
A NEW LINEAR ALGORITHM FOR CHECKING A GRAPH

FOR 3-EDGE-CONNECTIVITY

by

Feng Sun

(Under the direction of Robert W. Robinson)

Abstract

A new algorithm to test an arbitrary graph for 3-edge-connectivity is proposed,
implemented and tested. It is a modification of the classic linear algorithm of
Hopcroft and Tarjan for dividing a graph into 3-connected components. The algo-
rithm uses three depth-first searches to locate separation pairs. It runs in time
O(m + n), where m is the number of edges and n is the number of vertices in the
graph. Testing was done on simple graphs and Feynman diagrams. The results show
good agreement with the time complexity analysis, validating the algorithm design
and implementation.

Index words: edge connectivity, 3-edge-connected graph, linear algorithm,
depth-first search

A NEW LINEAR ALGORITHM FOR CHECKING A GRAPH

FOR 3-EDGE-CONNECTIVITY

by

Feng Sun

B.S., Peking University, China, 1999

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2003

c© 2003

Feng Sun

All Rights Reserved

A NEW LINEAR ALGORITHM FOR CHECKING A GRAPH

FOR 3-EDGE-CONNECTIVITY

by

Feng Sun

Approved:

Major Professor: Robert W. Robinson

Committee: E. Rodney Canfield

Eileen T. Kraemer

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2003

Dedication

In memory of Lei Yu, Lin Liqing, Lu Zhen, Yang Lei, Zhang Xingbai and

Zhou Huixia

For their courage to explore unknown territory

For their love of mountaineering

iv

Acknowledgements

I am extremely thankful to my major professor, Dr. Robert W. Robinson for his

invaluable guidance and encouragement throughout my entire research and academic

years. Without his help, it would be difficult to finish this thesis.

I would also like to thank Dr. E. Rodney Canfield and Dr. Eileen T. Kraemer

for serving on my advisory committee, and for their advice and guidance.

My sincere gratitude is extended to my wonderful and loving parents, who have

been very supportive and encouraging.

Last but certainly not least, I wish to express my sincere thanks to my wife for

her love and support.

v

Table of Contents

Page

Acknowledgements . v

List of Figures . viii

List of Tables . ix

Chapter

1 Introduction . 1

1.1 Overview . 1

1.2 Basic Definitions . 3

1.3 Depth-first search . 5

1.4 Identifying separation pairs 6

1.5 Generating unlabeled graphs 8

2 A linear algorithm for checking 3-edge-connectivity . . . 10

2.1 Preliminaries . 10

2.2 Analysis of type 1 separation pairs 12

2.3 Analysis of type 2 separation pairs 14

2.4 Time complexity analysis 23

3 Implementation and test results 24

3.1 Testing on general graphs 24

3.2 A simplified algorithm for Feynman diagrams . . . 27

vi

vii

4 Conclusions and future work 32

Bibliography . 34

List of Figures

1.1 An example of a 3-edge-connected graph. 2

1.2 A partition of vertices V into disjoint sets V1 and V2. 7

1.3 Examples of separation pairs. 8

2.1 A palm tree before and after the second DFS. 17

3.1 Comparison of running times and scaled times for 3-edge-connectivity

algorithms. 28

viii

List of Tables

3.1 Numbers of unlabeled and labeled 3-edge-connected graphs by order n. 25

3.2 Numbers of unlabeled 3-edge-connected graphs by order n and size m. 26

3.3 Average testing times and scaled times for two algorithms on random

graphs. 27

3.4 Comparison of running times for our linear algorithm and a quadratic

algorithm. 31

ix

Chapter 1

Introduction

1.1 Overview

Designing efficient algorithms for determining the connectivity of graphs has been

a subject of great interest during the last two decades [5]. Many algorithms for the

computation of edge-connectivity and vertex-connectivity have been developed. In

the literature, several algorithms [2, 6, 12, 18] for determining 3-edge-connectivity

are described. However none of these is based on the classic linear algorithm of

Hopcroft and Tarjan for dividing a graph into 3-connected components [9].

In this thesis we develop a linear algorithm for deciding the 3-edge-connectivity

of a simple graph by modifying the algorithm of Hopcroft and Tarjan. Their termi-

nology and approach are followed as closely as possible. Nothing essential is lost in

restricting the algorithm to simple graphs. Loops have no effect on edge-connectivity.

Multiple edges do affect edge-connectivity but they can be easily incorporated into

our algorithm. The presentation, however, is significantly simpler when multiple

edges are not allowed.

