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CHAPTER 1   
 

INTRODUCTION 
 
 
 

The Intelligent Decision Support System for US Forest Service Spray 

Management is a cooperative project between the USDA Forest Service and the Artificial 

Intelligence Center at the University of Georgia.  The goal of this project is to provide 

Forest Service managers a handy tool to predict forest aerial spray performance and 

dynamically optimize the spray parameters to save substantial effort, time, and cost in 

practical spray tasks. 

It has always been a difficult problem to identify ideal spray parameters to 

achieve particularly desired deposition, reduce spray material evaporation or drift, and 

save the time and money devoted to the spray process [Teske89].  The difficult part of the 

problem is that there are dozens of spray parameters in spray practice and each of them 

has many possible values.  The total combination of possible spray parameters generates 

a huge search space (NP hard) that is hardly searchable using traditional techniques 

[DeJo89].  For example, 20 parameters each with 20 possible values will lead to a total 

combination of 2020 possibilities.  It is indeed beyond current computing technology 

capacity to find the best solution using approaches such as exhaustive search.  In this 

project we introduce the Genetic Algorithms to reduce this workload to a large extent by 

searching for optimal or near-optimal solutions based on Darwin’s theory of evolution 

and survival of the fittest.  Our project is named Spray Advisor using Genetic Algorithms 
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(SAGA).  This thesis reports the efforts and the achievements of SAGA development as 

well as the experimental results and discussion.   

Chapter 2 presents detailed background knowledge of aerial spray practice and 

simulation, and GA fundamentals and applications.  Chapters 3-5 review our 

development work of SAGA, each chapter focusing on a version of SAGA at a different 

development stage, namely Fortran-SAGA, VB-SAGA1.0, and VB-SAGA2.0.  The 

experimental results and discussions from these versions are also included.  Chapter 6 is a 

summary of this project and also some future expectations of this project. 
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CHAPTER 2 
 

BACKGROUND 
 
 
 
2.1 Forest Spray Prediction 

Aerial spray and pest control has always been an important application in forest 

management [Teske89].  Maximum and even deposition, minimum drift and evaporation 

loss, and low spraying cost and efforts, are always the main goals for spraying tasks.  Of 

the many means to facilitate spraying practice, using computer simulation programs has 

been the most important and frequently used approach to predict the spray materials 

behavior after they are released from the aircraft.  These programs construct 

mathematical models to dynamically simulate the complicated process when spray 

materials are released from the aircraft.  A good spray simulation program usually models 

the processes such as drift, evaporation, deposition, and dispersion. 

The USDA Forest Service has spent abundant time and effort in the past decades 

to develop the spray simulation models [Teske93a].  The spray simulation models 

simulate the process from the moment the spray material is released from the aircraft 

until when they deposit onto the ground.  The main models developed for this purpose are 

the Forest Service Cramer-Barry-Grim (FSCBG) aerial spray model [Teske89], the 

Agricultural Dispersal (AGDISP) model [Teske98a], the Spray Advisor Program, and the 

Agricultural Drift (AGDRIFT) model [Teske97], which is a modified version of 

AGDISP.  We will focus on introducing FSCBG and AGDISP in this chapter.   
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2.1.1 FSCBG Model  

FSCBG [Pott99] is designed to model the atmospheric dispersion, transport, and 

deposition of all aerial spray materials from the time of release until all spray material is 

either deposited or, in the case of spray drift, until the spray concentration and deposition 

levels become insignificant.  The development of FSCBG was carried out first by the H. 

E. Cramer Company and then by Continuum Dynamics, Inc.  It includes mathematical 

models for aircraft wake effects, gaussian line source dispersion, droplet evaporation, 

canopy penetration, ground and canopy deposition.  FSCBG predicts the dispersion of the 

spray material and the deposition of the material, that is, how much material settles on the 

ground and where.  FSCBG can be used to optimize the spray program design and assist 

in the selection of aircraft spray systems (aircraft and spray devices), flight altitudes, 

spray rates, and evaluation and analysis of filed measurements of spray deposition.  It is 

also useful in the assessments of the environmental impact of hazard posed by aerial 

spray operations. 

 

2.1.2 AGDISP 

AGDISP [Pott99] focuses on the effects of aircraft movement and wake on 

material released from the aircraft.  It applies certain mathematical models to simulate the 

behavior of spray material released from aircraft or helicopter, and predict the spray 

deposition and drift by calculating the mean position of the material and the position 

variance about the mean as a result of turbulent fluctuations.  AGDISP was first 

developed by the Bilanin group [Bila89] and later extended by Teske [Teske98a].  The 

current AGDISP program is AGDISP DOS Version 7.0 that features a significant 
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solution speed increase compared to its earlier versions, an in-memory computation of 

horizontal deposition and vertical flux, and improvements to the evaporation and 

helicopter wake models.  The program can be started within a DOS window on the PC 

and requires an ASCII data input file to obtain necessary spray input values.  It retrieves 

aircraft and droplet size distribution data from two separate libraries during computation 

and sends the final results to an ASCII deposition file and a flux output file. 

 

2.1.3 Computer Simulation Models in Common 

Both FSCBG and AGDISP analyze the movement of the spray material above the 

forest canopy, the movement among the trees, and the amount of material that actually 

reaches the ground [Teske89, 93a, 98a].  The simulation models within the program track 

the droplets leaving the aircraft and estimate the events encountered by the droplets as 

they make their way through the aircraft wake and descend onto the spray block (forest or 

crop area).   

Getting the spray material to reach the proper location depends on many factors.  

These factors include: (1) the altitude of the aircraft when the material is released, (2) the 

speed of the aircraft, (3) whether the aircraft is an airplane or a helicopter, (4) the type of 

boom and nozzle system used to discharge the spray material, (5) the swath width of each 

pass of the aircraft, (6) the type and density of the forest, (7) wind speed and direction, 

(8) relative humidity, and (9) spray material characteristics.  These parameters need to be 

specified before using FSCBG or AGDISP in order to obtain the deposition and 

dispersion of the spray materials.  However, optimal values for these parameters cannot 

be obtained using FSCBG or AGDISP only since both programs use these parameters as 
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inputs to carry out batch operations.  Our SAGA project, as discussed in later chapters, 

will help optimize these spray factors using the genetic algorithm evolution and finally 

achieve maximal deposition and even distribution of spray materials. 

The output of the various computer simulation models typically includes several 

important values: the volume median diameter (VMD), the drift fraction, the standard 

deposition, and the coefficient of variance (COV).  VMD is a measure of spray material 

droplet size distribution.  It is the drop diameter (in microns) that divides the spray 

volume into two equal parts.  For example, a VMD of 150 microns means that 50 percent 

of the spray volume is in drops smaller than 150 microns, and the remaining 50 percent is 

in drops larger than 150 microns.  It is important to know the expected droplet size of the 

spray material as it leaves the aircraft nozzle, and also to know the droplet size that hits 

the ground.  Variations in these two values are due to a number of factors including 

evaporation and attrition in the air.  Some of the spray material is likely to drift away 

from the target area onto adjacent lands due to wind effect.  Drift fraction is a measure of 

the amount of spray materials deposited outside the spray block (smaller drift is better 

since that means the spray material stays within the spray block or have evaporated).  

Standard deposition is the amount of spray material that is deposited onto the canopy 

within the spray block.  The deposition and drift fraction are inverse to each other, we can 

either take the approach to maximize the former or minimize the latter in the simulation 

models.  The COV is used to indicate the uniformity of the deposited spray material.  

Ideally, the spray material should be evenly distributed over the entire spray block.  The 

calculation of COV is based on the standard deviation of the deposition and divided by 

the average deposition [Teske91].   
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2.2 Genetic Algorithms 

2.2.1 GA in General 

GAs were invented by Holland in the early 1970’s to simulate the processes of 

natural evolution and selection [Holl75][Gold89].  Holland was inspired by Darwin's 

theory about evolution and constructed GAs based upon the fundamental principle of the 

theory: survival of the fittest.  The theoretical basis for the GA is the Schema Theorem, 

which states that the individual chromosomes with short, low-order, highly fit schemata 

or building blocks receive an exponentially increasing number of trials in successive 

generations [Gold89]. 

A regular GA is started with a set of solutions (represented by chromosomes) 

called a population [Mich92].  The chromosome in the GA is a legal solution to the 

problem and has the form of a string of genes that can take on some value from a 

specified finite range or alphabet.  An initial population of legal chromosomes is then 

constructed at random.  All the chromosomes in the population are evaluated using a 

fitness function.  The chromosomes from one population are selected and used to form a 

new population according to certain selection methods.  The common selection schemes 

are roulette wheel selection and tournament selection.  Several further operations such as 

crossover and mutation are then applied on the newly selected individuals to mimic 

inheritance and mutation in natural evolution.  Crossover is a key operator in the GA that 

is used to exchange main characteristics of parent individuals and pass them to the 

children.  Mutation is applied after crossover to maintain the diversity of the population 

and recover possible loss of some good characteristics during crossover.   This process is 
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repeated again and again until some terminating condition is met (for example, the 

number of generations is reached or the desired individual fitness is achieved). 

