
Discrete MathematicsDiscrete Mathematics
CS 2610
February 26, 2009 -- part 1

Big-O Notation

Big-O notation is used to express the time
complexity of an algorithmcomplexity of an algorithm

W h i i h � We can assume that any operation requires the
same amount of time.

The time complexity of an al orithm can be � The time complexity of an algorithm can be
described independently of the software and
hardware used to implement the algorithm.

2

Big-O Notation
Def.: Let f , g be functions with domain R≥0 or N and

codomain R. m

f(x) is O(g(x)) if there are constants C and k st

∀ k |f ()| C | ()|∀ x > k, |f (x)| ≤ C ⋅ |g (x)|
f (x) is asymptotically dominated by g (x)
C|g(x)| is an upper bound of f(x)C|g(x)| is an upper bound of f(x).

C and k are called witnesses to

C|g(x)|

the relationship between f & g. |f(x)|

3k

Big-O Notation

To prove that a function f(x) is O(g(x))
� Find values for k and C not necessarily the smallest � Find values for k and C, not necessarily the smallest

one, larger values also work!!

� It is sufficient to find a certain k and C that works

� In many cases, for all x ≥ 0,

if f(x) ≥ 0 then |f(x)| = f(x)() | ()| ()

Example: f(x) = x2 + 2x + 1 is O(x2) for C = 4 and k = 1

4

Big-O Notation
Show that f(x) = x2 + 2x + 1 is O(x2).

When x > 1 we know that x ≤ x2 and 1 ≤ x2

then 0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2

so, let C = 4 and k = 1 as witnesses, i.e.,
f(x) = x2 + 2x + 1 < 4x2 when x > 1

Could try x > 2. Then we have 2x ≤ x2 & 1 ≤ x2

then 0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2then 0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2

so, C = 3 and k = 2 are also witnesses to f(x)
being O(x2). Note that f(x) is also O(x3), etc.

5

ng O(). Not that f() s a so O(), tc.

Big-O Notation
Show that f(x) = 7x2 is O(x3).

When x > 7 we know that 7x2 < x3 (multiply x > 7 by x2)
so, let C = 1 and k = 7 as witnesses.

Could try x > 1. Then we have 7x2 < 7x3

 C 7 d k 1 l it t f()so, C = 7 and k = 1 are also witnesses to f(x)
being O(x3). Note that f(x) is also O(x4), etc.

6

Big-O Notation
Show that f(n) = n2 is not O(n).

Show that no pair of C and k exists such that
n2 ≤ Cn whenever n > k.

When n > 0, divide both sides of n2 ≤ Cn by n to get
C N tt h t C d k C ill tn ≤ C. No matter what C and k are, n ≤ C will not

hold for all n with n > k.

7

Big-O Notation

Observe that g(x) = x2 is O(x2 + 2x + 1)

Def:Two functions f(x) and g(x) have the same order
iff g(x) is O(f(x)) and f(x) is O(g(x))

8

Big-O Notation

Also, the function f(x) = 3x2 + 2x + 3 is O(x3)

What about O(x4) ?

In fact, the function Cg(x) is an upper bound for
f(x), but not necessarily the tightest bound.f(), y g
� When Big-O notation is used, g(x) is chosen to be as

small as possible.

9

Big-Oh - Theorem
Theorem: If f(x) = anxn+ an-1xn-1+…+ a1x+ a0 where ai∈ R,
i=0,…n; then f(x) is O(xn). Leading term dominates!

Proof: if x > 1 we have
|f()| | 1 ||f(x)| = |anxn+ an-1xn-1+…+ a1x+ a0|

≤ |an|xn+ |an-1|xn-1+…+ |a1|x+ |a0|
= xn(|a | + |a |/x + + |a |/xn-1 + |a |/xn)= xn(|an| + |an-1|/x +…+ |a1|/xn 1 + |a0|/xn)
≤ xn(|an| + |an-1| +…+ |a1| + |a0|)

So,|f(x)| ≤ Cxn where C = |an| + |an 1| +…+ |a1| + |a0|So,|f(x)| ≤ Cx where C |an| |an-1| … |a1| |a0|
whenever x > 1 (what’s k? k = 1, why?)

10

What’s this: |a + b| ≤ |a| + |b|

Big-O

Example: Prove that f(n) = n! is O(nn)
Proof (easy): n! = 1 · 2 · 3 · 4 · 5 · · · nProof (easy): n! = 1 · 2 · 3 · 4 · 5 · · · n

≤ n · n · n · n · n · · · n
= nn n

where our witnesses are C = 1 and k = 1

Example: Prove that log(n!) is O(nlogn)

Using the above, take the log of both sides:

11

log(n!) ≤ log(nn) which is equal to n log(n)

Big-O

Lemma:A constant function is O(1).