Like the algorithm of Hopcroft and Tarjan, the linear algorithm described in

this paper is based on depth-first search (DFS). There are two types of separation

pairs for 3-edge-connectivity, and these are located using three DFSs. The first DFS

establishes a palm tree, in which edges are partitioned into a tree edge set and a

frond set. The DFS also computes several important values for each vertex, including

NUMBER, LOWPT1 and LOWPT2. Type 1 separation pairs are checked in the

1

2

first step based on these values. The next procedure reorders the adjacency list for

each vertex so that a child vertex with lower LOWPT1 appears before a child vertex

with higher LOWPT1 in the list. Then the second DFS is performed to generate

a set of paths and renumber the vertices from n to 1 in the order they are last

visited using the new adjacency structure. The values of LOWPT1 and LOWPT2

are updated based on the new number for each vertex. The third DFS is used to

identify type 2 separation pairs. In this procedure, possible separation pairs are kept

in a stack called PStack. The stack is updated when a new vertex is visited. If a

candidate pair is determined to be a separation pair, the algorithm returns 0 and

stops immediately. At the end, the algorithm returns 1 if no separation pair is found.

Figure 1.1: An example of a 3-edge-connected graph.

3

1.2 Basic Definitions

In order to describe graph algorithms, we must give some definitions. Most of these

are more or less standard in the literature. (See [1] and [19], for instance.) However

the terminology and notation associated with palm trees are from [9].

graph A graph (or simple graph, for emphasis) G is an ordered pair of disjoint sets

(V,E) such that V 6= φ and E is a subset of the set V (2) of unordered pairs

from V . We consider only finite graphs, so V and E are always finite. Here V is

the set of vertices and E is the set of edges. If G is a graph, then V = V (G) is

the vertex set of G, and E = E(G) is the edge set. The order of G is |V |. The

size of G is |E|. If E is a multiset, that is , if edges are allowed to occur more

than once, then G is a multigraph. If the edges are ordered pairs of vertices,

then the structure is a directed graph, or digraph.

subgraph A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

In this case, we write G′ ⊆ G.

path A path p : v
∗

⇒ w in G is a sequence of vertices and edges leading from v to

w. A path p : v
∗

⇒ v is a cycle if it contains at least one edge, all its edges

are distinct, and the only vertex to occur twice on p is v, which occurs exactly

twice (at the beginning and the end).

connected graph We say a graph G is connected if and only if every pair of distinct

vertices in G is joined by a path.

trivial graph G is trivial if and only if it has order 1 and no edges.

component A component of a graph G is a maximal connected subgraph of G.

edge-separator An edge-separator of a graph is a minimal set S ⊆ E(G) such that

G− S has more than one component.

4

separation pair An edge-separator is a separation pair if it contains two edges.

k-edge-connected graph A graph is k-edge-connected if every edge-separator has

at least k edges.

edge connectivity The edge connectivity of a graph G of order n ≥ 2, written

λ(G), is the minimum cardinality of an edge-separator.

isomorphic graphs Two graphs G1 and G2 are isomorphic if there is a one-to-

one function φ from V (G1) onto V (G2) such that uv ∈ E(G1) if and only if

φ(u)φ(v) ∈ E(G2).

labeled and unlabeled graph In a graph of order n, if the integers from 1 through

n are assigned to its vertices, then it is labeled. An unlabeled graph is an iso-

morphism class of labeled graphs.

tree A graph containing no cycle is acyclic. A tree is an acyclic connected graph.

rooted tree A rooted tree is a tree with a special vertex, called the root.

directed rooted tree A directed rooted tree is a rooted tree with edges directed

away from the root (also called an out-tree in the literature). The notation

v → w indicates that (v, w) is a directed edge of the directed rooted tree T .

The relation ”there is a path from v to w in T” is denoted by v
∗

→ w. If v → w,

v is the father of w and w is a son of v. If v
∗

→ w, v is an ancestor of w and w

is a descendant of v. The set of descendants of a vertex v is denoted by D(v).

Every vertex is an ancestor and a descendant of itself.

spanning tree A tree T is said to be a spanning tree of a graph G if T is a subgraph

of G and T contains all the vertices of G.

palm tree Let P be a directed graph consisting of two disjoint sets of edges denoted

by v → w and v− → w. Suppose P satisfies the following properties:

5

1. The subgraph T containing the edges v → w is a spanning tree of P .

2. If v− → w, then w
∗

→ v. That is, each edge not in the spanning tree T

of P connects a vertex with one of its ancestors in T . The edges v− → w

are called the fronds of P .

Then P is called a palm tree.

adjacency list If v is a vertex, the adjacency list A(v) contains all w such that

(v, w) is an edge of G. A set of such lists, one for each vertex in G, is called an

adjacency structure for G.

1.3 Depth-first search

Depth-first search is a systematic way of exploring a graph [17]. To carry out a

depth-first search of G, we first select a vertex to start with, say z, which is called

the root. After the root vertex z is visited, an edge (z, v) incident to z is selected.

