Autonomous mobile robot | the key questions

- The three key questions in Mobile Robotics
 - Where am I?
 - Where am I going?
 - How do I get there?

- To answer these questions the robot has to
 - have a model of the environment (given or autonomously built)
 - perceive and analyze the environment
 - find its position/situation within the environment
 - plan and execute the movement
Autonomous mobile robot | the see-think-act cycle

- **Localization Map Building**
 - knowledge, data base
 - environment model, local map
- **Information Extraction**
 - raw data
- **Sensing**
- **Cognition Path Planning**
 - "position" global map
 - path
- **Path Execution**
 - actuator commands
- **Acting**
- **Motion Control**
- **Real World Environment**

Diagram shows the see-think-act cycle with arrows connecting Perception and Motion Control.
Motion Control | kinematics and motion control

- Wheel types and its constraints
 - Rolling constraint
 - no-sliding constraint (lateral)

- Motion control

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{bmatrix} = f(\dot{\phi}_1 \cdots \dot{\phi}_n, \theta, \text{geometry})
\]

\[
\begin{bmatrix}
\dot{\phi}_1 \\
\vdots \\
\dot{\phi}_n
\end{bmatrix} = f(\dot{x}, \dot{y}, \dot{\theta})
\]
Autonomous mobile robot | the see-think-act cycle

- **Localization Map Building**
 - Environment model
 - Local map
- **Information Extraction**
 - Raw data
- **Sensing**
- **Cognition Path Planning**
 - Path
- **Path Execution**
 - Actuator commands
- **Acting**
- **Motion Control**

Perception
- Knowledge, data base

Real World Environment

see-think-act

Localisation Map Building
- "position" global map

Mission Commands
Perception | sensing

- Laser scanner
 - time of flight
- Camera

![Laser scanner diagram](image)

![Autonomous robots diagram](image)
Perception | information extraction

- Filtering / Edge Detection

- Keypoint Features
 - features that are reasonably invariant to rotation, scaling, viewpoint, illumination
 - FAST, SURF, SIFT, BRISK, ...

- Keypoint matching
 - BRISK example

Image from [Rosten et al., PAMI 2010]
Autonomous mobile robot | the see-think-act cycle

- **Perception**
 - Sensing
 - Information Extraction
 - Localization Map Building
 - Environment model local map
 - Knowledge, data base

- **Motion Control**
 - Cognition Path Planning
 - Path Execution
 - Acting
 - Mission commands

- **Real World Environment**

- **see-think-act cycle**
 - "position" global map
 - Path
 - Actuator commands

Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance
Localization | where am I?

- **SEE**: The robot queries its sensors → finds itself next to a pillar

- **ACT**: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty

- **SEE**: The robot queries its sensors again → finds itself next to a pillar

- **Belief update (information fusion)**
Autonomous mobile robot | the see-think-act cycle

- Localization Map Building
 - knowledge, data base
 - environment model, local map

- Information Extraction
 - raw data

- Sensing

- Cognition Path Planning
 - "position" global map
 - path

- Motion Control
 - Mission commands
 - Path Execution
 - actuator commands
 - Acting

Real World Environment

Perception
Cognition | Where am I going? How do I get there?
Cognition | Where am I going? How do I get there?

- Global path planning
 - Graph search

- Local path planning
 - Local collision avoidance
Autonomous mobile robot | the see-think-act cycle

- Localization Map Building
 - environment model
 - global map
- Cognition Path Planning
 - path
- Information Extraction
 - raw data
- Sensing
- Path Execution
 - actuator commands
- Acting

Real World Environment

Knowledge, data base

Mission commands
Next generation of Robots
| mobile, smart, connected, adaptive and closer to humans

Industrial Robots

Service Robots

Cyborgs

Autonomous Mobile Robots
Roland Siegwart, Margarita CHI, Juan Nieto, Nick Lawrance
Robotics | challenges and technology drivers

- The challenges
 - Seeing, feeling and understanding the world
 - Dealing with uncertain and partially available information
 - Act appropriately onto the environment

- Technology drivers
 - technology evolutions enable robotics revolutions
 - Laser time-of-flight sensors
 - Cameras and IMUs combined with required calculation power
 - Torque controlled motors, “soft” actuation
 - New materials