   

2.2.2 Main GA Components and How the GA Works in Detail 

As introduced in section 2.2.1, all genetic algorithms consist of the following main 

components [Davi91]: 

• Chromosomal representation  

• Initial population  

• Fitness evaluation  

• Selection  

• Crossover and mutation  

How to represent a valid solution to the given problem is an important step when 

initializing the GA.  The concept of a chromosome is normally used in the GA to stand 

for a valid solution to the problem.  The chromosome consists of a string of genes just as 

the human chromosome does.   The specific way of chromosome representation varies 

based on the particular problem property and requirements.  In fact, almost any 

representation can be used as long as it enables a solution to be encoded as a finite length 

string or using some other feasible representation.  A binary representation based on bits 

[1, 0] is commonly used due to its convenient features such as easy coding and decoding.  

Integers or real numbers are also frequently used in certain applications.   

Once a suitable representation has been decided upon for the chromosomes, an initial 

population is created randomly or by using specialized and problem specific techniques. 

This initial population is the starting point for a GA to evolve to desired solutions.  The 
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individuals in the initial population are generally assigned random values within their 

valid ranges and the GA evolves new individuals and populations in the subsequent 

generations until the desired solution is found. 

Fitness evaluation is used throughout the GA evolution.  Every chromosome is tested 

by the fitness function to acquire its fitness value.  This fitness value is a measurement of 

whether the chromosome is suited for the environment under consideration. 

Chromosomes with higher fitness will receiver larger probabilities of inheritance in 

subsequent generations, while chromosomes with low fitness will more likely be 

eliminated.  As the GA proceeds we would expect the individual fitness of the "best" 

chromosome to increase as well as the average fitness of the population.  The selection of 

a good and accurate fitness function is thus key to the success of solving any problem 

quickly.  Only those fitness functions that truly map the problem properties should be 

used.  In some cases it might be extremely hard to find an appropriate fitness function to 

accurately reflect the complex problem properties.  Sometimes a single fitness is not 

sufficient in cases such as multi-objective problems and complex inputs problems.  Some 

advanced GA implementations are needed under these circumstances to handle the 

complexity [Parm99]. 

Selection in the GA is a process to select mating pairs for reproduction.  Pairs of 

individuals in the current generation are selected as parents to reproduce offspring.  

Roulette wheel selection is a simple selection scheme that weights the probability of 

selecting an individual based on its fitness value.  Tournament selection picks parent 

individuals by choosing the best one from a group of randomly selected individuals.  
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Crossover is applied on the individuals after selection so that the children inherit 

partial characteristics from each parent respectively.  The crossover probability is 

introduced here to stipulate the chance a chromosome is going to be selected.  A 

crossover probability of 1.0 indicates that all the selected chromosomes are used in 

reproduction.  Empirical studies have shown that better results are achieved by a 

crossover probability between 0.65 and 0.85 [Davi91], which implies that the probability 

of a selected chromosome surviving to the next generation being unchanged (excluding 

any changes arising from mutation) ranges from 0.35 to 0.15.  The common crossover 

approaches are 1-point, 2-point, uniform, and average crossover.  1-point crossover 

involves taking the two selected parents and crossing them at a randomly chosen point to 

produce two children.  2-point crossover is similar to single-point crossover, but 

swapping the two selected parents at two randomly chosen points.  Uniform crossover 

works in the way that for each parameter of the child, it comes either from one parent or 

the other.  Average crossover differs from other schemes in that for each parameter of the 

child, the average of the same parameters from both parents is used. 

The mutation operation is needed after the crossover operation to maintain population 

diversity and recover possible loss of some good characteristics.  An example of the 

necessity of the mutation operator is that if all the chromosomes in the initial population 

have the same value at a particular position then all future offspring will have this same 

value at this position without mutation. Mutation is introduced in order to generate some 

random alteration of the genes, e.g. 0 becomes 1 and vice versa in a binary 

representation.  Mutation should not occur frequently otherwise the population will be 

quite unsteady.  The mutation probability is normally on the order of one thousandth.  
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Each bit in each chromosome is checked for possible mutation by generating a random 

number between zero and one and then the bit value is changed if this number is less than 

or equal to the given mutation probability.  

 

2.2.3 GA Applications 

The GA has been widely used in many fields such as scheduling, 

telecommunication, engineering simulation modeling, and various optimization fields.  A 

good example of scheduling using GAs is the optimization of airline crew scheduling 

[Levi96].  Levine and his colleagues developed a hybrid GA to optimize real-world 

problems and had successful performance compared to other algorithms.  The multi-fault 

diagnosis system (MFD) is an automated program for diagnosing multiple simultaneous 

problems [Pott91].  IDA-NET, which is a battlefield communication network system to 

support specific military missions, configures a “shopping list” for type and number of 

communication equipment components [Pott92].  The optimization of irregular computer 

architecture using GAs is another promising application to optimize the interconnections 

between processors for modern computers [Burg99].  Using GAs for intelligent internet 

search is a new application and has good performance to search and retrieve documents 

from the enormous number of servers and documents on the internet [Mirk99].  A 

particular GA research project of interest to us is the decision support system developed 

by Pabico [Pabi96] which determines simulation inputs.  Genetic Algorithms were used 

in this project to help determine the cultivar coefficients in crop models.   
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CHAPTER 3 
 

DEVELOPMENT OF FORTRAN-SAGA 
 
 
 

Our first step in developing SAGA was to test the feasibility of combining the 

spray simulation model with a GA program.  For the spray simulation model part, we 

experimented with both FSCBG and AGDISP DOS 7.0 to compare their performance 

and I/O features.  Both programs work well as individual spraying simulation program in 

specific applications.  However, for our SAGA project, we found AGDISP DOS 7.0 

more suitable due to its convenient I/O features (described in section 3.1) that made it 

easier to modify and connect with the GA program.  For the GA part, we started with a 

Fortran Simple GA (details in section 3.2) for compatibility and connection convenience.   

 

3.1 AGDISP DOS Version 7.0  

AGDISP 7.0 is a MS-DOS program that simulates the motion behavior of spray 

material released from aircraft to predict the spray deposition result [Pott99].  Figure 3.1 

shows the AGDISP main interface when it’s running.  The program continuously 

calculates the mean position of the pesticide particles and the position variance about the 

mean as a result of turbulent fluctuations.  It reads inputs from an ASCII data file to get a 

well-defined set of input values in a specific order.  The results are written to another 

ASCII text file when the run ends.  The program also displays current computing 
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information to the screen during the process.  Two separate library files are called during 

the computation to provide aircraft and drop size distribution information.  

The convenient I/O features of AGDISP DOS Version 7.0 described above 

enabled us to develop the methodology (described in section 3.3) to make full use of it in 

order to establish the interconnections between our GA and the AGDISP simulation 

model, which was one of the most important aspects of the SAGA project at this 

preliminary stage. 

 
Figure 3.1   AGDISP DOS 7. 0 main interface when running 

 

3.2 Fortran Simple GA 

The GA we used at this initial stage of SAGA was a modified Fortran version of 

the Simple GA described by Goldberg [Gold89].  The reason why we started with a 

Fortran Simple GA was that the AGDISP DOS 7.0 was implemented in Fortran, our first 

thought was therefore naturally to use a Fortran GA driver in order to reduce the 
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compatibility and connection problems.  We searched the GA websites and found a 

shareware Fortran Simple GA at http://www.staff.uiuc.edu/~carroll/ga.html by David L. 

Carroll.  The GA initializes the first population with individuals generated at random.  An 

individual corresponds to a set of AGDISP parameters in this problem.  We use a binary 

representation for the individuals.  The selection scheme is tournament selection with a 

shuffling technique for choosing random pairs for mating.  We have the option of using 

jump mutation or creep mutation, and the option for single-point or uniform crossover.  

For our SAGA project, we added roulette wheel selection as another selection scheme 

option, two-point crossover, intermediate output file generation for AGDISP input, and 

changed the standard I/O formats to meet our project requirements. 