If v has not been visited, then v is visited, and a new search starts recursively at

vertex v. If v has already been visited, then another unexplored edge leading from z

will be selected. This process continues until all edges at z have been explored. Since

this approach visits unexplored edges recursively as deeply as possible, it is called

depth-first search.

We use a set of adjacency lists, one for each vertex. If G is undirected, each

edge (v, w) is represented twice, once in A(v) and once in A(w). The following

is the DFS procedure. It is easy to prove that the vertices are numbered so that

NUMBER(v) < NUMBER(w) if v
∗

→ w in the spanning tree generated [17].

ALGORITHM DFS(G)

1 FOR each vertex v in V(G)

2 NUMBER(v) = FATHER(v) = 0;

3 time = 0;

6

4 DFS-VISIT(root);

END ALGORITHM

PROCEDURE DFS-VISIT(v)

1 NUMBER(v) = time = time + 1

2 FOR w in the adjacency list of v DO

3 {

4 IF NUMBER(w) == 0 THEN

5 {

6 mark vw as a tree edge in P;

7 FATHER(w) = v;

8 DFS-VISIT(w);

9 }

10 ELSE IF NUMBER(w) < NUMBER(v) and w != FATHER(v) THEN

11 mark vw as a frond in P;

12 }

The edges whose exploration by DFS leads to an unvisited vertex are called tree

edges, and the remaining edges are called fronds. The tree edges form the depth-

first tree T . All the tree edges are from parent to child, and all fronds are from

descendant to ancestor. Thus the depth-first search converts G into a palm tree. It

is also obvious that if G is connected then T is a spanning tree of G.

1.4 Identifying separation pairs

By definition, a graph G is not 3-edge-connected if λ(G) < 3.

1. If λ(G) = 0, the graph is not connected.

2. If λ(G) = 1, the graph is not 2-edge-connected. In this case there is at least

one edge e such that G− e is not connected.

3. If λ(G) = 2, the graph is 2-edge-connected but not 3-edge-connected. In this

case there is at least one pair of edges S = {e1, e2} (a separation pair) such

that G− S is not connected.

7

Figure 1.2: A partition of vertices V into disjoint sets V1 and V2.

Cases 1 and 2 are easily identified based on a simple depth-first search. We will

assume that all graphs considered from now on are 2-edge-connected. An illustration

of case 3 is shown in Figure 1.2.

As observed in the previous section, a depth-first search converts G into a palm

tree and partitions the edges into a tree edge set and a frond set. If there is a

separation pair S, it must consist of two tree edges, or else one tree edge and one

frond. This is because it is impossible for two fronds to form a separation pair. Since

the tree edges form a spanning tree of G, all the vertices are connected by tree

edges. Removing fronds cannot increase the number of components in G. Thus the

separation pair cannot consist of two fronds.

8

We call a separation pair type 1 if it is formed by one frond and one tree edge.

We call a separation pair type 2 if it is formed by two tree edges. Figure 1.3 gives

an example of a type 1 separation pair and an example of a type 2 separation pair.

Figure 1.3: Examples of separation pairs.

1.5 Generating unlabeled graphs

• The software package Nauty by B.D. Mckay [11] was used to generate all of

the unlabeled connected graphs of a given order. We applied our algorithm

to check which of the graphs generated by Nauty are 3-edge-connected, thus

providing the numbers of unlabeled 3-edge-connected graphs of order up to 11.

• Nauty can produce the order of the automorphism group for each unlabeled

graph generated. A graph of order n with s automorphisms can be labeled

in exactly n!/s different ways [7, p.4]. We summed the numbers of labelings

for the 3-edge-connected unlabeled graphs to obtain the numbers of labeled

3-edge-connected graphs of order up to 11. As a cross check, a similar test

9

was done to obtain the numbers of labeled 3-edge-connected blocks of order

up to 11. A graph is a 3-edge-connected block if it is 2-connected and 3-edge-

connected. The 2-connectivity algorithm used in our test is from Nauty. These

numbers for labeled graphs were provided by S. K. Pootheri [14], and he also

found the numbers of unlabeled 3-edge-connected blocks [15]. His calculations

were algebraic and did not involve any graph generation.

• As a comparison, we also tested the linear 3-edge-connectivity algorithm of

H. Nagamochi and T. Ibaraki [12]. Our implementation was a straightforward

modification of Z. Chen’s implementation [2].

The rest of the thesis is organized as follows. Chapter 2 presents the details of

our linear 3-edge-connectivity algorithm. Based on our complexity analysis, the time

required for the algorithm is O(m + n), where m is the number of edges and n is

the number of vertices in the graph. In Chapter 3, we discuss the implementations

for general graphs and Feynman diagrams and compare them with implementations

of other algorithms. The tests show that our implementations are correct and faster

than those to which they were compared. Conclusions and future work are discussed

in Chapter 4.

