
Efficient Integration of PROLOG and Relational

Databases in the NED Intelligent Information System

F. Maier, D. Nute, W. D. Potter, J. Wang, M. Dass, H. Uchiyama
Artificial Intelligence Center
The University of Georgia

Athens, GA, U.S.A

M. Twery, P. Knopp, S. Thomasma
Northeastern Research Station

USDA Forest Service
Burlington, VT, U.S.A

H. M. Rauscher
Bent Creek Experimental Forest

Southern Research Station, USDA Forest Service
Asheville, NC, U.S.A

Abstract
NED-2 is an intelligent information system for

ecosystem management currently in development by
the USDA Forest Service. Using PROLOG knowl-
edge bases and inference engines, NED-2 evaluates
forest inventories according to a set of predefined
goals. It is a blackboard system with agents imple-
mented in PROLOG. NED-2’s primary data store
is a set of relational databases. The present paper
focuses upon an issue of central importance to the
project—the integration of PROLOG programs and
relational databases to form NED-2’s blackboard.

Keywords: Intelligent Information System, De-
cision Support System, PROLOG, Relational
Database System, Blackboard System

1 Introduction

NED-2 is a software system currently in devel-
opment by the USDA Forest Service (in con-
junction with the University of Georgia Artifi-
cial Intelligence Center) to facilitate ecosystem
management [6, 7, 10]. NED-2 allows for the
analysis of forest inventories to determine the
degree to which they satisfy goals pertaining
to timber production, water quality, aesthet-

ics, wildlife habitat, and ecology. In address-
ing such diverse goals, NED distinguishes itself
from the many decision support systems used
in the forestry domain (the latter, it should be
said, often deal only with maximizing timber
production). By integrating external simula-
tion and visualization packages, NED-2 allows
the user to plan treatment schedules, predict
their outcome, and assess their worth.

NED-2 is a blackboard based system with
agents implemented in the semi-declarative
programming language PROLOG. Most of the
information used by NED, however, is stored in
relational databases. Both relational databases
and PROLOG clauses constitute NED’s black-
board, and it is through the use of this black-
board that the PROLOG agents communicate.

As it integrates such diverse components,
NED-2 is an Intelligent Information System
(IIS), which may be viewed as a unified knowl-
edge base, database, and model base [7]. The
main idea behind this notion is the transpar-
ent processing of user queries. The system is
responsible for “deciding” which information
sources are required to fulfill a query regard-
less of whether this involves data retrieval, an



inference, a computational method, a problem
solving module, or some combination of these.

As a set of relational databases consti-
tutes NED’s primary storage medium and
as NED’s goal analysis modules are imple-
mented in PROLOG, the nature of the in-
terface between PROLOG and the databases
is of paramount importance. An inefficient
interface yields an unusable system. During
the development of NED-2, it was found that
the usual method of querying a database from
PROLOG—a method exemplified by the Pro-
Data library of LPA, SICStus, and Quintus
PROLOG [4]—was woefully inadequate. Com-
bining data from multiple tables using PRO-
LOG’s depth-first search strategy proved too
slow to be of any use. Furthermore, the
usual method requires absolute knowledge of
database schemas and requires that they re-
main constant. Such omniscience and con-
stancy is not always available.

To overcome these deficiencies, a query lan-
guage was created especially for NED that pro-
vides an efficient and friendly way to access
databases from PROLOG. The user is not re-
quired to have full knowledge of the database
schema, nor is the schema required to be static,
nor is the user limited to a depth-first search of
database relations. In place of the latter, the
user can utilize the native query optimizer of
the database system.

2 PROLOG and Relational
Databases

It will be recalled that a PROLOG program
consists of facts and rules. These can be viewed
as logical assertions constituting a knowledge
base. Execution of a PROLOG program is tan-
tamount to searching the knowledge base for
an answer to a query.

The similarity of PROLOG facts to tuples of
a relational database should be fairly obvious.
A PROLOG predicate is normally interpreted
to be nothing more than a relation over some
domain. More interestingly, a PROLOG rule
may be viewed as a join of multiple database

relations [8, 12, 2]. The conclusion of a PRO-
LOG rule would in the relational model be a
derived relation, or view, over base relations
[5].