 

3.3 Preliminary Fortran-Based SAGA 

3.3.1 SAGA Architecture 

Figure 3.2 shows the basic architecture of our SAGA system.  The GA sends a set 

of spray parameters to the AGDISP simulation model.  The AGDISP model calculates 

and sends back the spray results for each parameter set.  The spray results are normally 

some or all of mean deposition, COV, VMD, and drift fraction depending on different 

spray simulation model used.  For the preliminary Fortran based SAGA, the AGDISP 

DOS 7.0 is used as the spray simulation model and it returns the deposition only.  This 

computation process may take 5 to 45 seconds depending on the input parameter 

characteristics and the working platform properties.  Based on the fitness function values 

mapped from the spray results (deposition and the COV for this Fortran based SAGA), 

the GA evolves an improved set of parameters and sends it back to AGDISP.  This 
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process is repeated from generation to generation for each individual in the population 

until a satisfactory deposition is found.  The corresponding parameter set is returned as 

the proposed set-up to achieve the desired deposition.   

 

 
 

Figure 3.2   SAGA Architecture  
 

3.3.2 Connecting GA with AGDISP DOS Version 7.0 

The details of our approach of connecting the GA with AGDISP are as follows. 

AGDISP DOS Version 7.0 was implemented using Fortran such that it reads input and 

writes output through text files.  The Fortran GA driver also relies on the text files for GA 

parameter input and final results output.  We thus combined their I/O features to establish 

the inter-connections.  In our approach, the GA characteristics are first specified in the 

GA input file (saga.inp).  The simple GA has been modified in order to generate a text 

file containing the twelve key parameters and all other necessary AGDISP parameters in 

the format of the input file for AGDISP 7.0.  This file is named 'agdisp.inp'.  AGDISP is 

then initialized by the GA main routine to compute the deposition.  Since the GA and 

AGDISP are two separate programs that run as separate processes, the GA program halts 

until AGDISP generates and saves the deposition results in an output file, 'agdisp.dep'.  
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This file contains two columns of data, one for downwind distance and the other for 

deposition.  Then the GA continues execution.  It reads in the deposition values from 

'agdisp.dep'.  The COV of depositions would be computed (we have it set to a constant 

value in these initial experiments) and combined with the deposition to map the objective 

function to form the fitness function.  The ultimate goal of our SAGA experiments and 

the fundamental principle of our fitness function are to maximize the deposition and 

minimize the COV.  Based on the fitness value, the GA evolves an improved set of 

parameters to send back to AGDISP.  This process is repeated for each individual in 

every generation until a satisfactory deposition and acceptable parameter set are found.  

We focused on twelve specific parameters at this initial stage.  Each of them has a lower 

and upper bound as shown in table 3.1. 

 

Table 3.1 Fortran-SAGA parameters and their ranges 
 

PARAMETER LOWER UPPER 
Release Height (m) 1 100 
Wind Speed (m/s) 0.5 10.0 

Drop Size Distribution (µm) 100 200 
Wind Direction (deg) -360 360 
Number of Nozzles 1 60 

Total Flow Rate (gal/min) 0.1 1000.0 
Volatile Fraction 0.0 1.0 

Flight Speed (m/s) 10 200 
Dry Bulb Temperature (degC) 1.0 51.67 

Relative Humidity (%) 5.0 100.0 
Number of Swaths 1 20 

Width of Swath (m) 5 300 
 

 

The GA parameters used in this preliminary study are: population size between 40 

and 100, generations between 50 and 200, crossover probability between 0.6 and 0.9, 
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jump mutation probability between 0.005 and 0.05, and creep mutation probability 

between 0.002 and 0.05.  

 

3.4 Results and Discussion of Fortran-Based SAGA 

At this stage, we focused on the determination of (hopefully) optimal spray 

parameter settings.  Some preliminary results are shown in Table 3.2.  The GA 

parameters used in these experiments are: population size 70; crossover probability 0.8; 

mutation probability 0.01, etc.  It should be noted that we are dealing with two sets of 

parameters: one set for the Fortran GA driver which includes population size, 

generations, crossover and mutation probability, and one set for the spray simulation 

model which includes release height, drop size, and other spray parameters.  From the 

evolution of the fitness values, we can see that the Fortran-SAGA has done a good job of 

improving the parameter values in order to obtain better depositions.  For example, 

comparing the depositions at the edge of the spray block, we can see that the deposition 

has improved from 98.34 mg/m2 in the first generation to 146.53 mg/m2 after 70 

generations. 

 
Table 3.2 An example of preliminary results of Fortran-SAGA 

 
 

GENERATION DEPOSITION (mg/m2) 
1 98.34 
5 99.46 

10 102.56 
20 108.25 
30 116.84 
40 119.25 
50 124.29 
60 137.58 
70 146.53 
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There were a few simplifications that we embedded during this testing stage such 

as setting the COV to a constant value of 0.3, and restricting the droplet size range.  The 

primary reason for these simplifications was that it allowed us to begin the spray 

parameter optimization process and test the feasibility of the project fairly quickly after 

setting up the genetic algorithm and its connection with the spray model.  The 

computation of the COV was not incorporated in the original AGDISP DOS 7.0 and thus 

COV was not directly available to be mapped into the fitness function.  We felt it might 

require implementing another routine to determine the COV.  This problem was solved 

later by incorporating the computation of COV within a new AGDISP DLL file created 

from AGDISP DOS 7.0 (details explained in Chapter 4).  The other simplification at this 

stage dealt with droplet size distribution.  Here we set the range for droplet size to be 

between 100µm and 200µm.  This range was subdivided into ten droplet size categories 

with an increment of 10µm.  Each droplet size category was assigned a mass fraction of 

0.1.  In spray practice the droplet size distribution may be dependent on certain factors 

such as nozzle specifications and spray speed.  This simplification was also temporary set 

for quick start of the spray parameters optimization process.  It is not before long that 

these simplifications are removed in our later development to obtain more accurate and 

reliable results. 

We also ran numerous experiments to determine which GA parameters seemed to 

produce the best results.  The selection of GA parameters such as population size, number 

of generations, crossover type and probability, and mutation probability is a key facet of 

the speed and success of the evolutionary process.  These parameters are typically 

domain dependent.  One big problem with this initial SAGA was that it was to a certain 
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extent limited by the runtime of AGDISP DOS 7.0.  This added the difficulty to change 

the population size and generations freely.  The runtime of the AGDISP module typically 

varies from 5 to 45 seconds for each run depending on the aerial spray parameters and the 

working platform.  The runtime of the main GA program is negligible compared to the 

AGDISP runtime.  Thus for example if we set the population size to 50 and number of 

generations to 100, then assume an average AGDISP runtime length of 15 seconds, it will 

take about 20 hours to complete the SAGA run.  During these initial experiments, we 

usually let SAGA run overnight and collect data the next morning.  Therefore, the 

number of generations was accordingly set to around 50 and the population size was set 

to between 50 and 100.  Table 3.3 shows some comparisons of the results obtained with 

different GA population sizes.  Similar experiments were run to help determine 

appropriate values for other GA parameters.   

 
Table 3.3 Fortran-SAGA results at different population size 

 
GENERATION DEPOSITION (mg/m2) 

 Population size = 50 Population size = 40 Population size = 20 
1 98.34 98.34 98.34 

20 108.25 107.36 105.42 
50 124.29 122.68 116.35 
 

Another key issue in the initial development of SAGA is the mapping of the 

deposition and the COV onto the fitness function.  It is highly desired to get the exact 

amount of spray material evenly distributed over the spray block.  The goal is thus to 

maximize the deposition and minimize the COV.  We followed the rule of thumb 

suggested in [Park82] and set the COV to 0.3 temporarily.  We tested and compared 

different mapping functions having linear and exponential characteristics, and decided to 
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use the exponential function formulated below and the graph shown in Figure 3.3 for our 

initial Fortran-SAGA experiments. 

 

It should be noted that COV is dependent on swath width in most cases, but in the 

above formulation, we temporarily fixed the COV and set the goal to maximize 

deposition only.  Later on we removed this simplification by incorporating the 

computation of COV into an AGDISP DLL created from the AGDISP DOS 7.0 and 

modified our fitness formulation accordingly (details discussed in chapter 4).  

 

Figure 3.3   Fortran-SAGA fitness function graph 
 

In addition, some other work we did at the initial stage was to test the parameter 

sensitivity of AGDISP.  The approach we took was to set one of the twelve SAGA 

parameters constant and test the impact of this change on the deposition evolution.  

Release height, wind direction, and wind speed are the three main parameters we focused 
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on.  The results are presented in Table 3.4.  It is indicated that setting the release height 

has a large impact on the deposition evolution.  Likewise, keeping the wind parameters 

constant also has a considerable impact on SAGA results.  The trend is consistent with 

the results obtained by Teske and Barry [Teske93b], namely that the input parameters for 

aerial spray can be ranked in order of importance where release height is more important 

than any other parameter.  The approach they took to measure the relative importance 

was to change an input variable linearly and measure the corresponding relative 

sensitivity of the results.  Two parameter values, Figure of Merit and Mean Horizontal 

Position were used to measure the effectiveness of swath width deposition and the level 

of off-target drift, respectively.  Our results need further technical verifications compared 

to their approach.  But the similar trend indicated by our results provided support for the 

important roles of these key parameters and their relative importance claimed by these 

experts. 