Chapter 2

A linear algorithm for checking 3-edge-connectivity

2.1 Preliminaries

The terminology and lemmas in this chapter are based on those in the paper of

J. E. Hopcroft and R. E. Tarjan [9] with modifications for edge-connectivity. The

resulting algorithm is a bit simpler than their algorithm for dividing a graph into

3-connected components. Partly this is because edge connectivity is easier to deal

with than vertex connectivity; intuitively this is due to the fact that an edge is only

incident to two vertices, whereas a vertex may be incident to many edges. But also

the algorithm is limited to determining whether or not a graph is 3-edge-connected

and does not need to partition the edges into 3-edge-connected components. To begin

with, an expanded DFS, called FIRSTDFS, similar to the one in Section 1.3 will be

performed to calculate the following additional values for each vertex.

LOWPT1(v) LOWPT1(v) is the vertex w with lowest NUMBER(w) that is

reachable from v by traversing zero or more tree edges of graph G followed by

at most one frond.

LOWPT2(v) LOWPT2(v) is the vertex w with second lowest NUMBER(w) that

is reachable from v by traversing zero or more tree edges of graph G followed

by at most one frond. LOWPT2(v) equals LOWPT1(v) if there exist two or

more fronds ui− → LOWPT1(v) such that v
∗

→ ui.

ND(v) ND(v) is the number of descendants of v in the palm tree of G.

10

11

We will use the values of LOWPT1, LOWPT2 and ND to help precisely define

the characteristics of the two types of separation pairs in the next section.

ALGORITHM FIRSTDFS(G)

1 FOR each vertex v in V(G)

2 {

3 NUMBER(v) = FATHER(v) = ND(v) = 0;

4 LOWPT1(v) = LOWPT2(v) = 0;

5 }

6 time = 0;

7 FIRSTDFS-VISIT(root);

END ALGORITHM

PROCEDURE FIRSTDFS-VISIT(v)

1 NUMBER(v) = time = time + 1;

2 LOWPT1(v) = LOWPT2(v) = NUMBER(v);

3 ND(v) = 1;

4 FOR w in the adjacency list of v DO

5 {

6 IF NUMBER(w) == 0 THEN

7 {

8 mark vw as a tree edge in P;

9 FATHER(w) = v;

10 FIRSTDFS-VISIT(w);

11 IF LOWPT1(w) < LOWPT1(v) THEN

12 {

13 LOWPT2(v) = MIN{LOWPT1(v), LOWPT2(w)};

14 LOWPT1(v) = LOWPT1(w);

15 }

16 ELSE IF LOWPT1(w) == LOWPT1(v) THEN

17 LOWPT2(v) = LOWPT1(w);

18 ELSE

19 LOWPT2(v) = MIN{LOWPT2(v), LOWPT1(w)};

20 ND(v) = ND(v) + ND(w);

21 }

22 ELSE IF NUMBER(w) < NUMBER(v) and w != FATHER(v) THEN

23 {

24 mark vw as a frond in P;

25 IF NUMBER(w) < LOWPT1(v) THEN

26 {

27 LOWPT2(v) = LOWPT1(v);

28 LOWPT1(v) = NUMBER(w);

29 }

12

30 ELSE IF NUMBER(w) == LOWPT1(v) THEN

31 LOWPT2(v) = NUMBER(w);

32 ELSE

33 LOWPT2(v) = MIN{LOWPT2(v), NUMBER(w)};

34 }

35 }

2.2 Analysis of type 1 separation pairs

First, consider several lemmas related to the structure of a palm tree.

lemma 2.2.1 LOWPT1(v)
∗

→ v and LOWPT2(v)
∗

→ v in P .

Proof. LOWPT1(v) ≤ v by definition. If LOWPT1(v) = v, the result is imme-

diate. If LOWPT1(v) < v, there is a frond u− → LOWPT1(v) such that v
∗

→ u.

Since u− → LOWPT1(v) is a frond, LOWPT1(v)
∗

→ u. Since P is a tree, v
∗

→ u

and LOWPT1(v)
∗

→ u, either v
∗

→ LOWPT1(v) or LOWPT1(v)
∗

→ v. Because

LOWPT1(v) < v, it must be the case that LOWPT1(v)
∗

→ v
∗

→ u. So the lemma

holds for LOWPT1(v). The proof is the same for LOWPT2(v).

lemma 2.2.2 If G is 2-edge-connected, LOWPT1(v) < v unless v is the root, in

which case LOWPT1(v) = v.