P f L f h ☺Proof: Left to the viewer ☺

The most common functions used to estimate the
time complexity of an algorithm. (in increasing O()

d)order):
1, (log n), n, (n log n), n2, n3, … 2n, n!

12

Big-O Properties
Transitivity:if f is O(g) and g is O(h) then f is O(h)

Sum Rule:
� If f1 is O(g1) and f2 is O(g2) then f1+f2 is O(max(|g1|,|g2|))

� If f1 is O(g) and f2 is O(g) then f1+f2 is O(g)

Product Rule
� If f1 is O(g1) andf2 is O(g2) then f1f2 is O(g1g2)

For all c > 0, O(cf), O(f + c),O(f − c) are O(f)

13

Big-O – Properties Example
Example: Give a big-O estimate for 3n log (n!) + (n2+3)log n, n>0

1) For 3n log (n!) we know log(n!) is O(nlogn) and 3n is O(n) so1) For 3n log (n!) we know log(n!) is O(nlogn) and 3n is O(n) so
we know 3n log(n!) is O(n2logn)

2) For (n2+3)log n we have (n2+3) < 2n2 when n > 2 so it’s O(n2);2) For (n2+3)log n we have (n2+3) < 2n2 when n > 2 so it s O(n2);
and (n2+3)log n is O(n2log n)

3) Finally we have an estimate for 3n log (n!) + (n2+3)log n
that is: O(n2log n)

14

Big-O Notation

Def.:Functions f and g are incomparable, if f(x) is
not O(g) and g is not O(f)not O(g) and g is not O(f).

f: R+→R, f(x) = 5 x1.5

g: R+→R, g(x) = |x2 sin x|

2500

1500

2000

-- 5 x1.5

500

1000

5 x
-- |x2 sin x|

-- x2

15

0 5 10 15 20 25 30 35 40 45 50
0

Big-Omega Notation
Def.: Let f, g be functions with domain R≥0 or N
and codomain R.

f(x) is Ω(g(x)) if there are positive constants C and
k such that

∀x > k, C ⋅ |g (x)| ≤ |f (x)|

� C ⋅ |g(x)| is a lower bound for |f(x)|

C|g(x)|
|f(x)|

C|g(x)|

16k

Big-Omega Property

Theorem: f(x) is Ω(g(x)) iff g(x) is O(f(x)).

Is this trivial or what?

17

Big-Omega Property
Example: prove that f(x) = 3x2 + 2x + 3 is Ω(g(x))

where g(x) = x2where g(x) = x

Proof: first note that 3x2 + 2x + 3 ≥ 3x2 for all x ≥ 0.

That’s the same as saying that
g(x) = x2 is O(3x2 + 2x + 3)g(x) = x2 is O(3x2 + 2x + 3)

18

Big-Theta Notation

Def.:Let f , g be functions with domain R≥0 or N and
codomain Rcodomain R.

f(x) is Θ(g(x)) if f(x) is O(g(x)) and f(x) is Ω(g(x)).

C2|g(x)|

|f(x)|

C1|g(x)|

|f(x)|

19

Big-Theta Notation

When f(x) is Θ(g(x)) we know that g(x) is Θ(f(x)) When f(x) is Θ(g(x)), we know that g(x) is Θ(f(x)) .

l f() i (()) iffAlso, f(x) is Θ(g(x)) iff

f(x) is O(g(x)) and

g(x) is O(f(x)).

Typical g functions: xn, cx, log x, etc.

20

Big-Theta Notation

To prove that f(x) is order g(x)

h d � Method 1
� Prove that f is O(g(x))

P th t f i Ω(())� Prove that f is Ω(g(x))

� Method 2
� Prove that f is O(g(x))� Prove that f is O(g(x))

� Prove that g is O(f(x))

21

Big-Theta Example

show that 3x2 + 8x log x is Θ(x2) (or order x2)

0 ≤ 8x log x ≤ 8x2 so 3x2 + 8x log x ≤ 11x2 for x > 1.

So, 3x2 + 8x log x is O(x2) (can I get a witness?)

Is x2 O(3x2 + 8x log x)? You betcha! Why?

Therefore, 3x2 + 8x log x is Θ(x2)

22

Big Summary

Upper Bound – Use Big-Oh

Lower Bound – Use Big-OmegaLower Bound – Use Big-Omega

Upper and Lower (or Order of Growth) –

Us Bi Th tUse Big-Theta

23

Time to Shift Gears Again

Number TheoryNumber Theory

b hNumber Theory

Livin’ Large
24

Livin Large

