CSCI 1100L
JavaScript lab exercise
What is JavaScript?
JavaScript, CSS, and HTML are all languages used in Web pages:
· HTML describes the page layout, such as headers, text, images, tables, lists, etc.
· CSS describes the styles of the page elements, such as their colors, font sizes, and background colors;
· JavaScript describes the interactive behavior of the page: actions the page takes in response to user events such as clicking a mouse button.
JavaScript has very little to do with Java. The name "JavaScript" was chosen as a marketing ploy by Netscape in its battles with Microsoft. Microsoft likes to promote a Microsoft-specific language called Jscript, which is almost the same JavaScript.
Historically, JavaScript has been plagued with browser incompatibility problems: code that works fine in one browser does not work in others. Fortunately, the World-Wide-Web Consortium (W3C) has published standards for JavaScript, which are now supported by all major browsers. All the code we will write in this class adheres to the standards, so your code should work unless your users are equipped with older browsers (such as the Netscape 4 browser).
Although the code we write should work in any new browser, we will be using Mozilla Firefox for this exercise. One of the newest browsers, Firefox is equipped with some useful development tools which will ease your transition into JavaScript.
First JavaScript Example
Launch Mozilla Firefox and open the file http://www.cs.uga.edu/~rwr/CS1100/LabFiles/Lab7/JSExample1.html. You should see an alert box pop up before you see the page contents. Use the File/Save As menu item to save the file on your I: drive.
Launch Notepad2 and open the file to view the code, which is shown below:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <META http-equiv="Content-Type" content="text/html;
 charset=ISO-8859-5">
 <title>First JavaScript example</title>
 <script type = 'text/javascript'>
 alert("This is an alert box!")
 </script>
 </head>[image: image1.png]Warnings Messages | Clear

Etor: unterminated string teral
o Source Fle: - fle:f1IF:ICSCI%201 100} avascritfExampled. new.hinl Lne: 9

alert("This is an alert box!]
B

 <body>
 <H1>First JavaScript Example</H1>
 <P>Theoretically, an alert box should have popped up
 before you see this text.</P>
 </body>
</html>
The text in shaded background is new. The alert function pops up a dialog box. You must click OK before you can see the page content.
The HTML source code might seem complex and confusing. Fortunately, Firefox contains a tool that will help understand this code. From the Tools menu, choose DOM Explorer. Click on a couple of the plus signs and they will expand into a display that looks something like what you see on the right.
DOM stands for Document Object Model. The document is the page contents that you see in the browser window. The DOM provides objects for each of the page elements such as the title, H1, etc. In this tutorial we will learn how to use JavaScript, working through these objects, to change the page display.
JavaScript Errors
Web pages are written by fools like me, so they will contain errors. Fortunately, Firefox has tools to help. Let's create an error by removing the second quote mark in the alert statement:
alert("This is an alert box!)
Save the file and use the Firefox File menu to open the saved version. You should see the page content telling you about the alert box, but no alert box popped up. The error caused the script to silently fail!
Since we are developers, we want to know why the script failed. From the Firefox Tools menu choose Error Console. Click on Errors and you should see the helpful message below.
[image: image9.png]- Document - DOM Hodes

nodefiame.
= #document
L
Er
B
ot

VETA

 The error message shows you what line the error is on, and the general type of error ("unterminated string literal"). A string literal is a bunch of characters enclosed in quotes. Leaving off the end quote made the string unterminated, i.e. without end.
Go back and fix the error by replacing the missing quote mark. Save the file and refresh the browser. You should now see the alert box pop up. Since we have fixed the error, go to the Error Console and click Clear.
Functions and event handlers
In our first example, the alert box pops up before the page contents are displayed. To control when an action takes place, we convert the action to a function. Rewrite your example like this, and save the file as JSExercise2.html. The changed parts are highlighted.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-5">
 <title> JavaScript Function Example</title>
 <script type = 'text/javascript'>
 /*
 * Pop up a meaningless alert, for a demonstration.
 */
 function show_alert() {
 alert("This is an alert box!")
 }
 </script>
 </head>
 <body>
 <H1>Second JavaScript Example</H1>
 <P>You will not see the alert box this time.</P>
 </body>
</html>
 It is all too easy to leave out one of the slashes, curly braces, or parentheses in this code. Use Tools/Error Console to look for errors in the code. The display below shows the result of leaving off the closing curly bracket on line 15:
[image: image2.png]Ertor: missing } after function body
o Source Fle: - fle:/1IF:ICSCI%201 100} avascrit/Example? new.hinl Lne: 15