Proof. Suppose G is 2-edge-connected and there exists a non-root vertex v such

that LOWPT1(v) ≥ v. If w is the father of v, any path from v not passing through

(v, w) remains in the subtree T (v). If we remove this edge, v will be disconnected

from w. This violates the assumption that G is 2-edge-connected. Hence it must

be the case that LOWPT1(v) < v. If v is the root then LOWPT1(v) = v since

LOWPT1(v) ≤ v and v has no strict predecessor.

Recall that a type 1 separation pair is formed by one tree edge and one frond in

the palm tree of G. The following lemma identifies type 1 separation pairs:

13

proposition 1 A 2-edge-connected graph G has a type 1 separation pair if and only

if there is a vertex w other than the root such that LOWPT2(w) ≥ w.

Proof. For the converse direction, suppose G is 2-edge-connected and there exists

a non-root vertex w such that LOWPT2(w) ≥ w. Since G is 2-edge-connected and

w is not the root, LOWPT1(w) < w by Lemma 2.2.2. Let t = LOWPT1(w) and

v be the father of w. LOWPT1(w) < w implies that there must exist a vertex u

such that w
∗

→ u and u− → t. Since LOWPT2(w) ≥ w, u must be unique. Hence,

all paths from w to v must include either (u, t) or (v, w). If we remove (u, t) and

(v, w) from G, v and w will be disconnected, showing that {(u, t), (v, w)} is a type

1 separation pair for G.

For the forward direction, suppose that a 2-edge-connected graph G has a type

1 separation pair {e1, e2} in its palm tree. Without loss of generality, we assume

that e1 = v → w is a tree edge and e2 = u− → t is a frond in the palm tree.

After removing e1 and e2, G
′ = G−{e1, e2} is not connected. Since we only removed

one tree edge v → w from G, the vertices in D(w) are connected by the tree edges

among them. These vertices and the edges incident to them must form a connected

component, say C1, of D
′. Similarly, the vertices in V (G)−V (C1) are also connected

and belong to a connected component of D′, say C2. Now we prove that C1 and C2

would be connected if LOWPT2(w) < w. Let t′ = LOWPT2(w). Since t′ < w,

there is a frond u′− → t′ such that w
∗

→ u′. The assumption t′ < w indicates that t′

is a vertex in C2. Clearly u
′ ∈ C1. Since u

′ = u and t′ = t cannot be true at the same

time by the definition of LOWPT2 and the assumption that G is simple, (u′, t′) is

an edge connecting C1 and C2 after e1 and e2 are removed. Thus all vertices of G

are still connected after removing the separation pair. This is a contradiction. Hence

LOWPT2(w) ≥ w.

14

Proposition 1 leads to an efficient algorithm for finding type 1 separation pairs.

If we insert the following lines into procedure FIRSTDFS-VISIT(u) between lines 10

and 11, the modified procedure FIRSTDFS will correctly identify type 1 separation

pairs.

10.1 IF (LOWPT1(w) < v and LOWPT2(w) >= w) THEN

10.2 detect a type 1 separation pair, procedure stop;

2.3 Analysis of type 2 separation pairs

Before identifying type 2 separation pairs of a 2-edge-connected graph, we need to

perform two depth-first searches and some auxiliary procedures.

Step 1. Perform FIRSTDFS(root) on the graph G to convert G into a palm

tree P . Calculate NUMBER(v), FATHER(v), LOWPT1(v), LOWPT2(v) and

ND(v) for each vertex v in P .

Step 2. Construct an adjacency structure A for P by ordering the edges e in each

adjacency list of P according to nondecreasing value of φ(e). Here φ is defined by:

1. φ(e) = NUMBER(w) if e = v− → w.

2. φ(e) = LOWPT1(w) if e = v → w.

Below is the algorithm to construct the adjacency structure A for Step 2.

PROCEDURE CONSTRUCT-ALIST(P, n)

1 FOR i = 1 UNTIL n

2 initialize Bucket(i) and A(i) to be empty lists;

3 FOR (v, w) an edge of P DO

4 {

5 compute phi(v, w);

6 add (v, w) to Bucket(phi(v, w));

7 }

8 FOR i = 1 until n

9 FOR (v, w) in Bucket(i) do

10 add w to end of A(v);

15

The main purpose of Step 2 is to change the order of each adjacency list so that

a child with lower LOWPT1 appears before a child with higher LOWPT1. Thus

when Step 3 is applied to construct a new palm tree, the child with lowest LOWPT1

will become the leftmost child.

Step 3. Perform a new depth-first search of P using the adjacency structure A

given by step 2. This search generates a set of paths in the following way: each time we

traverse a tree edge we add it to the path being built. Each time we traverse a frond,

the frond becomes the last edge of the current path. Thus each path consists of a

sequence of tree edges followed by a single frond. Because of the ordering imposed on

A, each path terminates at the vertex with the lowest possible value of NUMBER.

