistent witha
published tablature. Over a very large body of work this
should provide a rough indication of the generator’s relia-
bility, but the method is inherently flawed. While playabil-
ity is the main concern for a human when creating tabla-
ture, it is not the only concern. In cases where notes can be
placed on the fretboard in multiple positions without sig-
nificant differences in playability, the position chosen by
a professional could seem essentially arbitrary. Because
each guitar string has a slight but noticeable difference in
timbre, tone quality becomes a factor for notes with more
than one viable position. If differences in playability are
very slight, the chosen position could even be little more
than the personal preference of the tablature creator. The
effect of this problem is that a tablature that differs from
the published tablature by only one note could conceiv-
ably be unplayable while a tablature differing at every po-
sition could be just as playable.

Therefore, we used two criteria to judge the reliability
of our approach. The whole process shouldusuallycreate
tablature consistent with published tablature and should
nevercreate a significantly more difficult tablature than
is necessary. We will also compare the tablatures gener-
ated by our approach with those created by Guitar Pro 4, a
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Figure 4. Three tablatures for an excerpt from Pavane by
Maurice Ravel[2].

very popular piece of commercial tablature software. This
piece of software was chosen for comparison because it
generated tablatures for the pieces we looked at that were
generally superior to those created by any other software
that we tested.

5.2. Results and Conclusion

We ran our GA on a wide variety of musical literature.
The GA produced tablatures for contemporary rock groups
like Aerosmith and Led Zeppelin as well as for transcrip-
tions of classical pieces by composers such as Bach and
Ravel. In all, selections from about 20 pieces of mu-
sic were tested. The majority of tablature coincided pre-
cisely with published tablatures and the algorithm never
produced a tablature that was significantly more difficult
than the published tablature. We consider the GA a suc-
cess because it reliably produces playable tablature even
when departing from the published versions. Figure 4
shows an example of this. It is an excerpt from Ravel’s
“Pavane pour une Infante Défunte”[2] and shows three
tablatures. The first is the published tablature, the second
is generated by the commercial software, and the third is
generated by our GA.

The second tablature exemplifies the danger in attempt-
ing to produce tablature note by note without looking ahead
in the piece of music. The tablature begins the piece low
on the fretboard, around the second and third frets. For
these first four notes the tablature is actually easier to play
than the published tablature. However, the next chord can-
not be played low on the fretboard and the software places
this chord on frets 10 through 12. Once more the chord is
easier to play than that of the published tablature, but there
now exists a jump from the bottom of the fretboard to the
top. This jump measures about a foot on the fretboard and
is to be executed in 1/16th of a second, which is essen-
tially impossible. Later in the tablature is a jump from the



fifth fret to the tenth fret and is to be executed in 1/4th of
a second. This is possible but unnecessarily difficult.

The third tablature, the one created by our GA, has two
fretboard positions which differ from the published tabla-
ture. The first moves a note on the ninth fret to an open
string. This has little to no effect on the overall playabil-
ity of the piece, as it merely requires lifting a finger that
needs to be lifted within the next second anyway. The
other change moves a note from the third fret to the eighth
fret. This change is arguably easier since it allows the per-
former to use the same barre chord for the last nine notes
of the piece without any movement at all. The reason our
GA does not make the same mistakes as the commercial
generator is that, due to the implicit parallelism of the GA,
the different sections are processed in an overlapping fash-
ion. While the GA evaluates the first four positions of the
commercially generated tab as the most fit when they are
by themselves, when those positions are viewed in context
the tablature’s fitness suffers and hence tablatures contain-
ing those positions are selected less often and eventually
become extinct.

Figure 5 illustrates a similar scenario in an excerpt from
the jazz standard “As Time Goes By” by Herman Hupfeld.
In this case the tablature generated by our GA is the same
as the published tablature, but the Guitar Pro software
again generates an unplayable tablature. The first eight
notes of the piece are placed low on the fretboard and, as
in the excerpt from “Pavane”, this results in an unplayable
jump from the second fret to the tenth fret. The human
professional and the GA, however, account for the fact
that the hand will have to be high on the fretboard and
place early notes in the tablature in that area as well.

The “Pavane” and “As Time Goes By” tablatures il-
lustrate well the faults of conventional approaches to tab-
lature generation and how the GA improves upon them.
Mistakes made by the commercial software usually only
result in tablatures that are unnecessarily difficult but, as
is shown in the examples, sometimes create tablatures that
are unplayable. The advantages of our Genetic Algorithm
over other approaches becomes apparent when creating
tablature for sections of music that require knowledge of
later sections to be transcribed correctly. As a result, the
GA was the only approach that we tested that was able
to reliably produce playable tablature. It did not always
maintain consistency with the published tablatures, but
deviations proved to be mostly inconsequential to overall
playability and never disastrous.

6. FURTHER DIRECTIONS

6.1. Arranging Music For Guitar

Our GA is concerned only with choosing the fretboard po-
sitions for a given sequence of notes, it does not choose
the notes themselves. The process of analyzing a piece of
music and determining which notes to play on an instru-
ment is known as arranging. Arranging for the guitar, as
well as the piano, is a balance between remaining loyal to
a piece of music while also making sure that the piece can

6 8

87
7
9

7

7

10 10

9

0

10 10

9

0

Commercial Generated Tablature:

Published/GA Tablature:

1 3

3
3
2 2

24

unplayable

excerpt from

AS TIME GOES BY

Herman Hupfeld

Figure 5. Tablatures for an excerpt from “As Time Goes
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be played on the instrument for which it is being arranged.
For example, it would be impossible to completely play
Beethoven’s fifth symphony on a guitar because there are
too many instruments playing far too many notes, and it
is the responsibility of the arranger to choose which notes
are most important and which can be sacrificed for the
sake of playability.

Because tablature generation and evaluation is so prob-
lematic, music arranging is very difficult to automate. How
can an algorithm evaluate whether or not an arrangement
is playable if it does not know what the tablature for the
arrangement looks like? Using our GA, it is conceivable
that another Genetic Algorithm built on top of ours could
evolve arrangements for a guitar using a fitness function
composed of our fitness function and a function that eval-
uates the degree to which an arrangement mimics the orig-
inal composition. The “optimal” arrangement would be
the one which has minimal difficulty and maintains the
features of a piece’s melody and harmony to the greatest
extent. If this approach were to work, it would allow those
without the time or expertise to transcribe an arrangement
by hand to obtain a playable guitar version of any piece of
music they wish by providing the notes the piece contains
and specifying important melodic lines where appropriate.
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