Motion Planning | Graph Search I
Autonomous Mobile Robots

Martin Rufli – IBM Research GmbH
Margarita Chli, Paul Furgale, Marco Hutter, Davide Scaramuzza, Roland Siegwart
Graph construction | overview

- A graph $G(N, E)$ is characterized by
 - a set of nodes N
 - edges E connecting pairs of nodes
- Graphs for motion planning are commonly constructed from map or sensor data
Graph construction | Grid and Lattice graphs

- Lattice graphs are largely independent of the workspace representation
- They overlay a repetitive discretization on the workspace
Graph construction | Grid and Lattice graphs

- Lattice graphs are largely independent of the workspace representation
- They overlay a repetitive discretization on the workspace
Graph construction | Visibility Graph

- The Visibility Graph operates on polygonal workspaces
- It connects all visible nodes (i.e., obstacle corners)
Graph construction | Visibility Graph

- The Visibility Graph operates on polygonal workspaces
- It connects all visible nodes (i.e., obstacle corners)
Graph construction | Visibility Graph

- Edges pass between objects and along object boundaries
- The method contains the shortest path sequence per construction
- The resulting graph size is a function of the obstacle count and shape
- Robot motion constraints are not considered
The Voronoi Diagram operates on arbitrary closed workspaces
It maximizes the minimal distance to obstacle boundaries
Graph construction | Voronoi Diagram

- The Voronoi Diagram operates on arbitrary closed workspaces
- It maximizes the minimal distance to obstacle boundaries
Graph construction | Voronoi Diagram

- The Voronoi Diagram does not contain shortest path sequences
- The resulting graph size is a function of obstacle count
- Robot motion constraints are not considered