Renumber the vertices of P from n to 1 in the order they are last examined during

the search. The new number is just the reverse of the finish time for each vertex.

Recalculate LOWPT1(v) and LOWPT2(v) using the new vertex numbers. Also cal-

culate A(v), A1(v) and HIGHPT (v) for each vertex v. Here A1(v) is the first vertex

in A(v). HIGHPT is defined as follows. For each vertex w, if v− → w is the first

frond explored in step 3 which terminates at w, let HIGHPT (w) = NUMBER(v).

If there is no frond which terminates at w then HIGHPT (w) = 0.

Now we describe the algorithm to carry out Step 3.

ALGORITHM PATHFINDER()

1 Initialize s = 0; //s denotes the start vertex of the current path

m = n; //where n is the number of vertices in G

//m is the last number assigned to a vertex

2 FOR i = 1 UNTIL n DO

3 NEWNUM(i) = HIGHPT(i) = 0;

4 CALL PATHFINDER-DFS(root);

5 Use NEWNUM to update A(v), A1(v),

LOWPT1(v) and LOWPT2(v)

PROCEDURE PATHFINDER-DFS(v)

1 NEWNUM(v) = m - ND(v) + 1;

16

2 FOR w in the adjacency list A(v) of v DO

3 {

4 IF s = 0 THEN

5 {

6 s = NUMBER(v);

7 start a new path;

8 }

9 add (v, w) to current path;

10 IF (v, w) is a tree edge THEN

11 {

12 PATHFINDER-DFS(w);

13 m = m - 1;

14 }

15 ELSE //frond

16 {

17 IF HIGHPT(w) == 0 THEN

18 HIGHPT(w) = NUMBER(v);

19 save current path and reset s = 0;

20 }

21 }

Step 3 renumbers the vertices of G from n to 1 in the order they are last visited

during the search. In order for the calculation ofHIGHPT to proceed correctly, each

vertex must be assigned a number the first time it is reached. Because the vertices

to be reached between the first time v is visited and the time v is last visited are

just the proper descendants of v, we assign the number to be the total number of

unvisited vertices minus the number of descendants of v excluding v.

Figure 2.1 illustrates the differences in the palm tree before and after Step 3.

The values in parentheses are the NUMBER assigned to each vertex during DFS.

Note that because LOWPT1(E) < LOWPT1(B) in the first DFS, vertex E will be

visited before vertex B in the second DFS. But vertex E gets number 5 instead of

2 in the second DFS because the way we assign NEWNUM in Step 3.

lemma 2.3.1 Let A(u) be the adjacency list of vertex u. Let u → v and u → w be

tree edges, with v occurring before w in A(u). Then u < w < v.

17

Figure 2.1: A palm tree before and after the second DFS.

Proof. Step 3 numbers the vertices from n to 1 in the order they are last examined

in the search. If u → v is explored before u → w, v will be examined last before

w is examined last, and v will be assigned a higher number. Clearly u will be last

examined after both v and w are last examined, so u receives the smallest number

of the three vertices.

Now we give a few more definitions. If u → v and v is the first entry in A(u),

then v is called the first son of u. If u0 → u1 → . . . → uk, and ui is a first son of

ui−1 for 1 ≤ i ≤ k, then uk is called a first descendant of u0.

lemma 2.3.2 If v is a vertex and D(v) is the set of descendants of v, then

D(v) = {x|v ≤ x < v +ND(v)}. If w is a first descendant of v, then

D(v)− D(w) = {x|v ≤ x < w}.

18

Proof. Suppose we reverse all the adjacency lists A(v) and use them to specify a

depth-first search of P . Vertices will be examined for the first time in ascending order

from 1 to n, if vertices are identified by their step 3 number. Thus descendants of v

are assigned consecutive numbers from v to v+ND(v)−1. If w is a first descendant

of v, vertices in D(w) will be assigned numbers after all vertices in D(v) − D(w).

Thus D(v)−D(w) = {x|v ≤ x < w}.

lemma 2.3.3 Let {e1, e2}, where e1 = u→ a and e2 = v → b, be a type 2 separation

pair in the palm tree of a 2-edge-connected graph G with a < b. Then a
∗

→ b is in

the spanning tree T of P .

