CSCI 8535 Multi Robot Systems

Dr. Ramviyas N. Parasuraman

Assistant Professor, Computer Science

Jan 10, 2019
Talk Outline

- Recap on Course Introduction, Syllabus, etc.
- Announcements
- Graph Theory – fundamentals
- Rendezvous problem
This is primarily a research oriented, seminar-style course covering the topics of control, communication, cooperation, and coordination aspects in multi-robot systems.

It enables students to understand, devise, and solve problems in multi-robot systems and the course will have project-based assignments.
Course Outline

General topics to be covered:

- Multi-robot Rendezvous and Formation Control
- Multi-agent Cooperation and Coordination
- Security and adversarial actions
- Applications of Multi-Robot Systems
Goals of the Course

Graduate-only course.

- Give you a good intuition of *Multi Robot Systems (MRS)* modeling and control
 - The essential theoretical tools for MRS
 - How to implement and simulate MRS
 - How to solve real-world multi-robots problems

- You will be able to work on a MRS projects

- After the course, you will:
 - Know the essential theoretical tools for MRS
 - Know how to implement and simulate MRS
 - Know how to solve real-world problems
 - Develop and present a research project
 - Learn something about mobile robots
Requisites of the Course

Requirements:

- (Hard) Programming background and skills (Python or C++)
- (Soft) Working knowledge of simulation tools (Matlab or V-REP or ROS Gazebo, etc.)
- (Hard) Rudimentary mathematical analysis
- (Hard) Linear algebra
- (Soft) Some control theory
- (Soft) Graph theory fundamentals
- (Soft) Probability theory fundamentals
Course Style

- Seminar-style lectures
 - Each student will be assigned a paper to read and present it to the class (as if it’s their own work)
 - Each student will need to critically and constructively review the papers not assigned to them

- Project-based practical assignments and exam
Grading Criteria

In-class participation and Attendance: 10%

Assignments/Paper Reviews: 20%

Paper Presentations: 20%

Mini Project (Midterm): 20% (Project assigned by the Instructor)

Research Project (Final Project): 30% (Project chosen by the student in teams)
Office hours of the instructor:
Tuesday and Thursday 2 -3 pm.

Location: Boyd Room 519/520.

If this schedule does not work for you, then send me an email to set up an appointment.
First paper assignment for review (by all students):

Presenter: Instructor

Paper accessible here.

Also, uploaded to eLC and Slack.
Graph Theory, Rendezvous Problem, and Formation Control Problem

Courtesy of slides from Dr. Andrej Pronobis, U. Washington and KTH Sweden

https://www.pronobis.pro/teaching/mas/
Graph Theory

- Great tool for analyzing networks

Undirected Graphs

$G = (V, E)$

Set of vertices

Unordered pair

$\{v_i, v_j\} \in E \subseteq [V]^2$

Set of edges

Directed Graphs

$D = (V, E)$

Ordered pair

$(v_i, v_j) \in E$

Tail

Head

Neighborhood of a vertex

$N(i) = \{v_j \in V \mid v_iv_j \in E\}$

Slides courtesy of Dr. Andrej Pronobis
Algebraic Graph Theory

- **Adjacency matrix**

\[
[A(G)]_{ij} = \begin{cases}
1 & \text{if } v_iv_j \in E, \\
0 & \text{otherwise.}
\end{cases} \quad [A(D)]_{ij} = \begin{cases}
1 & \text{if } (v_j, v_i) \in E(D), \\
0 & \text{otherwise},
\end{cases}
\]

- **Degree matrix (undirected graph)**

Degree of vertex \(d(v_i) \) represents cardinality of neighborhood set \(N(i) \)

\[
\Delta(G) = \begin{pmatrix}
d(v_1) & 0 & \cdots & 0 \\
0 & d(v_2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d(v_n)
\end{pmatrix}
\]

- **In-degree matrix (directed graph)**

\(d(v_i) \) represents the in-degree (counts incoming edges only)
Graph Laplacian

- For undirected graphs

\[L(G) = \Delta(G) - A(G) \]

- For directed graphs – In-degree Laplacian

\[L(D) = \Delta(D) - A(D) \]
Properties of Laplacian

- Symmetric and positive semi-definite
- Eigenvalues can be ordered as
 \[\lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G) \]
- Smallest eigenvalue is always zero
 \[\lambda_1(G) = 0 \]

- Is the graph connected?
 - If for every pair of vertices there is a path
 - IFF \(\lambda_2(G) > 0 \)
 - As many connected sub-graphs as zero eigenvalues

Slides courtesy of Dr. Andrej Pronobis
Types of Graphs

A graph is said to be connected when there is at least one path (connection/link) from every vertex to every other vertex.

