Perception | Filtering: a worked example
Autonomous Mobile Robots

Margarita Chli – University of Edinburgh
Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart
Correlation in 2D

- Example:
 - Constant averaging filter

\[
F \circ I(x, y) = \sum_{j=-N}^{M} \sum_{i=-M}^{N} F(i, j) I(x+i, y+j)
\]

This example was generated with a 21x21 mask
Filtering | correlation in 2D

\[F \circ I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j) I(x+i, y+j) \]

- Example:
 Constant averaging filter

\[
F = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

- If \(size(F) = (2N + 1)^2 \) i.e. this is a square filter

- 2D Correlation \(\Rightarrow \) no. multiplications per pixel = ?
 no. additions per pixel = ?

This example was generated with a 21x21 mask
Filtering | correlation in 2D

\[\text{No. multiplications per pixel} = (2N + 1)^2 \]

\[\text{No. additions per pixel} = (2N + 1)^2 - 1 \]
Filtering | correlation in 2D

\[F \circ I(x, y) = \sum_{j=-M}^{M} \sum_{i=-N}^{N} F(i, j) I(x+i, y+j) \]

- Example:
 Constant averaging filter

 \[
 F = \begin{bmatrix}
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9}
 \end{bmatrix} = \begin{bmatrix}
 \frac{1}{3} \\
 \frac{1}{3} \\
 \frac{1}{3}
 \end{bmatrix} \cdot \begin{bmatrix}
 \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
 \end{bmatrix}

 \]

- If \(\text{size}(F) = (2N + 1)^2 \) i.e. this is a square filter

- 2D Correlation \(\Rightarrow \) no. multiplications per pixel = \((2N + 1)^2 \)
 no. additions per pixel = \((2N + 1)^2 - 1\)

- 2 \(\times \) 1D Correlation \(\Rightarrow \) no. multiplications per pixel = ?
 no. additions per pixel = ?
Filtering | correlation in 2D

⇒ No. multiplications per pixel so far = \(2N + 1\)

⇒ No. additions per pixel so far = \(2N\)
Filtering | efficient correlation in 2D

\[\text{No. multiplications per pixel so far} = 2N + 1 \]
\[\text{No. multiplications per pixel} = 2(2N + 1) \]

\[\text{No. additions per pixel so far} = 2N \]
\[\text{No. additions per pixel} = 4N \]
Filtering | efficient correlation in 2D

- Example:
 Constant averaging filter

 \[F = \begin{bmatrix}
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9}
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
 \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix} \approx \text{"separable" filter}
\]

- If \(\text{size}(F) = (2N + 1)^2 \) i.e. this is a square filter
- 2D Correlation \(\Rightarrow \) no. multiplications per pixel \(= (2N + 1)^2 \)
 no. additions per pixel \(= (2N + 1)^2 - 1 \)
- \(2 \times 1D \) Correlation \(\Rightarrow \) no. multiplications per pixel \(= 2(2N + 1) \)
 no. additions per pixel \(= 4N \)
- \(2 \times 1D \) Correlation \(\Rightarrow \) no. multiplications per pixel \(= ? \)
 no. additions per pixel \(= ? \)
Filtering | more efficient correlation in 2D

Perception | Filtering: a worked example

- No. additions per pixel = $4N$
- No. multiplications per pixel = 1
Filtering | more efficient correlation in 2D

- Example:
 Constant averaging filter
 \[F = \begin{bmatrix}
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 \frac{1}{9} & \frac{1}{9} & \frac{1}{9}
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix} \cdot \frac{1}{9} \begin{bmatrix} 1 \\
 1 \\
 1
\end{bmatrix} \]

 "separable" filter

- If \(\text{size}(F) = (2N+1)^2 \) i.e. this is a square filter
- 2D Correlation \(\Rightarrow \) no. multiplications per pixel = \((2N+1)^2\)
 no. additions per pixel = \((2N+1)^2 - 1\)
- 2 \times 1D Correlation \(\Rightarrow \) no. multiplications per pixel = \(2(2N+1)\)
 no. additions per pixel = \(4N\)
- 2 \times 1D Correlation \(\Rightarrow \) no. multiplications per pixel = \(1\)
 no. additions per pixel = \(4N\)