e

Remember to Clear the display after you fix each error. When you have it right, you should see no errors.
A bit of explanation: a function is a package of code to do some specific task. The text inside the characters /*….*/ is called a comment, meaning that this explanatory text is designed to be read by people but ignored by the browser. This particular type of comment is called a function specification or just a spec. A spec is definition of what a function is supposed to do – in this case, pop up an alert box.
Now navigate Firefox to JSExample2.html. When you load the page, you will not see the alert box pop up. To make the box pop up on demand, we will add an event handler.
Event handlers
Make the highlighted code changes to the BODY section of your webpage and save the file as JSExample3.html:
 <H1>Event Handler Example</H1>
 <P>To see the alert box, click the button below.</P>
<div>
<input type='button' value='Click here' onclick='show_alert()'>
</div>
[image: image3.jpg]‘Window Opening Example
Click on this sentence to see a new window comparing two planets

Click on this sentence to replace this window with a comparison of two plancis.

In Firefox, navigate to JSExample3.html. You should see a button that pops up the alert box when clicked.
Use DOM Explorer to explore the INPUT element. You will see that this element has three attributes: its type (button), value ('Click here') and the onclick event handler, show_alert.
One of our favorite JavaScript tricks is creating rollover effects. Make the highlighted code changes to the BODY of the webpage and save the file as JSExample4.html:
 <H1>Rollover Example</H1>
 <P onmouseover='show_alert()'>Roll the mouse over this paragraph to see the rollover effect.</P>
In Firefox, navigate to JSExample4.html. When you roll your mouse over the paragraph, you should see the alert box.
Use DOM Explorer to explore the P element. You will see that this element has one attribute: its onmouseover event handler, show_alert.
Object references to page elements
OK, now we've demonstrated that we can respond to a mouse rollover event. But what we'd really like to do is change the style of the element that the mouse rolls over. For this we need a "handle" allowing us to write code that actually changes a page element. This "handle" is called an object reference to the page element. Here's how we get it:
Make the highlighted code changes to your webpage and save the file as JSExample5.html:
<title>W3C DOM tester</title>
<script type = 'text/javascript'>
 /*
 * Ask the user for an id; report if there is an element
 * with that ID, and if so, what is its tag name.
 */
 function test_getElement() {
 id = prompt("Please enter the id of a page element");
 obj = document.getElementById(id);
 if(obj)
 alert("Found element; its tag name is "+obj.tagName);
 else
 alert("Sorry, I cannot find this element");
 }
 </script>
 </head>
 <body id='Suzie'>
 <H1 id='Steve'>Object Reference Tester</H1>
 <P id='Alice'>
 Click the button to test the getElementById function.</P>
 <div id='Fred'>
 <input type='button' value='Click here' onclick="test_getElement()">
Again, there are lots of pitfalls with copying this code, so use the Error Console to verify that you have it correct. Here are some of the new features in the code:
· The prompt function is like alert, but it makes the user enter some value that is returned to the script. The value the user types in will be called id.
· We added id attributes to various tags in the document. These are special markers to identify individual elements (just like your student ID identifies you). You should not use the same id in two different tags.
· The document.getElementById function tries to find the page element that has a given id. If successful, the function creates an object reference and stores it in the variable obj.
· The script needs to make one of two different responses to the user. If the user enters an id that is found in the document, the script will reply with the tag name (P, H1, etc.). But if the user enters an id that is not found, the script must give a [image: image4.jpg]medium

Current xlarge

font size}

change to xlarge change to medium

'not found' message. To handle this, the script uses an if-else control statement. The flow chart for the script logic is shown to the right.
Navigate Firefox to JSExample5.html. Before you click the button, use the DOM Explorer to verify that the body tags do have attributes named 'id'. An example of what your display should look like is shown here.
Now test the page by clicking the button and entering the ids "Suzie," "Bil[image: image5.jpg]Mouse rollover