There are good reasons for wishing to
marry PROLOG to a relational database. A
PROLOG-like language is a concise and in-
tuitive way of specifying instructions to a
database (it is, at any rate, kinder than
SQL) [5, 12]. Furthermore, PROLOG sys-
tems would greatly benefit from (1) the abil-
ity to store large amounts of information in
secondary memory, and (2) from the optimiza-
tion techniques built into most database sys-
tems [8, 3, 11].

Almost all real world systems linking PRO-
LOG and a relational database system simply
tack on a software interface between a pre-
existing PROLOG implementation and a pre-
existing relational database system. In other
words, the two systems are loosely coupled.
This is often a marriage of convenience, as it
can be quickly implemented using off the shelf
components. Such interfaces allow PROLOG
to query the database when needed, either via
the automatic translation of PROLOG goals
into SQL or else by direct embedding of SQL
into the PROLOG code.

It is common in this method of integration
to designate certain PROLOG predicates as
database predicates. Instead of attempting to
unify them with clauses in an internal PRO-
LOG knowledge base, such predicates and their
arguments are translated into SQL queries that
are then directed to an external database. The
tuples returned by the database are treated as
fully bound PROLOG facts.

This method of access is sometimes called
relational access, in that only one relation is
involved in each query [1]. Tuples in the
database would be retrieved in PROLOG’s
depth-first search fashion. Database predicates
are re-entrant (meaning that separate calls to
a database predicate do not interfere with each
other—each is bound to tuples in a top-down
manner) and cuttable—meaning that they do
not backtrack through a PROLOG cut [9]. In
other words, they look and feel exactly like any



other PROLOG predicate.
With the exception of the routines needed

to implement the transparent use of database
predicates, relational access requires no
changes to either PROLOG or the database
system. PROLOG thus gains the use of sec-
ondary storage and concurrent access and oth-
erwise escapes unscathed.

Though relational level access is easy to
implement, it is profoundly inefficient. This
fact cannot be overemphasized. In restrict-
ing itself to a depth-first search of tables—a
blind search—relational access cannot utilize
any of the database system’s query optimiza-
tion mechanisms. A given query posed to a
database system in isolation might require less
than a second to answer. The same query
posed to a database+PROLOG system might
take literally hours or days to answer. Under
no circumstances would this be acceptable.

3 PROLOG/RDBMS
Integration in NED

The PROLOG components of NED-2 do not
make use of relational access routines. In-
stead, a query in PROLOG is first matched
against metadata about databases registered
with NED. The query is then translated into
SQL and directed to the appropriate database
system. An important benefit of this technique
is that one need not know a schema in its en-
tirety in order to query a database successfully,
nor is the schema required to be static. Meta-
data about each database can be gathered dy-
namically, and the metadata is used to fill in
any blanks left by the user (Significantly, NED
uses the metadata to automatically generate
join constraints). In translating the query into
SQL, one is not limited to querying a database
one relation at a time. The query optimizer of
the database system can be utilized.

3.1 An Example Query

A simple query in NED-2 is

?- known(‘STAND_AREA‘(
[‘STAND_ID‘ = ’patch-cut’], Value)).

This might be interpreted in English as “What
is the area of the stand called ‘patch-cut’.”1

The process of answering this query proceeds
in the following manner:

1. A list of Attribute-Value pairs is formed
from the original query:
[‘STAND_AREA‘ = Value,
‘STAND_id‘ = ’patch-cut’].2

2. Each term in the list is then examined for
references to database attributes. If any
are found, PROLOG attempts to deter-
mine, by exploring stored or dynamically
created metadata, the database and table
associated with each attribute.

If attributes are associated with multiple
tables, PROLOG will present multiple so-
lutions to the query upon backtracking.

3. Attributes paired with unbound variables
are set apart from the rest of the list; these
will be used in the SELECT part of the SQL
query.