 
Table 3.4 Testing of the Fortran-SAGA parameter importance 

 
GENERATION DEPOSITION 

(mg/m2) 
DEPOSITION 

(mg/m2) 
DEPOSITION 

(mg/m2) 
DEPOSITION 

(mg/m2) 
  Release 

Height = 75m 
Wind Direction 
= 150 degree 

Wind Speed 
= 5.0m/s 

1 98.34 97.38 96.52 96.82 
10 102.56 100.25 100.34 101.25 
20 108.25 104.39 103.95 103.49 
40 119.25 112.65 115.87 114.58 
60 137.58 120.87 125.75 124.68 

 

Based upon the results and experience from these initial SAGA experiments, we 

successfully showed the feasibility of the SAGA project and the preliminary results 

helped us to make necessary modifications to improve the program.  The main necessary 
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improvements we found about the Fortran-SAGA include the user-interface, the 

computation of COV, and the running time.  The user interface was not friendly enough 

mainly due to the Fortran programming language limitations.  The user has to specify all 

GA parameters in a text file before the run and the SAGA results are stored in a text file 

after the run.  It would be much more beneficial if the user was able to specify the GA 

parameters on a main interface and view the results directly on the interface too.  The 

output format of AGDISP DOS 7.0 was also not very convenient for us to trace the COV 

and apply it in the SAGA fitness formulation.  It would also be advantageous to reduce 

the running time of the spray simulation model.  Some significant changes were expected 

to solve these problems.   

We decided to change our GA driver with a new GA implemented with Microsoft 

Visual Basic 5.0 to take advantage of the language’s nice interface development features.  

The new interfaces of SAGA would highly facilitate the use of SAGA.  AGDISP 7.0 was 

also replaced with a new AGDISP DLL that returns deposition, COV and the resulting 

VMD.  The new SAGA was expected to speed up significantly based on the improved 

DLL and VB-GA. We also expected to incorporate AGDISP parameter dependencies and 

practical application considerations (spray knowledge) into a revised fitness measure.  

Detailed explanation of the implementation and features of the new SAGA interfaces will 

be introduced in Chapter 4.   
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CHAPTER 4  
 

DEVELOPMENT OF VB-SAGA 1.0 
 

 
After the initial testing stage with Fortran-SAGA, some significant changes were 

made to improve the SAGA user-friendliness and overall performance.  We implemented 

a new SAGA GA with Microsoft VB 5.0.  This new VB-GA features highly user-friendly 

interfaces.  A new AGDISP DLL created from the AGDISP model was used as the spray 

simulation engine.  The new SAGA program was named VB-SAGA 1.0.  As discussed in 

Chapter 3, the inter-connection between the Fortran GA and AGDISP DOS Version 7.0 

was established on the reading and writing of intermediate files.  In VB-SAGA 1.0 these 

files were replaced by inter-program calls that speed up SAGA significantly.  Section 4.1 

discusses details of the implementation of VB-SAGA 1.0 and its experimental 

performance. 

As requested by the Forest Service, an exhaustive search scheme was set up to 

validate the GA and test/compare the performance of our VB-SAGA.  Section 4.2 

introduces this exhaustive search scheme and the comparison results. 

 

4.1 VB-SAGA 1.0 

Figures 4.1 to 4.4 show the interfaces of the new VB-SAGA.  These interface 

windows are designed to provide user convenience and high flexibility to specify GA 

parameters, preset necessary spray parameters, chart ongoing SAGA evolution, view the 

dynamic evolution of the spray parameters, and view final SAGA results information.  
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The top half of the main interface is primarily for GA control parameters and the bottom 

half is mainly for spray parameters and results. 

As shown in Figure 4.1, depending on the user’s knowledge of the GA and the 

application purpose, the user can select either [General GA Parameters] which is a set of 

recommended GA parameters for gypsy moth spray, [Cool GA Parameters] which is a set 

of recommended GA parameters for regular spray, or the advanced [Customized GA 

Parameters].  If the user selects the [Customized GA Parameters], groups of GA 

parameters will appear (shown in Figure 4.2) and the user can modify the default values 

as they like.  

The new VB Genetic Algorithm driver in this study originated from the Simple 

Genetic Algorithm (SGA) described by Goldberg [Gold89].  The GA initializes the first 

population with individuals generated at random.  An individual corresponds to a set of 

AGDISP parameters.  We made use of one of the convenient features of VB, the "Type" 

statement, to define a new data structure that consists of the eleven spray parameters 

(defined as a Single array), three return values from the DLL, and the fitness.  This new 

data type is named "individual".  This “individual” corresponds to the chromosome string 

representation in the traditional GA.  We use a real number representation for the 

parameters and the individuals.   

For the GA parameters, as shown in Figure 4.2, we have various GA options that 

users can select to group a set of GA parameters for SAGA.  The user can enter 

population size, generations, crossover probability, and mutation probability into the text 

areas.  Each of these parameters is provided a default value, e.g., 100 for PopSize, 80 for 

Generations, 0.65 for Crossover Probability, and 0.007 for Mutation Probability.  For the 
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GA operators, we provide several options for each.  For the selection scheme, users can 

choose among [Naive Roulette Wheel] selection, [Tournament] selection and [Binary] 

selection.  For the crossover operation, users have the options of [1-point], [2-point], 

[uniform], and [average] crossover.  We have [Jump Mutation] and [Creep Mutation] for 

mutation options.  The former is to randomly select a new value for a parameter within its 

valid range.  The latter is to change the old parameter by a small increment (error 

checking is added to make sure the new value is valid).  Besides these basic GA 

parameters, we also add some new features such as [Elitism], which will enable the GA 

to inherit the best individual from the previous generation when turned on.  Another 

useful option is [Fitness Scaling] which is an advanced GA feature that is used to 

overcome the "local maximum" problem.  With [Elitism] and [Fitness Scaling] turned on, 

the SAGA normally converges in less than 30 generations.  The GA population becomes 

basically homogenous after that and there is no necessity to run the program much 

longer.  We thus provide a [Stable Generations] option for the user to specify how many 

stable generations (no changes in maximum fitness) are allowed before stopping SAGA.  

The current default value is 12.  The user can also specify the tournament size used in the 

tournament selection scheme.  The recommended value is 2 for selection in pairs. 

In practical spray applications, it's quite common that some spray parameters can 

and should be fixed according to the spray requirements.  We thus provide the option to 

preset certain spray parameters by selecting [Preset Parameters].  A new interface 

window will appear with the spray parameters listed (shown in Figure 4.3).  The user can 

select the ones to preset and fill in appropriate values.  The rest of the parameters are left 

open to evolution by SAGA. 
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The bottom half of the main interface is designed to display intermediate results 

with two options provided.  The first option is that the user can view the dynamic values 

of the eleven spray parameters and the three spray results (shown in Figures 4.1 and 4.2).  

These values are associated with the best individual so far as the program evolves from 

generation to generation.  This option is set as the default output mode.  The user can also 

click on the [View Chart] button to switch the bottom half to a fitness growth chart with 

the maximum and average fitness values displayed dynamically (shown in Figure 4.4).  

The user can click on the [View Parameters] to return to the parameters option. 

After the user finishes setting the GA and spray parameters, clicking on the [Run 

SAGA] button starts the run, or clicking [Reset Window] resets the parameters to their 

default values.  Besides the spray parameters and results being displayed dynamically in 

the main interface, the user can also click on [View Convergence Log] after the program 

stops to look at a detailed report. 

The spray parameters to be optimized by VB-SAGA1.0 are not the same as those 

used in Fortran-SAGA as shown in Table 3.1.  As suggested by Forest Service experts, 

we introduced several more representative spray parameters such as VMD Input, Aircraft 

ID Number, and Block Size.  We removed some old parameters such as Number of 

Swaths, Drop Size Distribution, and Total Flow Rate.  Table 4.1 shows the eleven spray 

parameters that are to be optimized by VB-SAGA 1.0.  These eleven spray parameters 

are also the input parameters for the new AGDISP DLL.  Other less important or more 

static parameters are kept constant during our experiments.  However, they can become 

part of the variable parameter set (i.e., we can easily include additional parameters to the 
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parameter set we are searching for) by specifying them at the beginning of each SAGA 

run if the user requests so.  

