CSCI 1100 Lab
More fun with databases

Part I: queries
In this exercise you will practice some more SQL queries. First let’s practice queries on a single table.
1. Download SQL_practice.mdb to your I: drive. Launch Microsoft Access and open the SQL_practice database.

2. [image: image1.png]

You may get a Security Warning pop up at the top of your screen indicating “Certain content in the database has been disabled”. Click Options, Enable this content, and then OK.
3. Open the table Store and view it in Design View.
4. Each record represents a branch of Fearless Fred’s Fine Foods. Note that the StoreNumber is the primary key. The Address field is the address of the store, not the manager’s address.
5. Change to Datasheet view and examine the contents of the Store table.
6. Click the Create tab, then in the Other group, click Query Design. Add the Store table to the query and close the table selection box. Save the query as StoreQuery.
7. [image: image10.png]Key Value

genre [Comedly

submit CGl vars

Use the View menu to select SQL View. You should see the default query, “SELECT from store”. Now try to view this query in Datasheet view [image: image16.png][store

. You will see an SQL error message telling you that the query must have at least one “destination field,” whatever that is!

8. Go back to SQL view and edit the query to say “Select address from Store;”. The capitalization here does not matter, nor does it matter whether the SQL query is on a single line. SQL queries can get lengthy, so we run them from line to line and use a semicolon to mark the end of the query.

9. Now switch to Datasheet view [image: image2.png]

. You should now see the list of all the store addresses. Notice that the columns we want to appear in our query results go in the select line of our query. The word address was a column from our Store table.
10. Switch back to SQL view and change the query to “Select address, city from store”. Be sure to put a comma between the two fields “address” and “city.” Switch back to Datasheet view [image: image3.png]

. You will now see the address and the city. Note that the address comes before city in the query results, even though City comes before address in the table definition.

The Order Clause
11. Often we want to be able to control the order in which records are displayed. In SQL view, add the following to the end of the query: order by city. Be sure to put these new words in front of the semicolon, which ends the query. For best readability, we like to put each SQL clause on a separate line with the SQL key words capitalized, like this: [image: image4.png]=5 storeQuery
SELECT adaress, ity
FROM Store
ORDER BY City;

12. Switch to Datasheet view. You will now see the stores arranged in alphabetical order by city.

13. Switch back to SQL view, and change “order by city” to “order by sales.” In datasheet view, you will see that the order has changed. Re-open the Store table window to check that the stores are now listed in increasing order of sales. This shows that we can use a field that is not displayed in the query to order the results.
14. What if we want the list in decreasing order of sales? Add the keyword desc (for “descending”) after “order by sales.” Don’t forget about the semicolon! You should now see all the stores in reverse order.

Modifiers
15. Suppose our board of directors wants a list of all the cities where Fearless Fred has stores. Change the query so you only see the city names. Switch to datasheet view and you will see that Athens and Atlanta are each listed twice. To fix this, change “select city” to “select distinct city.”

16. Try switching back to Datasheet view. Oops! Access is unhappy. It appears that showing each city only once contradicts the requirement that stores be displayed in order of sales. Eliminate the offending “order by” clause. Don’t lose track of the semicolon! You should now see a result with three rows representing the different cities.

Where Clauses
17. In the last exercise we learned to add a WHERE clause to limit our query results to certain records. Start with a default, blank SQL Query window. Go to Create, Query Design, don’t add any tables, then change the view to SQL View. The only thing you should see in the SQL Query window is “SELECT;” Try these queries—save each query below as query17a, query17b, etc:

a. SELECT City, Manager FROM Store WHERE StoreNumber =13
When you switch to datasheet view, you should get the result [image: image5.png]) quenyiza

Manager -
George Blanda

*

b. Compose a query to find the city and address of the store whose manager is ‘Laurie Smith’. You must put quotes around any field value of type text.
c. Compose a query to find the city and address of the store whose manager is Clint Eastwood.
d. Compose a query to find the managers of all stores whose sales are less than $200,000. Don’t use the dollar sign or comma in the query, since the type of the Sales field is just a plain number.
e. Compose a query to find the managers of all stores whose sales are greater than $200,000. This and the previous query should be disjoint, and together should include all the managers.
f. Compose a query to list the addresses of all the stores in Athens.

g. Compose a query to list the addresses of all the stores in Athens whose sales are over $200,000. For this you will need the AND keyword. The WHERE condition will look something like
(condition to check city) AND (condition to check sales)
The AND keyword tells Access that only those records satisfying both of the conditions should be displayed.
h. Compose a query to list the addresses of all the stores that are either located in Athens or whose sales are over $200,000. For this you will need the OR keyword. Your query in datasheet view should look something like this:
[image: image6.png]= query17h

2245 Paces Ferry
780 Strickland Ave
467 Peachtree st

REMEMBER, SAVE EACH QUERY BELOW SEPARATELY EACH WITH DIFFERENT NAMES.