- Path graph or a line graph: each node is connected only once (without a loop)
- Cycle graph: graph structure looks like a cycle (loop)
- Complete graph: all vertices (nodes) are connected to all other vertices
- Tree graph: a connected graph without any cycles
Quick references for Graph Theory

Nice internet resource available in the internet for learning graph theory notations and definitions:

http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/defEx.htm
Rendezvous Problem – Agreement

- Agents agree on a value of a parameter

Definition

- \(n \) dynamic agents
- Interconnected via relative links
- Agent’s state depends on the sum of its relative states w.r.t. a subset of other agents

Applications

- Distributed estimation in sensor networks
- Flocking/swarming

Slides courtesy of Dr. Andrej Pronobis
Rendezvous Problem

- Rendezvous problem
 - Agent’s state is its location – mobile robot
 - Agents should meet at one point in space
- Example: agreement protocol over a triangle

\[
\begin{align*}
\dot{x}_3 &= (x_1 - x_3) + (x_2 - x_3) \\
\dot{x}_1 &= (x_2 - x_1) + (x_3 - x_1) \\
\dot{x}_2 &= (x_1 - x_2) + (x_3 - x_2)
\end{align*}
\]

- Links pull robots towards each other

Slides courtesy of Dr. Andrej Pronobis
State-space Representation

- **Continuous-time state-space model**

 \[
 \dot{x}_i(t) = \sum_{j \in N(i)} (x_j(t) - x_i(t)), \quad i = 1, \ldots, n
 \]

- **For directed graphs: use in-degree Laplacian**

 \[
 \dot{x}(t) = -L(D)x(t)
 \]
State-space Models in Matlab

- Dynamics of a system specified using continuous time-invariant state-space model

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

- Create state-space model

\[
sys = \text{ss}(A,B,C,D)
\]

- In our case:

\[
\begin{align*}
\dot{x}(t) &= -L(G)x(t) \\
\dot{x}(t) &= -L(D)x(t)
\end{align*}
\]
Simulating

- Simulate
 - Initial condition response
 \[
 [y, t, x] = \text{initial}(\text{sys}, x0, t)
 \]
 - Response to arbitrary inputs
 \[
 [y, t, x] = \text{lsim}(\text{sys}, u, t, x0)
 \]

- Basic toolkit for defining and visualizing problems available in course materials

\[
\begin{align*}
\dot{x}(t) &= Ax \\
y(t) &= Cx
\end{align*}
\]

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

Slides courtesy of Dr. Andrej Pronobis
Simulating Trajectories

Run in Matlab

Slides courtesy of Dr. Andrej Pronobis

Ramviyas Nattanmai Parasuraman, ramviyas@uga.edu

CSCI 8535 – Multi Robot Systems
Formation Control Problem

- Mobile agents move in order to realize a geometrical pattern (formation)
 - Appear often in biological systems (e.g. geese)
- Formations can be specified in several ways
 - Shape
 - Specified in terms of points
 \[\Xi = \{\xi_1, \ldots, \xi_n\}, \xi_i \in \mathbb{R}^p, \ i = 1, \ldots, n, \]
 - Translationally invariant
 \[x_i = \xi_i + \tau \]
Let’s define \(\tau_i \) as displacement from target

\[
\tau_i(t) = x_i(t) - \xi_i, \ i = 1, \ldots, n
\]

Now, apply the agreement protocol to \(\tau_i \)

\[
\dot{\tau}_i(t) = - \sum_{j \in N_f(i)} (\tau_i(t) - \tau_j(t))
\]

Since \(\dot{\tau}_i(t) = \dot{x}_i(t) \), \(\tau_i(t) - \tau_j(t) = x_i(t) - x_j(t) - (\xi_i - \xi_j) \)

\[
\dot{x}_i(t) = - \sum_{j \in N_f(i)} (x_i(t) - x_j(t)) - (\xi_i - \xi_j)
\]

\[\dot{x}(t) = -L(G)x(t) + L(G)\Xi\]

Analogous for directed graphs

Slides courtesy of Dr. Andrej Pronobis
Simulating Trajectories

Run in Matlab

Slides courtesy of Dr. Andrej Pronobis
Summary

- Intuition about what multi-agent and multi-robot systems are and how to solve control problems
 - From theory to simulations
- Multiple applications in robotics
 - When no global maps and central coordination
- What’s next?
 - Dynamic and random networks
 - Switching between formations and control problems
 - Networks as systems (with inputs & outputs)
- Try this at home!

Slides courtesy of Dr. Andrej Pronobis