 
Table 4.1 VB-SAGA1.0 spray parameters and their ranges 

 

PARAMETER LOWER UPPER 
VMD Input (µm) 100 400 
Nonvolatile Fraction 0.001 1.0 
Wind Speed (m/s) 0.23 4.47 
Temperature (degree C) 1 30 
Boom Height (m) 3 30 
Swath Width (fraction of wingspan) 0.3 3.0 
Humidity (%) 0.0 1.0 
Aircraft ID Number 1 124 
Boom Length (fraction of wingspan) 0.3 1.0 
Number of Nozzles 1 60 
Block Size (m) 50 1000 

 
 

The VB-SAGA1.0 has very similar architecture as that of Fortran-SAGA shown 

in Figure 3.2.  However, there are two major differences.  One is that instead of 

Deposition and COV, the new AGDISP DLL returns three outputs, Drift Fraction, COV, 

and VMD Output.  We adopt a new fitness function (shown below) suggested by the 

USDA Forest Service experts that incorporates these three outputs with different weights.  

VMDCenter is the desired VMD value specified by the user before the run.  The other 

difference is that the connection between the VBGA and the AGDISP simulation model 

is now based on the inter-program calls instead of the I/O intermediate files for the 

Fortran-SAGA.  This improvement greatly speeds up the SAGA to a large extent. 
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Figure 4.1    Main interface of VB-SAGA1.0 

 

 
Figure 4.2    Main interface of VB-SAGA1.0 with user-specified GA parameters 
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Figure 4.3    Secondary interface of VB-SAGA1.0 to preset spray parameters 
 

 
 
Figure 4.4   VB-SAGA1.0 main interface with chart view option turned on 
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4.2 Exhaustive Search Test and Comparison with VB-SAGA 1.0 

4.2.1 Exhaustive Search Test 

The exhaustive search test was requested by the Forest Service to validate the GA 

and SAGA results.  The goal of the test was to compare SAGA results with exhaustive 

search results to make sure that SAGA was able to find optimal or near-optimal solutions.  

The exhaustive test program interface is shown in Figure 4.5.  Because the tremendously 

huge search space for eleven parameters, it was desired to finish the exhaustive test with 

reasonable time and economical efforts.  We thus needed to reduce the huge search space 

to run the exhaustive search within several days as long as the results meet the Forest 

Service requirements.  The approach we took to reduce the huge search space was to fix 

eight spray parameters as shown in Table 4.2 and test the remaining combinations of the 

other three parameters as shown in Table 4.3.  Another effort to reduce the search space 

was to use narrower ranges (reduce upper bound and increase lower bound) of these three 

parameters.  Our earlier test runs gave us some idea of good ranges of these three 

parameters, we therefore used these smaller ranges (also shown in Table 4.3) instead of 

the full range as shown in Table 4.1.  These spray parameters were imported into 

AGDISP DLL to produce batch results and we used the same fitness function in SAGA 

to obtain their fitness value.  The total combination of all parameter sets is about 

15*12*100=18,000.  If we estimate an average running time to be about 20 seconds for 

each run, the total running time for the exhaustive test will be approximately 4 days.  The 

actual exhaustive search experiment took about three and one half days and the top ten 

solutions are listed in Table 4.4.   
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Figure 4.5   Exhaustive search test main interface 
 
 
 

Table 4.2 Fixed spray parameters in exhaustive search test 
 

DSD-VMD 100.0 micron 
Temp 10.0 degC 

Humidity 75.0 
AircraftNum 7 
BoomWidth  0.75 

NumNoz 42 
BlockWidth 400.0 m 
SwathWidth 1.2 m 

 
 

 
Table 4.3 Changing spray parameters in exhaustive search test 

 
 Lower Bound Upper Bound Increment Step 

NvFrac 0.75 0.9 0.01 
Wind Speed 0.23m/s 0.35m/s 0.01 
BoomHeight 6.0m 7.0m 0.01 
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Table 4.4 Fitness results from exhaustive experiment (8 fixed parameters) 

 
NO. BEST FITNESS 

1 9428.176 
2 9427.911 
3 9427.605 
4 9427.257 
5 9426.553 
6 9426.434 
7 9425.577 
8 9425.041 
9 9423.479 
10 9422.863 

 

It should be noted that the exhaustive experiment results are dependent on the 

increment step adopted.  The exhaustive test scheme being used here is in fact a pseudo 

exhaustive search, because we are actually selecting very closely spaced points in the 

search space, though the difference between the points is very small to match as close as 

possible to a real exhaustive search.  However, the problem does exist that using this 

pseudo exhaustive search could possibly leave out some good points and reduce the 

certainty of finding the best individual.  We therefore need to minimize the steps to the 

smallest possible in order to approach closely enough to a continuous search in order to 

obtain best results.  However, the smaller the steps are, the longer time it will take to 

finish the exhaustive search.  We want to complete the experiment within a reasonable 

time length as long as the results satisfy the precision requirements.  For our testing 

purpose and precision requirements, we think the step 0.01 is acceptable for all three 

changing parameters and the results are satisfactory to validate the GA and SAGA. 
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4.2.2 VB-SAGA1.0 Test 

We then ran VB-SAGA1.0 with the same eight spray parameters fixed with the 

same values, and let VB-SAGA1.0 evolve Non Volatile Fraction, Wind Speed, and Boom 

Height to obtain their best values as well as the best spray results.  The results are 

displayed in Table 4.5.  It only took 1.5 hours to finish and the best result from SAGA 

was found among the top 0.1% of the exhaustive results.  Table 4.6 shows a side-by-side 

comparison of best exhaustive with best SAGA results.  This is a good validation that 

SAGA is capable of finding near-optimal solutions for our spray application in relatively 

short time. 

 

Table 4.5 Fitness results from VB-SAGA 1.0 experiment (8 fixed parameters) 
 

MUT. 

XOVER 

0.001 0.003 0.007 0.01 0.02 0.03 ROW 
AVG. 

0.60 9384.353 9329.302 9354.186 9345.647 9407.326 9416.380 9372.866 
0.65 9322.343 9392.962 9399.037 9416.356 9406.362 9324.382 9376.907 
0.70 9402.429 9400.000 9406.360 9387.536 9395.794 9351.680 9390.633 
0.75 9403.283 9358.872 9401.998 9364.615 9404.165 9398.096 9388.505 
0.80 9423.766 9411.717 9393.582 9413.530 9417.993 9397.563 9409.692 
0.85 9321.064 9335.679 9427.255 9414.876 9396.127 9358.782 9375.631 

COLUMN 
AVG. 

9376.206 9371.422 9397.07 9390.427 9404.628 9374.481  

 
 
 

Table 4.6 The maximum fitness for exhaustive and VB-SAGA 1.0 tests 
 

 EXHAUSTIVE TEST GA TEST 
Maximum Fitness 9428.176 9427.255 

Non-Volatile Fraction 0.780 0.789 
Wind Speed (m/s) 0.280 0.282 
Boom Height (m) 6.100 5.777 

Drift Fraction 0.0309 0.0297 
COV 0.165 0.167 

VMD (micron) 101.625 104.223 
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4.3 VB-SAGA1.0 Experiments and Results 

After the exhaustive validation test, we began to use VB-SAGA 1.0 under 

different circumstances, mainly with and without spray parameter restrictions.  We ran 

many experiments based on particular specifications by the Forest Service for their 

practical applications.   

 

4.3.1 VB-SAGA1.0 Best Result with No Spray Parameter Restrictions 

With no spray parameters fixed, SAGA is expected to generate better results 

compared to those with certain spray parameter restrictions.  The best fitness and the 

corresponding spray parameters are listed in Table 4.7. 

 
 

Table 4.7 The maximum fitness from VB-SAGA 1.0 without restrictions on spray 
parameters (GA crossover rate=0.65 and mutation rate=0.007) 

 
 

ITEM BEST RESULTS 
Maximum Fitness 9924.08 

DSD-VMD (micron) 100 
Non-Volatile Fraction 0.788 

Wind Speed (m) 0.264 
Temperature (degC) 4.941 

Humidity (%) 62.715 
Aircraft 110 

Boom Length (fraction of wingspan) 0.529 
Nozzles 9 

Boom Height (m) 7.086 
Block Size (m) 964.9 

Swath Width (fraction of wingspan) 0.543 
Drift Fraction 0.00301 

COV 0.0242 
VMD (micron) 99.58 
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4.3.2 VB-SAGA1.0 Results with Certain Spray Parameter Restrictions 

We ran many experiments based on the practical spray parameter specifications 

provided by Forest Service managers.  In total there are six groups of experiments that 

belong to two categories.  The first category includes two groups of experiments of which 

four and seven spray parameters are fixed respectively.  The second category includes the 

other four groups of experiments that focus on investigating the roles of aircraft and 

swath width.  For each group, we ran 10 experiments with the combination of crossover 

rate 0.65, 0.7, 0.75, 0.8, 0.85 and mutation rate 0.007 and 0.012.  The population size is 

100 and the generation is 70 for all experiments.   