Functions

18. Open up the Stores table. By inspecting this table, we can easily find the highest annual sales for any of Fred’s stores. But what if the table contained hundreds or thousands of records? SQL provides a function, MAX(), to handle this. Remember, start with a default, blank SQL Query window. Go to Create, Query Design, don’t add any tables, then change the view to SQL View. The only thing you should see in the SQL Query window is “SELECT;” Try this query: Select MAX(Sales) from Store. In Datatsheet view, you should see the single value 514780.
19. Compose a query to find the lowest annual sales of any of Fred’s stores using the SQL function MIN().
20. OK, but we would also like to know which store has the highest sales, not just the value. Since we know the max value is 514780, we can put the expression into a WHERE clause:
WHERE sales = 514780

Try this out to compose a query for the city and address of the store that has the highest sales.

21. Subqueries: It doesn’t make sense that we have to do the dirty work like in step #20 above. Usually we try to avoid copying numbers by hand, which can lead to errors. Instead, we can reproduce the query that found the number as a subquery. Try this query:
Select city, address
From Store
WHERE sales=(select max(sales) from store);
22. Compose a query for the city and address of the store with the least sales.
23. Compose a query for the city and address of all the stores whose sales were more than half of the maximum amount. (HINT: To get half the maximum, try multiplying 0.5 times the max function)
Open the Delivery table, which records deliveries made to each of Fred’s stores. In a real database, this information would be broken down much further, giving the specific food items and quantities delivered to each store. You should always check to make sure your SQL field names match the fields from the table. Keep that in mind as you work the following queries below. Remember, SAVE EACH QUERY SEPARATELY WITH DIFFERENT NAMES (query24a, etc).

24. In the Database window, create a new query named query24a (remember, start with a default, blank SQL query that only says “SELECT;”). Use SQL View to compose the following queries:

a. Show the DeliveryDate and Amount of the deliveries, ordered by the DeliveryDate (Hint: Did you forget how to order by? See step #11).
b. Show the dates and amounts of the deliveries, ordered by the date in descending order. (Did you forget how to descend? Check out #14).

c. Show the dates and amounts of deliveries to store number 22.
d. Show the dates, store numbers, and amounts of deliveries on October 10, 2007. (To check the date, you will need to use Access’s special notation #10/10/2007# to denote this).

e. List the dates, amounts, and store numbers of all deliveries greater than $20,000 (remember to leave off the dollar sign and comma).

f. Find the maximum delivery amount.

g. Find the date and store number of the store that received the largest delivery (you’ll need to use the subquery method we just learned).

25. [image: image11.png]Value

[image: image12.png]res<td>ginput types'checkbox' name='all genres'>

1>cinput _type='text' name='genre'>

[image: image13.png]"http://ganesha.cs

Now we will show you how to make queries that combine data from both tables. The diagram here shows how the two tables are linked via their StoreNumber fields. We can use data from both tables, simply by including the extra condition AND Store.StoreNumber=Delivery.StoreNumber in each query. Notice that we need to say Store.StoreNumber or Delivery.StoreNumber because just StoreNumber by itself is ambiguous (Access would not know which column from which table you’re talking about if you said just StoreNumber). Also, we will need to include both table names in the FROM clause. [image: image7.png]DeliverylD - | StoreNumber DeliveryDate +| Amount - |Add New Field

ol 1 1 10/10/2007 3275
= store

m city -| Manager Address. «| sales -,
o Athens GeorgeBlanda 345 Baxter st. 231000

22 Atlanta ClintEastwood 2245 Paces Ferry 340650

26. Create a new Query called query26a starting with just the “SELECT;” default query and try the following saving each query with a different name.
a. SELECT City, Manager
FROM Store, Delivery
WHERE DeliveryDate = #10/10/2007# AND Store.StoreNumber=Delivery.StoreNumber

(remember the bold section above links the two tables like using a Relationship except using SQL. This is necessary to be able to correctly find data from two separate tables)
b. Find the dates and amounts of all deliveries made to the store managed by Clint Eastwood. (Remember to put quotes around the name).

c. Find all the dates on which deliveries were made to stores in Athens. You should get…
[image: image8.png]1 quenyzec

10/11/2007
10/20/2007
10/20/2007
10/24/2007

d. List the city, address, and date of all deliveries over $20,000.

