

- Big-O notation is used to express the time complexity of an algorithm
 - We can assume that any operation requires the same amount of time.
 - The time complexity of an algorithm can be described independently of the software and hardware used to implement the algorithm.

Def.: Let f, g be functions with domain $\mathbf{R}_{\geq 0}$ or \mathbf{N} and codomain \mathbf{R} .

f(x) is O(g(x)) if there are constants C and k st

$$\forall x > k, |f(x)| \leq C \cdot |g(x)|$$

C|g(x)|

[f(x)|

3

f(x) is asymptotically dominated by g(x)C|g(x)| is an upper bound of f(x).

C and k are called witnesses to the relationship between f & g.

- Find values for k and C, not necessarily the smallest one, larger values also work!!
- It is sufficient to find a certain k and C that works

4

- In many cases, for all $x \ge 0$,
 - if $f(x) \ge 0$ then |f(x)| = f(x)

Example: $f(x) = x^2 + 2x + 1$ is $O(x^2)$ for C = 4 and k = 1

Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

When x > 1 we know that $x \le x^2$ and $1 \le x^2$ then $0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$ so, let C = 4 and k = 1 as witnesses, i.e., $f(x) = x^2 + 2x + 1 < 4x^2$ when x > 1

Could try x > 2. Then we have $2x \le x^2 \& 1 \le x^2$ then $0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$ so, C = 3 and k = 2 are also witnesses to f(x) being $O(x^2)$. Note that f(x) is also $O(x^3)$, etc.

Show that $f(x) = 7x^2$ is $O(x^3)$.

When x > 7 we know that $7x^2 < x^3$ (multiply x > 7 by x^2) so, let C = 1 and k = 7 as witnesses.

6

Could try x > 1. Then we have $7x^2 < 7x^3$ so, C = 7 and k = 1 are also witnesses to f(x)being $O(x^3)$. Note that f(x) is also $O(x^4)$, etc.

Show that $f(n) = n^2$ is not O(n).

Show that no pair of C and k exists such that

 $n^2 \leq Cn$ whenever n > k.

When n > 0, divide both sides of $n^2 \le Cn$ by n to get $n \le C$. No matter what C and k are, $n \le C$ will not hold for all n with n > k.

Observe that
$$g(x) = x^2$$
 is $O(x^2 + 2x + 1)$

Def:Two functions f(x) and g(x) have the same order <u>iff</u> g(x) is O(f(x)) and f(x) is O(g(x))

- Also, the function $f(x) = 3x^2 + 2x + 3$ is $O(x^3)$
- What about $O(x^4)$?
- In fact, the function Cg(x) is an upper bound for f(x), but not necessarily the tightest bound.
 - When Big-O notation is used, g(x) is chosen to be as small as possible.

Big-Oh - Theorem

Theorem: If $f(x) = a_n x^{n+} a_{n-1} x^{n-1} + ... + a_1 x^{n+} a_0$ where $a_i \in \mathbb{R}$, i=0,...n; then f(x) is $O(x^n)$. Leading term dominates!

Proof: if x > 1 we have $|f(x)| = |a_n x^{n+} a_{n-1} x^{n-1} + ... + a_1 x + a_0|$ $\leq |a_n| \times^{n+} |a_{n-1}| \times^{n-1+...+} |a_1| \times^{n+1} |a_0|$ $= x^{n}(|a_{n}| + |a_{n-1}|/x + ... + |a_{1}|/x^{n-1} + |a_{0}|/x^{n})$ $\leq X^{n}(|a_{n}| + |a_{n-1}| + ... + |a_{1}| + |a_{0}|)$ So, $|f(x)| \leq Cx^n$ where $C = |a_n| + |a_{n-1}| + ... + |a_1| + |a_0|$ whenever x > 1 (what's k? k = 1, why?) What's this: $|a + b| \le |a| + |b|$ 10

Big-O

Example: Prove that f(n) = n! is $O(n^n)$

Proof (easy): $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \cdot \cdot n$

 $= n^n$

 $\leq n \cdot n \cdot n \cdot n \cdot n \cdot n$

where our witnesses are C = 1 and k = 1

Example: Prove that log(n!) is O(nlogn)

Using the above, take the log of both sides:

11

 $log(n!) \leq log(n^n)$ which is equal to n log(n)

Big-O Properties

Transitivity: if f is O(g) and g is O(h) then f is O(h)

Sum Rule:

• If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1+f_2 is $O(\max(|g_1|, |g_2|))$

13

• If f_1 is O(g) and f_2 is O(g) then f_1+f_2 is O(g)

Product Rule

• If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1f_2 is $O(g_1g_2)$

• For all c > 0, O(cf), O(f + c), O(f - c) are O(f)

Big-O – Properties Example

Example: Give a big-O estimate for 3n log (n!) + (n²+3)log n, n>0

- For 3n log (n!) we know log(n!) is O(nlogn) and 3n is O(n) so we know 3n log(n!) is O(n²logn)
- 2) For $(n^2+3)\log n$ we have $(n^2+3) < 2n^2$ when n > 2 so it's $O(n^2)$; and $(n^2+3)\log n$ is $O(n^2\log n)$

14

3) Finally we have an estimate for 3n log (n!) + (n²+3)log n that is: O(n²log n)

Big-Omega Notation

Def.: Let f, g be functions with domain R_{≥0} or N and codomain R.
f(x) is Ω(g(x)) if there are positive constants C and k such that

$$\forall x > k, C \cdot |g(x)| \leq |f(x)|$$

 $C \cdot |g(x)|$ is a lower bound for |f(x)|

Big-Omega Property

Theorem: f(x) is $\Omega(g(x))$ iff g(x) is O(f(x)).

Is this trivial or what?

Big-Omega Property

Example: prove that $f(x) = 3x^2 + 2x + 3$ is $\Omega(g(x))$ where $g(x) = x^2$

Proof: first note that $3x^2 + 2x + 3 \ge 3x^2$ for all $x \ge 0$.

18

That's the same as saying that

 $g(x) = x^2$ is $O(3x^2 + 2x + 3)$

Big-Theta Notation

Def.:Let f, g be functions with domain $\mathbf{R}_{\geq 0}$ or \mathbf{N} and codomain \mathbf{R} .

f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$.

Big-Theta Notation

When f(x) is $\Theta(g(x))$, we know that g(x) is $\Theta(f(x))$.

Also, f(x) is $\Theta(g(x))$ iff f(x) is O(g(x)) and g(x) is O(f(x)).

Typical g functions: x^n , c^x , $\log x$, etc.

Big-Theta Notation

Method 1

- Prove that f is O(g(x))
- Prove that f is Ω(g(x))
- Method 2
 - Prove that f is O(g(x))
 - Prove that g is O(f(x))

Big-Theta Example

show that $3x^2 + 8x \log x$ is $\Theta(x^2)$ (or order x^2)

 $0 \le 8x \log x \le 8x^2 \text{ so } 3x^2 + 8x \log x \le 11x^2 \text{ for } x > 1.$

So, $3x^2 + 8x \log x$ is $O(x^2)$ (can I get a witness?)

22

Is $x^2 O(3x^2 + 8x \log x)$? You betcha! Why?

Therefore, $3x^2 + 8x \log x$ is $\Theta(x^2)$