The maximum fitness obtained based on the first group of specifications was 

9710.885 and the spray parameters corresponding to this maximum fitness are listed in 

Table 4.8.  Detailed results are listed in Table 4.9.  DSD-VMD, Aircraft, Block Size and 

Swath Width were fixed in this case.  The second group of experiments has the highest 

fitness of 9750.743 and its corresponding spray parameters are listed in Table 4.10.  

Detailed results are listed in Table 4.11.  DSD-VMD, Aircraft, Block Size and Swath 

Width are fixed in this case.   

Besides the above two groups of experiments, we also ran four groups of 

experiments with different configurations of fixed aircraft and swath width.  Tables 4.12 

to 4.15 show the results from these four groups of experiments.  It is often a matter of fact 

that the aircraft has to be fixed due to availability restriction during spray practice.  It is 

therefore of highly practical importance to determine what optimal or near optimal values 

for other parameters should be used when the aircraft and swath width are fixed.  These 

four groups of experiments were expected to give the forest managers such possible help. 
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Table 4.8 Experiment 1: practical settings with maximum fitness=9710.885 

 
 

EVOLVING 
PARAM. 

NvFrac WindSpd Temp Humidity BoomLen Nozzles BoomHeight 

 0.853 0.252 24.651 66.689 0.604 29 3.219 
FIXED 

PARAM. 
DSD-VMD Aircraft Block Size Swath Width  

 100 6 400 1.2  
 

 
 
 

Table 4.9 Experiment 1: practical settings details 
 
 

XOVER MUTATION MAX FIT. DRIFT FRAC. COV VMD 
0.65 0.007 9681.238 0.024264 0.075137 102.1929 
0.65 0.02 9521.977 0.043287 0.104543 100.3391 
0.7 0.007 9669.712 0.028459 0.082142 100.5931 
0.7 0.02 9710.885 0.022601 0.064461 102.2375 

0.75 0.007 9651.816 0.028348 0.080639 101.5573 
0.75 0.02 9574.656 0.026514 0.117077 100.2037 
0.8 0.007 9609.734 0.033884 0.086671 101.4445 
0.8 0.02 9691.885 0.021839 0.07862 100.6032 

0.85 0.007 9694.788 0.025709 0.070153 100.8018 
0.85 0.02 9639.846 0.033055 0.077817 99.59053 

 
 
 
 

Table 4.10 Experiment 2: practical settings with maximum fitness=9750.743 
 
 

FIXED 
PARAM. 

DSD-VMD NvFrac Wind 
Speed 

Humidity Temperature Nozzles Block Size 

 200  0.45 0.5 75 10 6 400 
EVOLVING 

PARAM. 
Boom Height Boom Length Aircraft Swath Width  

 4.233 0.322 7 0.698  
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Table 4.11  Experiment 2: practical settings details 

 
 

CROSSOVER MUTATION MAX FIT DRIFT FRAC COV VMD 
0.65 0.007 9643.027 0.010314 0.065517 217.0752 
0.65 0.02 9021.266 0.040434 0.096909 234.6726 
0.7 0.007 9623.292 0.014304 0.063063 217.4393 
0.7 0.02 9250.907 0.028835 0.098085 227.8699 

0.75 0.007 9750.743 0.074591 0.030589 216.6913 
0.75 0.02 9642.524 0.011115 0.06124 217.5165 
0.8 0.007 9642.524 0.011115 0.06124 217.5165 
0.8 0.02 9263.371 0.029171 0.099688 227.102 

0.85 0.007 9263.371 0.029171 0.099688 227.102 
0.85 0.007 9551.506 0.011498 0.071744 221.0305 

 
 

 

Table 4.12 Experiment 3: practical settings details 
(Aircraft: 100, swath width: 2.5) 

 
 

XOVER MUTATION MAX FIT COV VMD DRIFT FRAC 
0.65 0.02 8478.91 0.4693 206.174 0.06913 
0.65 0.007 8489.09 0.4747 200.007 0.0648 
0.7 0.02 8492.34 0.468 200.104 0.0674 
0.7 0.007 8486.53 0.442 199.89 0.0812 

0.75 0.02 8476.31 0.4767 199.95 0.0663 
0.75 0.007 8489.97 0.468 199.79 0.0673 
0.8 0.02 8488.16 0.4343 199.23 0.0833 
0.8 0.007 8492.53 0.4625 199.769 0.06967 

0.85 0.02 8494.48 0.4673 199.91 0.06722 
0.85 0.007 8477.4 0.4476 199.708 0.07998 
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Table 4.13 Experiment 4: practical settings details 

    (Aircraft: 106, swath width: 2.25) 
 
 

XOVER MUTATION MAX FIT COV VMD DRIFT FRAC 
0.65 0.02 8717.63 0.384 199.37 0.063 
0.65 0.007 8728.38 0.3798 199.434 0.063 
0.7 0.02 8716.13 0.385 199.292 0.0625 
0.7 0.007 8730.29 0.378 199.44 0.0634 

0.75 0.02 8730.85 0.378 199.42 0.0636 
0.75 0.007 8719.01 0.381 199.244 0.064 
0.8 0.02 8738.82 0.377 200.112 0.06346 
0.8 0.007 8729.69 0.375 199.565 0.654 

0.85 0.02 8720.44 0.383 199.39 0.063 
0.85 0.007 8730.54 0.375 199.52 0.0652 

 
 
 
 

Table 4.14 Experiment 5: practical settings details 
    (Aircraft: 5, swath width: 2.3) 

 
 

XOVER MUTATION MAX FIT COV VMD DRIFT FRAC 
0.65 0.02 8345.86 0.362 200.33 0.198 
0.65 0.007 8345.78 0.36 200.77 0.149 
0.7 0.02 8346.01 0.362 201.18 0.147 
0.7 0.007 8351.57 0.362 200.2 0.15 
0.75 0.02 8351.86 0.363 200.404 0.147 
0.75 0.007 8353.54 0.36 200.17 0.148 
0.8 0.02 8349.72 0.36 200.3 0.149 
0.8 0.007 8353.4 0.361 200.3 0.148 
0.85 0.02 8357.87 0.3607 200.27 0.1474 
0.85 0.007 8354.77 0.3608 200.078 0.14844 
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Table 4.15 Experiment 6: Practical Settings Details  

(Aircraft: 10, swath width: 2.2) 
 

 
XOVER MUTATION MAX FIT COV VMD DRIFT FRAC 

0.65 0.02 8441.29 0.3694 200.12 0.127 
0.65 0.007 8353.47 0.357 199.08 0.148 
0.7 0.02 8405.04 0.378 201.7 0.13 
0.7 0.007 8432.74 0.368 199.777 0.1291 

0.75 0.02 8438.65 0.3689 199.655 0.1269 
0.75 0.007 8434.23 0.37 200.5 0.128 
0.8 0.02 8444.23 0.37 199.93 0.126 
0.8 0.007 8440.37 0.365 199.989 0.129 

0.85 0.02 8436.35 0.371 200.82 0.125 
0.85 0.007 8439.76 0.362 200.111 0.13 

 

These results were evaluated by spray experts and regarded as excellent 

predictions with high practical importance.  More experiments are to be run to test other 

scenarios and the results are expected to assist practical spray applications, including 

selecting optimal spray conditions, estimating spray results, reducing spray cost, and 

minimizing spray drift. 
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CHAPTER 5 
 

DEVELOPMENT OF VB-SAGA 2.0 
 

 
VB-SAGA2.0 inherits most important features of VB-SAGA1.0 and adds some 

significant new features.  The two most important new features are the menu and the self-

adaptive GA.  Figure 5.1 shows a typical VB-SAGA 2.0 interface with these two new 

features.   In addition, VB-SAGA2.0 uses a slightly modified fitness function listed 

below. 

 

5.1 VB-SAGA2.0 Menu Items 

VB-SAGA2.0 replaced the buttons of VB-SAGA1.0 with a menu bar as shown in 

Figure 5.1.  All the functionality of the buttons on the VB-SAGA1.0 main interface is 

now replaced by this handy menu bar.  The menu bar is added onto the top-left corner of 

the VB-SAGA 2.0 main interface.  The four main menus on the menu bar are 

[Command], [Configuration], [View], [Help].  Each main menu has certain sub-items.  

For example, under the [Command] item, there are [Run SAGA], [Preset Spray 

Parameters], [Reset Parameters], [View and Print SAGA Results], and [Exit]. 