Roll the mouse pointer over the fwo

l", "Alice", "Fred", and "Rumplestiltskin." You should find that your function finds all of the elements except Rumplestiltskin.
Changing element styles
Remember that CSS style sheets are the preferred method for changing style properties such as backgrounds, color, etc.
The best way to change element properties such as colors is to create a named style (check the CSS section of the Reference Guide). You can then use JavaScript to set the className property of the object to the name of the style you want. Make the highlighted code changes and save the file as JSExample6.html:
 <title>Change element style</title>
 <style>
 .highlight {background-color:blue;color:white;font-weight:bold}
 </style>
 <script type = 'text/javascript'>
 /*
 * Change the style of element 'Alice' to 'highlight'
 */
 function change_style() {
 obj = document.getElementById('Alice');
 obj.className='highlight';
 }
 </script>
 </head>
 <body id='Suzie'>
 <H1 id='Steve'>Object Reference Tester</H1>
 <P id='Alice'>
 Click the button to alter the style of this paragraph.</P>
 <div id='Fred'>
 <input type='button' value='Change to blue' onclick="change_style()">
Again, use the Error Console to help you get this right. Note that the code follows the pattern of the previous example, using getElementById to locate an object reference to the paragraph. This time, however, we don't need an if-else control statement because we know that the element will be found.
When the script changes the className property of the element, the display property will change! Be sure to capitalize the 'N' in className, because JavaScript is a case-sensitive language.
Object terminology
Note the special usage obj.className='highlight'. Here obj is an object: a package containing a bunch of data items that can be manipulated by a program. One of the data items is className, the name of the style used to display the paragraph contents. By changing className, we have changed the way the paragraph displays in the browser.
The connection between objects and what you see in the browser is called the Document Object Model or DOM. The DOM provides a way for scripts to change the page: the script changes the objects, and the browser translates these changes into visible changes in the page.
Function parameters
We can make functions more flexible by providing parameters. These are input values that give the function some details about how to do its job. Make the highlighted code changes and save the file as JSExample7.html:
<script type = 'text/javascript'>
 /*
 * Change the style of an element
 * Inputs:
 * theElemement: id of an element to be changed
 * theStyle: name of a defined style
 * Result:
 * className of theElement is changed to theStyle
 */
 function change_style(theElement, theStyle) {
 obj = document.getElementById(theElement);
 obj.className=theStyle;
 }
...
...
...
<input type='button' value='Change to blue' onclick="change_style('Alice','highlight')">
Note that the function spec is now a bit more complex: this function can change any element to any style you like, not just 'highlight'. Be careful with the last line: it contains the single-quoted Alice and highlight inside the double-quoted change_style().
This code should have exactly the same effect as JSExample6.html. We won't see the payoff from our latest improvements until we need to change styles more than once.
Now you try it!
To make a true mouse rollover effect, we need a way to change the paragraph style back to normal. Now it's time for you to write some code on your own! Save your page as JSExample8.html, and edit it to add another button. Here's what you will need to do:
· Define another named style in the STYLE section of your webpage (check CSS Way #3 in your Reference Guide for help). Call the named style normal, which restores the default style of the text paragraph (i.e. default styles to text is usually black colored font on a white background-color. I leave it up to you to consult http://www.blooberry.com/indexdot/css/index.html to figure out the Allowed Value you want for the font-weight property).
· Add a new button that says "Change to normal." The onclick attribute of the new button will be almost the same as the other button. Can you figure out the difference?
With luck and persistence, you should be able to get this to work! Ask your TA if you are having problems: we don't want the walls to get bloody from your beating your head against them.
The final step: mouse rollover effect
 Now you are ready to create a true mouse rollover effect. Save your file as JSExample9.html. Make the following two changes:
· In the paragraph tag, add an onmouseover attribute. This is the mouseover event handler, so set its value to the onclick attribute of the first button.
· In the paragraph tag, add an onmouseout attribute. This is the mouseout event handler, so set its value to the onclick attribute of the second button.
That's it! You should now have a true mouse rollover effect.
Another mouse rollover effect[image: image6.png]F RSN R YA el

nodetiame i

Reproduce the page shown to the right (it'll be good practice for the Quiz). The list items should change when you roll the mouse over them, and also they should contain hyperlinks to the UGA home page http://www.uga.edu