Proof. Since a < b, a cannot be a descendant of b. Suppose b is not a descendant of

a. Since neither e1 nor e2 belongs to the subtree of a, vertices in D(a) are connected

by tree edges after removing e1 and e2. These vertices and the edges incident to

them form a connected component, say C1. Similarly, vertices in D(b) also belong

to a connected component of G, say C2. Also, vertices in V (G) − D(a) − D(b) are

still connected. First, root s is in this set since neither a nor b is the root (neither is

an ancestor of the other). So it’s a non-empty set. For any vertex c in this set, c is

connected to s because all of the tree edges in the path s
∗

→ c are preserved. So all the

vertices in V (G)−D(a)−D(b) are connected. These vertices and the edges incident

to them form another component, say C3. Since G is two-edge-connected and a is

not the root, LOWPT1(a) < a, by Lemma 2.2.2. Thus some edge is incident to a

vertex in C3 and to a vertex in C1. Thus C1 is connected to C3. A similar argument

shows that C2 is connected to C3. This means that the graph G is still connected

after removing e1 and e2. This is a contradiction. Hence b must be a descendant of

a. This implies that the path a
∗

→ b lies in the spanning tree T of P .

19

proposition 2 Suppose G is 2-edge-connected. Let e1 = u → a and e2 = v → b be

two tree edges in G with a < b. Then {e1, e2} is a type 2 separation pair of G if and

only if the following conditions hold.

(i) b is a first descendant of a;

(ii) every frond x− → y with a ≤ x < b has a ≤ y;

(iii) every frond x− → y with a ≤ y < b has a ≤ x < b;

Proof : For the converse direction, suppose that pair {e1, e2} satisfies the three

conditions. Since b is a first descendant of a, neither e1 nor e2 belongs to the subtree

of b. Thus vertices in D(b) are connected after removing e1 and e2. Hence they belong

to a component of G − {e1, e2}, say C1. Similarly, all vertices in D(a) − D(b) are

connected because all the tree edges among them are preserved. Let C2 denote the

component which contains D(a)−D(b). By Lemma 2.3.2, V (C2) = {x|a ≤ x < b}.

Vertices in V (G)−D(a) are also connected because all the tree edges among them are

preserved. These vertices and the edges incident to them also belong a component,

say C3. Since V (C2) = {x|a ≤ x < b}, condition (ii) states that there is no frond

incident to a vertex in C2 and a vertex in C3. Condition (iii) states that there is

no frond incident to a vertex in C2 and a vertex in C1. Hence {e1, e2} is a type 2

separation pair of G.

For the forward direction, suppose that a 2-edge-connected graph G has a type

2 separation pair {e1, e2} in its palm tree, where e1 is u → a and e2 is v → b with

a < b. By Lemma 2.3.3, a
∗

→ b in the spanning tree T of P . Let V (1) = D(b),

V (2) = D(a) − D(b) and V (3) = V (G) − D(a). By the same reasoning as for the

converse direction, vertices in each V (i) are connected by tree edges after removing

e1 and e2.

We now prove that vertices in V (1) are connected to vertices in V (3) by some

frond. Since G is two-edge-connected and b is not the root, LOWPT1(b) < b,

20

by Lemma 2.2.2. If vertices in V (1) are not connected to vertices in V (3),

LOWPT1(b) >= a. This means that some edge is incident to a vertex in V (1)

and a vertex in V (2). Thus V (1) is connected to V (2). Similarly, LOWPT1(a) < a.

Hence V (3) is also connected to V (2) or V (1). This is a contradiction to the assump-

tion that G is not connected after removing e1 and e2. Hence LOWPT1(b) < a

and vertices in V (1) are connected to vertices in V (3). These vertices and the

edges incident to them form a component, say C1. Vertices in V (2) and the edges

incident to them also form a component, say C2. Clearly C1 6= C2 since {e1, e2} is a

separation pair for G.

If b is not a first descendant of a, there must exist vertices d and d′ such that

(1) d is a first descendant of a; (2) d→ d′
∗

→ b; (3) d′ is not the first son of d. Suppose

d1 is the first son of d. Since d1 ∈ C2, LOWPT1(d1) ≥ a. (Otherwise, C2 is connected

to C1). Since d′
∗

→ b, LOWPT1(d′) ≤ LOWPT1(b). Because LOWPT1(b) < a,

LOWPT1(d′) < a. Now we have LOWPT1(d′) < LOWPT1(d1), which means that

d′ appears before d1 in the adjacency list of d. This contradicts the condition that

d1 is the first son of d. So b must be a first descendant of a.

Since b is a first descendant of a, we must have V (C2) = {x|a ≤ x < b}. If

Condition (ii) is false, there is a frond x− → y incident to a vertex in C2 and a

vertex in C1. This violates the fact that C1 and C2 are two components of G. Thus

condition (ii) is true. Similarly, condition (iii) is true. This completes the proof of

the direct part of the proposition.