Under the [Configuration] item, there are [Enable Adaptive GA], [Disable 

Adaptive GA], [Change Frame Color], and [Change Window Size].  The adaptive GA 

feature can be enabled and disabled by selecting the first or second item.  Details of the 
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adaptive GA feature will be introduced in the following section.  The item [Change 

Frame Color] has several sub-items that lead to different color combinations of the frame.  

[Change Window Size] has [Small], [Medium], or [Large] to choose to modify the size of 

the program window.   

 
Figure 5.1 The main interface of VB-SAGA2.0 

 

The item [View] has sub-items such as [View Default GA Settings], [View 

Customized Settings], [View SAGA Progress Chart], [View SAGA Parameters List], 

[AGDISP DLL Information], and [Spray Advisor Information].  [View Default GA 

Settings] provides two default GA Settings [Gypsy Moth Parameters] and [Cool GA 

Parameters].  [View Customized Settings] displays the specific GA parameters for the 

user to specify.  [View SAGA Progress Chart] shows the evolving curves of the 

maximum and average fitness of the generations in the bottom half of the window and 

[View SAGA Parameters List] changes the bottom half back to evolving spray 
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parameters.  [AGDISP DLL Information] gives some introduction of the AGDISP model 

and its DLL version.   

The item [Help] has sub-items such as [View Help File], [View Recent SAGA 

Paper], [View General GA Tutorial], and [Contact Information].  [View Help File] 

enables the user to view an introduction document about SAGA.  [View Recent SAGA 

Paper] presents the user with the latest published SAGA paper so that the user can have 

comprehensive knowledge of the development and achievements of SAGA.  [View 

General GA Tutorial] provides a quick tutorial about basic concepts and working 

principles of the GA.  [Contact Information] provides the authors information for 

comments or inquiries. 

 

5.2 The Self-adaptive GA 

5.2.1 Why use the self-adaptive GA  

SAGA1.0 has shown steady and satisfactory performance.  However, we expect it 

to have better performance for all levels of users.  For example, the program requires 

certain computer and GA knowledge by the user, especially knowledge about setting 

appropriate GA parameters before the run.  The rule of thumb for the best values of the 

GA parameters is 0.65 - 0.85 for crossover rate, 0.005 – 0.01 for mutation rate.  Our 

previous experiments showed that for SAGA, crossover rate between 0.75 and 0.85 and 

mutation rate between 0.005 and 0.012 usually produced good results.  But the specific 

values may differ with different problems.  For an inexperienced user, it may take many 

tests before locating the appropriate range and exact values of these GA parameters.  This 

is not always welcome, especially in the situation when the operation time is a major 
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concern.  It is also not easy for a novice user to understand the GA concepts such as 

crossover and mutation quickly.  One main goal of our project is that the user with little 

GA knowledge can start to use SAGA quickly and correctly.  We thus continued our 

efforts to develop an improved SAGA with a self-adaptive GA feature such that some 

users with little GA knowledge or even little computer knowledge are able to use SAGA 

easily.  We name the new program VB-SAGA2.0.  With this self-adaptive GA feature on, 

the new VB-SAGA2.0 can actually start at any random valid GA operator values (for 

crossover and mutation only at this stage), the program will evolve to the best GA values 

as well as the best spray parameters.   

 

5.2.2 Fuzzy logic control 

Fuzzy Logic is basically a multi-valued logic that is used to handle the concept of 

partial truth instead of "completely true" and "completely false" notions such as yes/no, 

true/false, and black/white [Kosk91].  By using fuzzy logic, notions like small, big, 

warm, or pretty cold can be formulated mathematically and processed by computers.  

Fuzzy logic was first introduced by Dr. Lotfi Zadeh at UCBerkeley in the 1960's as a 

means to model the uncertainty of natural language [Neuy99].  It has emerged as a 

powerful tool for the control of subway systems and complex industrial processes, as well 

as for household and entertainment electronics, diagnosis systems and other expert 

systems.  

 The membership function is one of the important concepts in fuzzy logic.  It is 

used to convert an input to be anywhere in the range of [0, 1] [Neuy99].  Triangular or 

Gaussian functions are commonly used representations of membership functions.  A set 
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of IF-THEN rules is used in fuzzy logic to stipulate what actions should be taken under 

certain conditions.  Fuzzification is the process used to convert crisp inputs to values in 

the range of [0, 1] (degree of the membership) based on the membership functions.  If the 

fuzzified values match the conditions of one or more rules, the actions of these rules will 

be taken to produce outputs.  If more than one rule is fired, the outputs need to be 

aggregated together to generate an output region.  Defuzzification is the last process in 

fuzzy control to deduce the crisp output from the output region.  Centroid, maximizer, 

and weighted average are the three commonly used approaches to locate crisp output. 

 

5.2.3 Development of self-adaptive GA in VB-SAGA2.0 

The idea for the self-adaptive GA came from the work by Lee and Takagi 

[Lee93].  They use fuzzy logic techniques to dynamically control parameter settings of 

their GA.  We simplified their approach and designed our adaptive scheme based on 

similar principles.  For our self-adaptive SAGA, there are three inputs and two outputs. 

The three inputs are: 

A1:  (average fitness)/(best fitness) 

A2:  (worst fitness)/(average fitness)  

A3: change in fitness since last generation 

The two outputs are: 

B1: the crossover probability change 

B2: the mutation probability change  

Each input or output has three membership values: small, medium and big.  

Triangular membership functions are used for this fuzzy control (the membership 
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functions are listed in Appendix A).  There are altogether 27 control rules for our self-

adaptive GA (listed in Appendix B).   Some examples of the rules are as follows: 

 IF A1 is small, A2 is small, and A3 is small, THEN B1 is small and B2 is small.  

 IF A1 is small, A2 is medium, and A3 is medium, THEN B1 is big and B2 is 

medium. 

 IF A1 is medium, A2 is small, and A3 is medium, THEN B1 is medium and B2 is 

big. 

When the self-adaptive feature is turned on, the GA watches the changes of A1, 

A2 and A3, and makes modifications to B1 and B2 when one or more rules are fired. We 

use triangular membership functions in fuzzification and defuzzification to obtain crisp 

outputs.  The goal is to force the GA to evolve to the GA parameters that maximize the 

fitness based on the underlying rules.  The new crossover and mutation parameters are 

restricted such that they can at most change half of their previous values every time.   The 

valid ranges for both crossover and mutation rates are [0, 1].   

 

5.3 Results of VB-SAGA2.0 

Table 5.1 gives an example of the best fitness from VB-SAGA2.0 with the self-

adaptive GA feature on.  In this example, the VB-SAGA2.0 started at population 100, 

generation 70, crossover 0.75, mutation 0.012, and VMD-target 100.  No spray parameter 

restrictions in this case.  The best fitness obtained is 9935.24 and the corresponding best 

spray parameters are also shown in the table.  The final crossover rate is 0.9203 and 

mutation rate is 0.0125 due to self-adaptive change.  The best fitness from SAGA1.0 with 

same initial conditions is also listed in the table for comparison.  



 

 46 
 
 

We then ran two experiments to test SAGA2.0 performance with the same initial 

spray conditions of experiment 1 and 2.  That is, for experiment 1, we fixed DSD-VMD, 

Aircraft Number, Block Size, and Swath Width, while other spray parameters were left to 

be evolved by SAGA.  Experiment 2 was repeated for SAGA2.0 with the same initial 

conditions as well.  The results are shown in Table 5.2.  The best fitness results from the 

two experiments of SAGA1.0 are also listed for comparison. 

We further ran several more tests with SAGA2.0 repeating conditions of 

experiment 3 to 6 to compare the performance of SAGA1.0 and SAGA2.0.  Table 5.3 

gives the details of the results. 

 
 

Table 5.1 Results from VB-SAGA 1.0 and VB-SAGA 2.0 
 

 MAX FIT COV VMD DRIFT FRAC 
VB-SAGA1.0 9924.08 0.0242 99.58 0.00301 
VB-SAGA2.0 9935.24 0.0215 100.73 0.00312 

 

 

Table 5.2 VB-SAGA 2.0 results for experiment 1 and 2 
 
 

EXPERIMENT MAX FIT COV VMD DRIFT FRAC. SAGA1.0 BEST FIT. 
1 9788.236 0.0632 102.132 0.0223 9710.885 
2 9802.384 0.0312 205.434 0.0651 9750.743 

 

 
Table 5.3 VB-SAGA2.0 results for experiment 3-6 

 
 

EXPERIM
ENT 

AIRCRAFT  SWATH 
WIDTH 

MAX 
FIT. 

COV VMD DRIFT 
FRAC. 

