Introduction to Robotics
CSCI/ATRI 4530/6530

Dr. Ramviyas Nattanmai Parasuraman
08/23/2018
Assistant Professor, Computer Science
University of Georgia

slack: uga-robotics-course.slack.com
email: ramviyas@uga.edu
web: http://cs.uga.edu/~ramviyas/
1. Announcements

2. A quick recap

3. For today

4. For next class
Announcements
Next class - Monday (08/27) - Guest Lecture by Prof. Prashant Doshi (Sensors model - Rangefinders)

ROS Practicals for next week is Tuesday (not Thursday if you follow the schedule) - so please bring your laptops on Tuesday (08/28)
A quick recap
Kinematics - basics

- Frames of references
Kinematics - basics

- Frames of references
 - I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
Frames of references

I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame

Coordinate transformation

Ex: For a point P on the Wheel, vector from origin O to the P is:
\[\mathbf{I}_r \mathbf{O}P = \mathbf{I}_r \mathbf{O}R + \mathbf{I}_r \mathbf{R}P \]

What if all the vectors are not in the same frame of reference?

\[\mathbf{I}_r \mathbf{R}P = \mathbf{R}_I \mathbf{R}_r \mathbf{R}P \]

What is \(\mathbf{R}_I \mathbf{R}_r \) here?

How about velocities?

\[\mathbf{I}_v \mathbf{O}P = \mathbf{I}_v \mathbf{O}R + \mathbf{I}_v \mathbf{R}P \]

Velocity of point P in a moving frame (R):
\[\mathbf{I}_v \mathbf{O}P = \mathbf{I}_v \mathbf{O}R + \mathbf{I}_v \mathbf{R}P \]
Kinematics - basics

- Frames of references
- I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
- Coordinate transformation
- Ex: For a point P on the Wheel, vector from origin O to the P is:
 \[i\mathbf{r}_{OP} = i\mathbf{r}_{OP} + i\mathbf{r}_{OR} + i\mathbf{r}_{RP} \]
Kinematics - basics

- Frames of references
 - I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
- Coordinate transformation
 - Ex: For a point P on the Wheel, vector from origin O to the P is:
 \[i_r^{OP} = i_r^{OP} + r^{OR} + r^{RP} \]
- What if all the vectors are not in the same frame of reference?
• Frames of references
• I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
• Coordinate transformation
• Ex: For a point P on the Wheel, vector from origin O to the P is:
 \[I\vec{r}_{OP} = I\vec{r}_{OP} + I\vec{r}_{OR} + I\vec{r}_{RP} \]
• What if all the vectors are not in the same frame of reference?
• \[I\vec{r}_{RP} = R_{RI} R\vec{r}_{RP} \] - What is \(R_{RI} \) here?
Kinematics - basics

- Frames of references
 - I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
- Coordinate transformation
- Ex: For a point P on the Wheel, vector from origin O to the P is:
 \[\text{i} \overrightarrow{r_{OP}} = \text{i} \overrightarrow{r_{OP}} + \text{i} \overrightarrow{r_{OR}} + \text{i} \overrightarrow{r_{RP}} \]
- What if all the vectors are not in the same frame of reference?
 \[\text{i} \overrightarrow{r_{RP}} = \text{R}_{\text{RI}} \text{R} \overrightarrow{r_{RP}} \] - What is \(\text{R}_{\text{RI}} \) here?
- How about velocities?
Kinematics - basics

- Frames of references
- I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
- Coordinate transformation
- Ex: For a point P on the Wheel, vector from origin O to the P is:
 \[\mathbf{r}_{OP} = \mathbf{r}_{OP} + \mathbf{r}_{OR} + \mathbf{r}_{RP} \]
- What if all the vectors are not in the same frame of reference?
- \[i\mathbf{r}_{RP} = R_{RI} \mathbf{r}_{RP} \] - What is \(R_{RI} \) here?
- How about velocities?
- \[i\dot{\mathbf{r}}_{RP} = R_{RI} \dot{\mathbf{r}}_{RP} \]
Kinematics - basics

- Frames of references
 - I - Inertial (world, non-moving), R - Robot frame (moving), W - Wheel frame
- Coordinate transformation
 - Ex: For a point P on the Wheel, vector from origin O to the P is:
 \[i\vec{r}_{OP} = I\vec{r}_{OP} + I\vec{r}_{OR} + I\vec{r}_{RP} \]
 - What if all the vectors are not in the same frame of reference?
 \[i\vec{r}_{RP} = R_{RI} R\vec{r}_{RP} \] - What is \(R_{RI} \) here?
- How about velocities?
 - \[i\dot{r}_{RP} = R_{RI} R\dot{r}_{RP} \]
- Velocity of point P in a moving frame (R): \[i\dot{r}_{OP} = I\dot{r}_{OR} + \omega_{IR} r_{RP} \]
Kinematics - basics - summary

- Translations \(\mathbf{r}_{OP_i} = \mathbf{r}_{OB} + \mathbf{r}_{BP_i} \)

- Rotations \(\mathbf{r}_{OP_i} = \mathbf{R}_{BI} \mathbf{r}_{BP_i} \)

- Homogeneous transformation \(\begin{pmatrix} \mathbf{r}_{OP_i} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{IB} & \mathbf{r}_{OB} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \mathbf{r}_{BP_i} \\ 1 \end{pmatrix} \)

- Angular velocities \(\mathbf{\omega}_{IC} = \mathbf{\omega}_{IB} + \mathbf{\omega}_{BC} \)

- Differentiation of (position) vectors \(\frac{d}{dt} \mathbf{r} = \mathbf{\omega}_{IB} \times \mathbf{r} \)
Kinematics - wheeled robot platform - constraints

- **Rolling constraint**
 \[
 \begin{bmatrix}
 -\sin \alpha + \beta \\
 \cos \alpha + \beta \\
 l \cos \beta
 \end{bmatrix} R(\theta) \dot{\xi}_I - \dot{\phi} r = 0
 \]

- **No-sliding constraint**
 \[
 \begin{bmatrix}
 \cos \alpha + \beta \\
 \sin \alpha + \beta \\
 l \sin \beta
 \end{bmatrix} R(\theta) \dot{\xi}_I = 0
 \]

\[
\begin{bmatrix}
 w \\
 v_{IW}
\end{bmatrix} = \begin{bmatrix}
 0 \\
 \dot{\phi} r \\
 0
\end{bmatrix}
\]
- no-sliding constraint
- rolling constraint
- planar assumption
For today
Today’s topics

• Kinematics - Degree of Manuverability - Attached slides from EdX
• Probability basics - Additional slides
For next class
Next class - Monday 08/27/2018

- Sensors model - Laser range scanners - Prof. Doshi