Omnidirectional Camera | definition

- An omnidirectional camera is characterized by a very large field of view (ultimately, a spherical field of view)

<table>
<thead>
<tr>
<th>Definition</th>
<th>FOV</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioptric</td>
<td>~180° FOV</td>
<td>Wide FOV dioptric cameras (e.g. fisheye)</td>
</tr>
<tr>
<td>Catadioptric</td>
<td>>180° FOV</td>
<td>Catadioptric cameras (e.g. cameras and mirror systems)</td>
</tr>
<tr>
<td>Polydioptric</td>
<td>~360° FOV</td>
<td>Polydioptric cameras (e.g. multiple overlapping cameras)</td>
</tr>
</tbody>
</table>

Image courtesy of T. Pajdla
Omnidirectional Camera | catadioptric camera

- Vertical field of view larger than 100 degrees
- Horizontal field of view 360 degrees
Omnidirectional Camera | catadioptric camera

- Mirror + perspective camera
Omnidirectional Camera | central catadioptric camera

- **Central** catadioptric camera
 - Mirror is surface of revolution of a conic

 • single effective viewpoint
Why is a central camera preferable?

- We can unwrap parts or all omnidirectional image into a perspective one
- We can transform image points into spherical vectors
- We can apply standard algorithms valid for perspective geometry
Omnidirectional Camera | projection model

What are the intrinsic parameters?

- Center of distortion
- Intrinsic parameters of the perspective camera
- Relative orientation and position between camera & mirror (for catadioptric cameras)
- Distortion model
 - Mathematical model of the mirror
 - Distortion of the fisheye lens
- All these parameters define the intrinsic parameters of an omnidirectional camera
Omnidirectional Camera | distortion model

- We can model the distortion through an n^{th}-order polynomial

$$f(u,v) = a_0 + a_1 \rho + \ldots + a_N \rho^N$$

- $n = 4$ describes accurately most catadioptric and fisheye cameras

Image courtesy of T. Pajdla

$p = \begin{bmatrix} x \\ y \\ z \\ f(u,v) \end{bmatrix}$

$||p|| = 1$
Goal: to determine the intrinsic parameters of the camera model

The standard method consists of measuring the 3D positions of \(n \) control points on a calibration object and the 2D coordinates of their image projections

- \(n \geq 6 \) non-coplanar control points on a three-dimensional calibration target
- \(n \geq 4 \) non-collinear control points on a planar pattern
Unified Spherical Representation
Unified Spherical Representation
Points from a perspective or central omnidirectional cameras can always be represented on the unit sphere (always possible when the camera is calibrated)