Part II: Data normalization exercise

27. Let’s start a new, blank database. Save it as StudentDatabase.accdb. Look at the table below. Notice that some of the data values are repeated. This table is crying out to be normalized, so don’t enter the values yet!

	Lastname
	Firstname
	Major Department
	Degree type
	College

	Nguyen
	Charlotte
	Food Science
	BSA
	Agriculture

	Porter
	James
	Agribusiness
	BSA
	Agriculture

	Winsome
	Cheryl
	Agribusiness
	BSA
	Agriculture

	Abrahamson
	Janet
	Political Science
	AB
	Arts and Sciences

	Ingram
	Jack
	Computer Science
	BS
	Arts and Sciences

	Lawrence
	Steven
	Child and Family Development
	BSFCS
	Family and Consumer Sciences

	Jones
	Cindy
	Chemistry
	BS
	Arts and Sciences

We’re going to figure out how to normalize this table by breaking the data up into two separate tables. To do this, we are going to create two tables: one table will hold data on the students (first and last names) and the students’ majors. The second table will house the different majors, the degree types, and the colleges that offer those majors. The student table should not have a primary key, but the majors table should (hint: let’s assume that major names are unique). Remember that it’s easier if your table names and column names are descriptive, easy to remember, don’t contain spaces, and do not have the same column names as another table -- if you doubt this statement, you’ll find this out when you make your SQL queries (. Remember that you will need to have one column that will link these two tables together (I would suggest linking them based on the Major Department column). When you have figured this out and verified the answer with your TA, set up the tables and enter the data.
28. Set up the foreign key relationship between the two tables. Then figure out an example of entering a new record that fails because it violates data integrity on the two tables.

29. Create a new query and save it as Query29a (save each query below with a different name). Remember to start out with a blank SQL Query that only has the default statement, “SELECT;” by going to
Create->Query Design, don’t add any tables, then change the view to SQL View. Remember that when we want data from two different tables, we will need to link these tables together by matching two of the columns from each table. For a hint, see step 25 above.
a. Show the first and last names of all students and their colleges. You should get the following results: [image: image9.png]James.
cheryl
Janet
Jack
steven
Cindy

lastname
Nguyen
Porter
Winsome
Abrahamson
Ingram
Lawrence
Jones.

college
Agriculture
Agriculture
Agriculture

Arts and sciences
Arts and Sciences
Family and Consumer Sciences
Arts and Sciences.

b. Show the first and last names of all students who are getting BS degrees, ordered by last name.

c. Show the first and last names of all students in the college of Agriculture, ordered by last name.

d. List all the degree types offered, without repetition.

 Part III: A Database-enabled Web application

In this part of the exercise we will construct a primitive example of a Web application that uses a database to remember user input. This will be a Web version of the movie review exercise mentioned before. Because this version is on the Web, you will be able to see other students’ submissions as well as your own.
30. Save the files Movie Application Frameset, Movie Application Results, and Movie Application Entry Form to your I drive. As you save, use the filenames provided (“server_example.html”, “top.html”, and “bottom.html”).
31. Using Mozilla Firefox, open server_example.html. You should see two separate areas separated by a horizontal line. These parts of the page are called frames.

32. [image: image14.png]‘title>lNovie Review Application Using Ser
frameset rows="50%,40%">
<frame mame=rresults” sre="top.html">
<frame sre="bottom.html">
/frameset>

Use the View/Page Source menu item to examine the HTML source code for this page. The source code is very short and contains a frameset instead of a body element. The rows attribute of the frameset element specifies that the top frame will take up 60% of the window, while the bottom element gets the remaining 40%. The contents of the frames are contained in the source files top.html and bottom.html. Notice that the first frame is given a name attribute, “results.”
33. Right-click in the bottom frame and choose This Frame/Show Only This Frame. Now you will see only the bottom frame, which is the input form for the application. Use View/Source to examine the HTML source for this frame. First, notice the form element. An HTML form element is the equivalent of a paper form, with blanks for you to add information. The action attribute[image: image15.png]=5 storeQuery

SeLECT
FROM Store;

 of the form is the URL of a server program that will accept the form and give a response. For example, to get a University of Georgia parking permit you must fill out a form with many information items about you and your car. When you submit the form to Parking Services (the “server”), you will get a parking permit in return.
34. Continuing with the form page, notice that there are two input elements, a checkbox and a text field. Each input element has a name attribute, which describes the meaning of the input. In this example,

· Clicking the all_genres checkbox means you want a list of all available genres;

· Entering a value in the genre text field means you are interested in movies of that genre.