SAGA1.0 
BEST FIT.  

3 106 2.25 9500.97 0.141 200.56 0.02797 8738.82 
4 100 2.5 9327.26 0.265 200.25 0.03841 8494.48 
5 10 2.2 9405.37 0.149 200.17 0.1536 8444.23 
6 5 2.3 8386.54 0.213 199.85 0.01257 8357.87 
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As we can see from Tables 5.2 and 5.3, the self-adaptive SAGA2.0 has obtained 

significantly better results than the regular SAGA1.0 for experiment 3 to 6.  However, in 

Table 5.3, the results of the self-adaptive SAGA2.0 are only a little better than those of 

the regular SAGA1.0 for experiments 1 and 2.  One of the reasons for this difference is 

the degree of the spray parameter restrictions.  Experiments 1 and 2 fixed four and seven 

spray parameters respectively, while experiments 3 to 6 fixed two parameters only.  As 

we know, the crossover and mutation operators apply on individuals to exchange their 

characteristics and maintain certain diversity.  If many spray parameters are already 

fixed, the effect of crossover and mutation will be reduced by a large extent.  The self-

adaptive GA in particular relies more on the proper functioning of crossover and 

mutation operators to optimize crossover and mutation as well as optimize spray 

parameters as the regular VB-SAGA1.0 does. 

The self-adaptive GA is the latest addition to our SAGA project.  We are still 

working on it to run more experiments to verify the results and attempt to improve the 

program based on the results and feedback.  The adaptive GA has already been proven a 

feasible way to improve GA performance [Lee93].  However, the implementation 

approach for different problems may differ greatly.  Our results of dynamic control of 

GA parameters in SAGA have indicated that this new feature can improve SAGA 

performance under our circumstances.   We are expecting to add new dynamic control 

features in future improvements.  



 

 48 
 
 

 
 
 
 
 

CHAPTER 6 
 

SUMMARY AND CONCLUSIONS 
 
 

The development of SAGA consists of three stages as discussed in earlier 

chapters, Fortran-SAGA, VB-SAGA1.0, and VB-SAGA2.0.  The experimental results 

from these different versions of SAGA were evaluated by the spray experts and regarded 

as good predictions for practical applications.  By using SAGA, the user is able to find 

optimal or near-optimal spray parameters in order to achieve minimal drift loss, even 

deposition and desired droplet size.  SAGA can usually find the optimal or near-optimal 

spray parameters in a few hours.  If the user presets one or more of the spray parameters, 

SAGA will spend even less time to find the optimal/near-optimal values due to the 

reduced complexity of the problem.  The user is also able to use SAGA as a regular spray 

simulation program by specifying some or all spray parameters to obtain spray results, 

such as drift fraction, VMD and COV.  The newly added user-friendly features such as 

the menu bar, and the self-adaptive GA are also highly welcome by the Forest Service 

users. 

Based on the users’ feedback, we will be able to make further modifications to the 

user interface and the program operation.  The USDA Forest Service is working on 

improving the AGDISP simulation model to speed up SAGA.  A revised fitness 

formulation is also being proposed by the Forest Service to map the spray results to the 
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fitness as close as possible.  In addition, we are making continuous efforts to improve the 

GA as well as the overall user friendliness.   

One new goal of interest is to apply SAGA to optimize more practical factors in 

spray practice such as the time and cost.  An example of important factors affecting the 

spray time and cost is the flight path of the spraying aircraft.  We currently assume the 

number of flight lines is determined by dividing the block width by the swath width and 

the aircraft follows these flight lines.  However, many blocks have irregular shapes.  The 

problem of flying these blocks is similar to the famous traveling salesperson problem 

where a salesperson is expected to visit a group of cities in such an order that the total 

traveling distance is minimized.  We expect to add this new optimization procedure to 

SAGA so that it will be able to find the optimal or near-optimal flight path to reduce 

spray time and cost. 

It is also one of our future expectations to incorporate a multi-objective GA into 

our SAGA project.  Our current work focuses on optimizing spray parameters to achieve 

maximal spray deposition, minimal evaporation loss, and even spray distribution.  We 

combine all these objectives into one single fitness function.  This approach is often said 

to have the drawback of modeling the original problem in an inadequate manner 

[Coel94].  Approaches such as min-max optimum [Coel94], combination of the Pareto 

method with weights [Cvet99], and ranked solutions based on Pareto-optimal theory 

[Dick97] have been taken to tackle such multi-objective problems.  We plan to consider 

the feasibility of including multi-objective optimization in our future SAGA work.  

Our work was (and will be) presented at several AI conferences [Potter99], 

[Pott00], [Bi00] as successful GA and AI practical applications.  It is also under 
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consideration to be incorporated into the large Spray Advisor package that is used 

nationwide by the USDA Forest Service.   
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APPENDIX A: 
 

Membership Functions Used in VB-SAGA 2.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.40.0 0.8

1.0

0.5

1.00.2 0.6
Average fitness/best fitness

A1

0.40 .0 0 .8

1 .0

0 .5

1 .00 .2 0 .6
W orst  f i tness/average f i tness

A 2



 

 55 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.5 2.0

1.0

0.5

1.01.0 1.5
0.0

Change of crossover rate

B1

1800 300

1.0

0.5

36060 240
Change of best fitness

A3

120
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1.0
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2.51.0
Change of mutation rate
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APPENDIX B: 
 

 Fuzzy Control Rules in VB-SAGA2.0 
 

Rule 1:  

IF A1 is small, A2 is small, and A3 is small, THEN B1 is small and B2 is small.  

Rule 2:  

IF A1 is small, A2 is small, and A3 is medium, THEN B1 is small and B2 is 

small.  

Rule 3:  

IF A1 is small, A2 is small, and A3 is big, THEN B1 is small and B2 is medium.  

Rule 4:  

IF A1 is small, A2 is medium, and A3 is small, THEN B1 is medium and B2 is 

small.  

Rule 5:  

IF A1 is small, A2 is medium, and A3 is medium, THEN B1 is big and B2 is 

medium.  

Rule 6:  

IF A1 is small, A2 is medium, and A3 is big, THEN B1 is medium and B2 is big.  

Rule 7:  

IF A1 is small, A2 is big, and A3 is small, THEN B1 is medium and B2 is 

medium.  

Rule 8:  
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IF A1 is small, A2 is big, and A3 is medium, THEN B1 is small and B2 is 

medium.  

Rule 9:  

IF A1 is small, A2 is big, and A3 is big, THEN B1 is small and B2 is medium.  

Rule 10:  

IF A1 is medium, A2 is small, and A3 is small, THEN B1 is medium and B2 is 

medium.  

Rule 11:  

IF A1 is medium, A2 is small, and A3 is medium, THEN B1 is medium and B2 is 

big.  

Rule 12:  

IF A1 is medium, A2 is small, and A3 is big, THEN B1 is medium and B2 is 

medium.  

Rule 13:  

IF A1 is medium, A2 is medium, and A3 is small, THEN B1 is medium and B2 is 

medium.  

Rule 14:  

IF A1 is medium, A2 is medium, and A3 is medium, THEN B1 is big and B2 is 

medium.  

Rule 15:  

IF A1 is medium, A2 is medium, and A3 is big, THEN B1 is small and B2 is 

medium.  

Rule 16:  
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IF A1 is medium, A2 is big, and A3 is small, THEN B1 is small and B2 is big.  

 

Rule 17:  

IF A1 is medium, A2 is big, and A3 is medium, THEN B1 is small and B2 is 

medium.  

Rule 18:  

IF A1 is medium, A2 is big, and A3 is big, THEN B1 is medium and B2 is 

medium.  

Rule 19:  

IF A1 is big, A2 is small, and A3 is small, THEN B1 is small and B2 is small.  

Rule 20:  

IF A1 is big, A2 is small, and A3 is medium, THEN B1 is small and B2 is 

medium.  

Rule 21:  

IF A1 is big, A2 is small, and A3 is big, THEN B1 is big and B2 is big.  

Rule 22:  

IF A1 is big, A2 is medium, and A3 is small, THEN B1 is small and B2 is 

medium.  

Rule 23:  

IF A1 is big, A2 is medium, and A3 is medium, THEN B1 is small and B2 is 

medium.  

Rule 24:  

IF A1 is big, A2 is medium, and A3 is big, THEN B1 is small and B2 is big.  
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Rule 25:  

IF A1 is big, A2 is big, and A3 is small, THEN B1 is medium and B2 is small.  

Rule 26:  

IF A1 is big, A2 is big, and A3 is medium, THEN B1 is medium and B2 is small.  

Rule 27:  

IF A1 is big, A2 is big, and A3 is big, THEN B1 is medium and B2 is small.  

 

 

 

 