4. A list of the tables associated with the at-
tributes is kept and is used in the FROM
part of the SQL query.

5. The remaining elements of the list—which
constitute constraints on the attributes to
be selected—will be used in the formation
of the WHERE part of the SQL statement.
Particularly, metadata about the relation-
ships between tables in each database is
used to create join constraints. Were it
not for these, any query involving multi-
ple relations would return attributes from
the entire Cartesian product of these rela-
tions. This is obviously an unacceptable
state of affairs.

1For present purposes, a stand is just a piece of land
containing trees.

2Attributes are syntactically distinguished from val-
ues and variables by the use of backward quotation
marks. Values are indicated with forward quotation
marks. Variables, as is usual in PROLOG, are un-
quoted and begin with an uppercase letter.



At this point, the attributes to be selected,
the list of tables, and the list of constraints are
fed to a definite clause grammar which trans-
lates them into SQL. In the example, the re-
sulting SQL query is:

SELECT
‘STAND_HEADER‘.‘STAND_AREA‘

FROM
‘STAND_HEADER‘

WHERE
‘STAND_HEADER‘.‘STAND_ID‘ =
’patch-cut’

Both attributes were found to be in the
‘Stand_header’ table of a particular database.
The query is directed to this database. If the
query succeeds, a single value corresponding
to the area of the patch-cut stand is returned.
Other solutions, if they exist, would be re-
turned upon backtracking.

4 Related Work

The translation of PROLOG expressions into
SQL is absolutely vital if information is to be
retrieved in a timely fashion. Indeed, in in-
formal tests comparing databases tables con-
taining 10,000 tuples to PROLOG knowledge
bases containing 10,000 facts stored in RAM,
we found that a RDBMS can outperform PRO-
LOG even though the RDBMS is handicapped
by retrieving its information from a hard disk.
While it might take the RDBMS a fraction of
a second to evaluate a fairly complex query, it
might take PROLOG several minutes or even
longer to produce the same results via its nor-
mal fetch, check, and backtrack search mecha-
nism.

NED’s querying technique is quite similar
to a language called TREQL (Thorton Re-
search Easy Query Language) developed some
time ago [5]. The intention behind that lan-
guage parallels the development of NED’s lan-
guage in at least one respect—namely, TREQL
permits meaningful queries to be posed to
databases despite some ignorance of the un-
derlying database schema. As in NED, the

poser of the query need not specify join con-
straints. TREQL provides these automati-
cally. TREQL, however, is translated directly
into PROLOG predicates attached in ProData
fashion to database relations. This, as has been
said, is an unacceptably inefficient means of
querying a database.

Draxler, in [1], describes a PROLOG to
SQL translator. Queries can be any complex
PROLOG query involving: predicates linked to
database relations; the PROLOG equivalents
of AND, OR, and NOT; the existential quantifier
’^’; arithmetical comparators; and aggregate
functions (with the exception of the existential
quantifier, the language designed for NED-2
allows all of these as well). Unlike relational
level access, the system described in [1] is in-
tended to facilitate passing complex queries to
a database system, allowing the database sys-
tem to do the sort of work it was designed to
do (and to which PROLOG is ill suited). The
routines described in [1] are used in both Ciao
and XSB implementations of PROLOG. The
use of Draxler’s technique is telling. Relational
access is not a viable solution.

The query language described in [1] is more
expressive than the language described here.
However, since database relations there are
specified explicitly by PROLOG predicates, a
knowledge of the database schema is necessary.
Furthermore, for databases containing tables
with large numbers of attributes, writing them
as PROLOG predicates is tedious and makes
uneconomical use of space. Referring to at-
tributes by name is far easier. It is for these
two reasons that a technique more closely re-
sembling that proposed in [1] was not used in
NED-2.

5 Conclusion

The technique described above is an essen-
tial component of NED-2. What was needed
was a means of retrieving information from a
database both quickly and without requiring
the programmer to possess complete knowl-
edge of the database’s schema. Furthermore,



what was required was that these queries
be succinctly posed from within PROLOG.
Though it certainly could be expanded and im-
proved upon, the language described accom-
plishes this. Though it does not allow trans-
parency (in that database relations are not
treated as PROLOG predicates), this is not
considered a horrible loss. Since the databases
of NED-2 involve many attributes and under-
went frequent changes in their developmental
phases, maintaining transparency would have
only caused further and unnecessary delays
in development. Every change to a database
schema would require a corresponding change
in the PROLOG routines designed to access
that database.