These data items are called CGI variables, standing for “Common Gateway Interface.” CGI is an agreed-on standard for how data entry forms should submit their values to a server program.

35. OK, let’s test the system. Check the all_genres checkbox in the bottom frame. This is supposed to indicate that we want a list of all the genres (drama, comedy, etc.) in the database. Click the Submit CGI vars button.
36. Yikes! The input form in the bottom frame disappears and is replaced by a bunch of stuff from the server. This isn’t what we wanted! The idea is to leave the input form in place, and examine the output in the top frame.

To fix this problem, use Notepad2 to edit the input form file, bottom.html. In Notepad2, at the top of the webpage, notice the form tag. It already has two attributes, “method” and “action”. Add a third attribute, the attribute target="results". Recall that ‘results’ was the name of the top frame, specified in the frameset file server_example.html. The target attribute specifies the window that should contain the results from the server program.
Save the modified file, go back to Firefox, and use File/Open File to reopen server_example.html. Check the all_genres box and click the Submit button. This time, the results should appear in the top frame.

37. Examine the results frame. There are three parts:

· The CGI Request Variables from the server. This time the “genre” variable did not show up. The “genre” variable was sent, but with a null value since we left the input field blank.

· The SQL statement generated by the server from your CGI inputs. Notice the SQL keywords “select” and “from” that we learned last lab. In this case, the “all_genres” variable generated a request for a list of all the movie genres. The “distinct” keyword specifies that each genre should be reported only once. For example, there may be many comedy movies in the database, but “comedy” will be reported only once in the list of genres.

· The results of the SQL retrieval, in this case a list of genres.

38. Uncheck the all_genres checkbox. Pick any one of the genres listed, and type or copy it into the genre text field. When you press the submit button, you should get a search for all of the movies of that genre.

39. Now you will extend the input form to enable more database actions. As you can see, the server’s action depends on the CGI input variables you send it. Here is the list of possible actions and the data they need:

	Action
	CGI input variables

	See all genres
	all_genres

	See all movies of a specified genre
	genre

	See all reviews for a given movie
	movie_id

	See all movies of any genre
	all_movies

	Input a movie
	title, genre

	Input a review
	movie_id, reviewer_name, review_text

Time to shake off the HTML rust… Take a look at the table above. Depending on which combination of variables the user types in values for in our form, the action on the left will be carried out. Look at the CGI input variable movie_id. What this means is that if you inputted a movie id, all reviews for that movie would be displayed as the result. Thus, we’ll need areas (text fields) in our form to hold the different variables. Use Notepad2 to make more changes to the input form page, bottom.html. The actions highlighted in yellow above have already been implemented in bottom.html, so find those variables and use them as a guide. Start by adding another row to the table which submits the movie_id variable. This row should look like the “genre” row. Don’t forget to include the name="movie_id" attribute to the input element. Save the file and test by entering a movie id for one of the movies shown (the movie id is a number, not a name of a movie. If you have forgotten the list of movie ids, try entering a genre again like we did in step 38.)
40. Continue extending the input form by adding more spots for variables to implement all of the actions described in the table above.
a. For the all_movies input variable, use a checkbox such as we have shown for the all_genres variable.
b. For the review_text input variable, use a <textarea> tag. You can find out how to use this tag at blooberry.com. Remember to include a closing tag, even though there is no content between the opening and closing tags.

c. Have fun entering reviews for some movies you have recently watched!

That’s All Folks! You have probably noticed that this application is pretty clunky. The user should not be expected to copy genres and movie ids by hand from one frame to another. You are right, but the technology to automate this process is beyond the scope of this course. If you’d like to learn how to write real database-enabled Web applications, ask us about our Web Programming course.

 There’s a lot more that you can do with databases, but this will do for this course. We hope you have gained an appreciation of the potential power of this tool.