HYPERLINK "http://www.uga.edu/" and WebCT. For this you will have to put an A tag inside an LI tag. You can use the change_style function we developed above. Call this example JSExample10.html.
More text properties
In the code below, we create some buttons to manipulate various properties of a text paragraph. Copy and paste all of this code into a new Notepad2 document and save this as JSExample11.html:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-5">
 <title>Text Object Properties</title>
 <style type="text/css">
 .big {font-size:x-large}
 .bold {font-weight:bold}
 </style>
 <script type='text/javascript'>
 /*
 * change the fontSize of element 'para1' to x-large
 */
 function change_size() {
 paragraph_obj = document.getElementById("para1");
 paragraph_obj.className='big';
 }
 function change_weight() {
 paragraph_obj = document.getElementById("para1");
 paragraph_obj. className='bold';
 }
 </script>
 </head>
 <body>
 <H1>Text object properties</H1>
 <P id='para1'>This is a typical text element. Click on the buttons
 below to change various properties of this text.</P>
Can you add two buttons to this example, one to make paragraph text big, the other to make it bold (you can look back at previous examples above to remember how to make buttons)?
Can you add another button to change the paragraph background-color to yellow? You may need to look in the Reference Guide.
Toggling properties with the if statement
Notice that clicking any of the buttons once will change the property, but clicking the button a second time will not change it back. Next we will alter the JavaScript code to make the property toggle – change back and forth each time we click the button.
[image: image7.png]Getid from user
Find page element

Reporttag Report
name failure

The key tool is the if statement, which allows us to make decisions. Here's the flow chart for what we want to do. If the current font-size is "medium", then change it to "x-large." But if the current font-size is "x-large," then change it back to medium.
Below is the revised change_size() function; see if you can get it to work as JSExample12.html. Note you will need to define a new style! You may need to look in the Reference Guide or the CSS reference, http://www.blooberry.com/indexdot/css/index.html
function change_size() {
 paragraph_obj = document.getElementById("para1");
 if (paragraph_obj.className=='big')
 paragraph_obj.className='normalSize';
 else
 paragraph_obj.className='big';
 }
If this works, can you change the other buttons to toggle as well?
Global objects: the Window object
In the last example we used the document object to get references to other elements on the page. Document is called a global object because it exists without us having to find it. There are a few other global objects. The most useful is the Window object.
The Window object contains data items representing things about the current window such as it height, width, etc. The Window object also contains a number of useful methods: actions that you can invoke using JavaScript. One of the most useful methods is the window.open method, which creates a new window. A simplified pattern of the window.open method looks like this:
window.open (content, window-name, window-features)
Here is what the three input parameters mean:
· content is the location of the Web page that will open in the new window. This can be a Web URL starting with http:// or the name of a local file.
· window_name is "_blank" if you want to open a new window, or "_self" if you want to replace the contents of the existing window.
· window-features is a string giving the size and location of the window. For example "left=100,top=200, height=350,width=500" creates a window that is offset 100 pixels from the left of the screen and 200 pixels from the top of the screen, and is 500 pixels wide by 350 pixels high.
Ready to try it? First, download the image file "planets.jpg" from this URL:
 http://www.cs.uga.edu/~rwr/CS1100/LabFiles/Lab7/planets.jpg
Be sure to save this file in the same directory that holds the HTML source file. Here is the HTML source, which you should save as JSExample13.html:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-5">
 <title>Window opening example</title>
 <script type="text/javascript">
 /*
 *Open a new window displaying planets.jpg
 */
 function show_planets() {
 window.open("planets.jpg","_blank","top=200,left=400,width=623,height=356");
 }
 </script>
 </head>
 <body>
 <H1>Window Opening Example</H1>
 <P onclick = 'show_planets()'>
 Click on this sentence to see a new window comparing two planets.</P>
<hr>
<P>Earth-Mars graphic courtesy of CNN.com</P>
 </body>
</html>
Notice we have gotten rid of the style declaration, since we don't need it. The three arguments to the window.open function are:
· "planets.jpg" – this is the URL of the document that will display in the new window. This URL is a file name, but you can also use an http:// type URL.
· "_blank" – the name of the new window. A new window will open.
· top=200,left=400,width=623,height=356 – the position and dimensions of the window. "Top" and "left" are the offsets from the edge of the screen, in pixels.
[image: image8.png]type button
oncick show_al
vae Clickhers

text

Try this: create another paragraph that, when you click on it, replaces the window contents with "planets.jpg" instead of creating a new window. Hint: you need to change only one of the three parameters of the window.open() function. The pattern of this function is listed at the top of this page.