References

[1] Draxler, Christophe. 1993. “A powerful
PROLOG to SQL compiler.” Technical
report, CIS Centre for Information and
Speech Processing, Ludwig-Maximilians-
University, Munich. http://www-
2.cs.cmu.edu/afs/cs/project/ai-repository
/ai/lang/prolog/code/io/pl2sql/pl2sql.tgz
(accessed April 2, 2002).

[2] Gray, P. M. D., and R. J. Lucas, eds.
1988. PROLOG and Databases: Imple-
mentations and New Directions. Chichister,
West Sussex: Ellis Horwood Limited.

[3] Irving, T. 1988.“A generalized interface be-
tween PROLOG and relational databases.”
In PROLOG and Databases: Implementa-
tions and New Directions, edited by P. M.
D. Gray and R. Lucas. Chichister, West
Sussex: Ellis Horwood Limited.

[4] Lucas, Robert, and Keylink Computers,
Ltd. 1997 ProData Interface Manual. Ke-
nilworth, UK: Keylink Computers Ltd.

[5] Lunn, K; and I. G. 1988. “TREQL
(Thorton Research Easy Query Lan-
guage: An intelligent front-end to a
relational database.” In PROLOG and

Databases: Implementations and New Di-
rections, edited by P.M.D. Gray and R.
Lucas. Chichister, West Sussex: Ellis Hor-
wood Limited.

[6] Nute, Donald, Geneho Kim, Walter D. Pot-
ter, Mark J. Twery, H. Michael Rauscher,
Scott Thomasma, Deborah Bennett, and
Peter Kollasch. 1999. “A multi-criterial de-
cision support system for forest manage-
ment.” In Environmental Decision Support
Systems and Artificial Intelligence, AAAI-
99, Technical Report WS-99-07, Menlo
Park CA: AAAI Press. 74-81.

[7] W. Potter, D. Nute, F. Maier, M. Twery,
M. Rauscher, P. Knopp, S. Thomasma, M.
Dass, and H. Uchiyama. 2002. “The NED
IIS Project—Forest Ecosystem Manage-
ment,” to appear in Proceedings of the IFIP
World Computer Congress WCC2002—
Intelligent Information Processing (IIP-
2002), August 25-30, 2002, Montreal,
Canada.

[8] Sciore, Edward, and David S. Warren.
1986. “Toward an integrated database-
PROLOG system.” In Expert Database
Systems, Proceedings From the First In-
ternational Workshop, October 24-27,
1984, Kiawah Island, SC. Edited by
Larry Kerschberg. Menlo Park, CA: Ben-
jamin/Cummings Publishing Company,
Inc.

[9] Singleton, Paul, and Pearl Brereton. 1993.
“Storage and retrieval of first-order terms
using a relational database.” In Advances
in Databases, Proceedings of the 11th
British National Conference on Databases,
July 7-9, 1993, Keele, U.K. Edited by
Michael F. Worboys and A. F. Grundy.

[10] Twery, Mark J., H. M. Rauscher, D.
J. Bennett, S. Thomasma, S. Stout, J.
Palmer, R. Hoffman, D. DeCalesta, E.
Gustafson, H. Cleveland, J. M. Grove,
D. Nute, G. Kim, and R. P. Kollasch.
2000. “NED-1: Integrated analysis for for-



est stewardship decisions.” Computers and
Electronics in Agriculture. 27:167-193.

[11] Venken, R., and A. Mulkers. 1988. “The
interaction from PROLOG to a binary
realtional database.” In PROLOG and
Databases: Implementations and New Di-
rections, edited by P.M.D. Gray and R.
Lucas. Chichister, West Sussex: Ellis Hor-
wood Limited.

[12] Zaniolo, Carlo. 1986. “PROLOG: A
database query language for all seasons.”
In Expert Database Systems, Proceed-
ings From the First International Work-
shop, October 24-27, 1984, Kiawah Island,
SC. Edited by Larry Kerschberg. Menlo
Park, CA: Benjamin/Cummings Publish-
ing Company, Inc.


