Stereo Vision versus Structure from Motion

- **Stereo vision:**
 is the process of obtaining **depth information** from a pair of images coming from two cameras that look at the same scene from different but **known** positions

- **Structure from Motion:**
 is the process of obtaining **depth and motion information** from a pair of images coming from the same camera that looks at the same scene from different positions
Stereo Vision | working principle

- Observe scene from two different viewpoints and solve for the intersection of the rays and recover the 3D structure
Stereo Vision | simplified case

- An ideal, simplified case assumes that both cameras are **identical** and **aligned** with the x-axis.
- Can we find an expression for the depth Z_P of point P_W?
- From similar triangles:

 $$
 \frac{f}{Z_P} = \frac{u_l}{X_P} \quad \text{and} \quad \frac{f}{Z_P} = \frac{-u_r}{b - X_P}
 $$

 $$
 Z_P = \frac{bf}{u_l - u_r}
 $$

- **Disparity** is the difference in image location of the projection of a 3D point in two image planes.
- **Baseline** is the distance between the two cameras.

$P_w = (X_P, Y_P, Z_P)$
Stereo Vision | general case

- Two identical cameras do not exist in nature!
- Aligning both cameras on a horizontal axis is very difficult
- In order to use a stereo camera, we need to know the intrinsic extrinsic parameters of each camera, that is, the relative pose between the cameras (rotation, translation) \(\Rightarrow \) We can solve for this through camera calibration
Stereo Vision | general case

- To estimate the 3D position of P_W we can construct the system of equations of the left and right camera.
- Triangulation is the problem of determining the 3D position of a point given a set of corresponding image locations and known camera poses.

Left camera: set the world frame to coincide with the left camera frame

$$\tilde{p}_l = \lambda_l \begin{bmatrix} u_l \\ v_l \\ 1 \end{bmatrix} = K_l \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix}$$

Right camera:

$$\tilde{p}_r = \lambda_r \begin{bmatrix} u_r \\ v_r \\ 1 \end{bmatrix} = K_r R \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + T$$

(R, t)
Correspondence Search | the problem

- Goal: identify corresponding points in the left and right images, which are the reprojection of the same 3D scene point
 - Typical similarity measures: Normalized Cross-Correlation (NCC), Sum of Squared Differences (SSD), Census Transform
 - Exhaustive image search can be computationally very expensive! Can we make the correspondence search in 1D?
Correspondence Search | the epipolar constraint

- The epipolar plane is defined by the image point \(p \) and the optical centers
- Impose the epipolar constraint to aid matching: search for a correspondence along the epipolar line
Correspondence Search | the epipolar constraint

- Thanks to the epipolar constraint, corresponding points can be searched for, along epipolar lines ⇒ computational cost reduced to 1 dimension!
Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)
Epipolar Rectification

- First, remove radial distortion
Epipolar Rectification

- First, remove radial distortion
- Then, compute homographies and rectify
The disparity map holds the disparity value at every pixel:
- Identify correspondent points of all image pixels in the original images
- Compute the disparity \((u_l - u_r)\) for each pair of correspondences

Usually visualized in gray-scale images
Close objects experience bigger disparity; thus, they appear brighter in disparity map
The disparity map holds the disparity value at every pixel:
- Identify correspondent points of all image pixels in the original images
- Compute the disparity \((u_l - u_r)\) for each pair of correspondences

Usually visualized in gray-scale images

Close objects experience bigger disparity; thus, they appear brighter in disparity map

From the disparity, we can compute the depth \(Z\) as:

\[
Z = \frac{bf}{u_l - u_r}
\]