Proposition 2 is the basis for finding a type 2 separation pair. The proposition

gives easy-to-apply conditions for identifying type 2 separation pairs. This may be

done by using another depth-first search. Let {e1, e2} be a type 2 separation pair

satisfying e1 = u → a, e2 = v → b and a < b. Then one component with respect

to {e1, e2} is {x|a ≤ x ≤ b − 1}. This follows from the proof of Proposition 2.

An algorithm for finding type 2 separation pairs based on Proposition 2 is given in

21

step 4. A new definition, LOWEST (v), is needed for this algorithm. LOWEST (v)

is the vertex w with lowest NUMBER(w) that is reachable from v by traversing

zero or more tree edges of graph G followed by at most one frond and avoiding the

first son of v. Let MINLOWEST = min{LOWEST (x) : a ≤ x ≤ b − 1 }.

Note that a = MINLOWEST . First, a < MINLOWEST cannot be true because

MINLOWEST <= LOWPT1(a) <= a. Second, a > MINLOWEST cannot be true,

otherwise u → a cannot be part of a separation pair because some frond x− → y

with a ≤ x < b has a > y. This fact will be used in next step.

Step 4. The following procedure is used to find a type 2 separation pair. We test

for separation pairs with Proposition 2 by examining the paths generated in order. To

identify type 2 pairs, we keep a stack (called PStack) of pairs (a, b). The pair (a, b)

corresponds to an edge pair {FATHER(a) → a, FATHER(b) → b}. When a

type 2 separation pair is identified, the procedure returns 0 and exits immediately

and at the end 1 is returned if no type 2 separation pair is found.

ALGORITHM PATHSEARCH()

1 FOR i = 1 UNTIL v DO

2 LOWEST[i] = 0;

3 create empty stack PStack;

4 return PATHFINDER-DFS(root);

PROCEDURE PATHSEARCH-DFS(v)

(input: vertex v is the current vertex in the depth-first search)

1 FOR w IN A(v) DO

2 {

3 IF vw is a tree edge THEN

4 {

5 IF vw is a first edge of a path THEN

6 {

7 IF LOWPT1(w) < LOWEST(v) and w is not A1(v) THEN

8 LOWEST(v) = LOWPT1(w);

9 add end-of-stack marker to PStack;

10 }

22

11 returnVal = PATHSEARCH-DFS(w);

12 IF returnVal == 0 THEN

13 return 0;

14 }

15 ELSE // vw is a frond

16 IF NUMBER(w) < LOWEST(v) THEN

17 LOWEST(v) = NUMBER(w);

18 }

19 WHILE (a, b) on PStack satisfies a <= NUMBER(v) < b

and LOWEST(v) < a

20 remove (a, b) from PStack;

21 IF no pair deleted from PStack THEN

22 add (LOWEST(v), A1(v)) to PStack;

23 IF (a, b) is the last pair deleted from PStack THEN

24 add (LOWEST(v), b) to PStack;

25 WHILE (a, b) on PStack satisfies a <= NUMBER(v) < b

and HIGHPT(v) >= b

26 remove (a, b) from PStack;

27 WHILE (a, b) on PStack satisfies a = v

28 {

29 IF (b <= a or a == 0) THEN

30 delete (a, b) from PStack;

31 ELSE //we find type 2 pair {(FATHER(a), a), (FATHER(b), b)}

32 return 0;

33 }

34 IF (FATHER(v), v) is a first edge of a path THEN

35 delete all entries on PStack down to

and including end-of-stack marker;

36 return 1;

lemma 2.3.4 PATHSEARCH correctly finds type 2 separation pairs in a 2-edge-

connected graph G.

Proof: We must prove two things: (i) if the procedure returns 0, there is at least

one type 2 separation pair in G; (ii) if G has a type 2 separation pair, the procedure

will return 0.

For (i), suppose that the procedure returns 0 at line 32 after examining

{(FATHER(a), a), (FATHER(b), b)}. The pair must satisfy the test in line 27

upon leaving vertex v. Because a and b lie on a same path generated in step 3,

23

b must be a first descendent of a . If some frond x− → y with a ≤ x < b has

y < a, (a, b) would have been deleted from PStack at line 20 when x is visited.

Similarly, if some frond x− → y with a ≤ y < b has x > b, (a, b) would have

been deleted at line 26 when vertex y was examined. It follows that (a, b) meets the

conditions in Proposition 2. Hence, {(FATHER(a), a), (FATHER(b), b)} is a

type 2 separation pair.

For (ii), suppose G has a type 2 separation pair {e1, e2} where e1 = u → a and

e2 = v → b with a < b. (LOWEST (v), b) will be added to PStack at line 22 when

vertex v is examined. This pair cannot be deleted at line 26 because condition (iii)

of Proposition 2 must be true. This pair can only be deleted from PStack at line 20,

but it will always be replaced by a new pair of the form (LOWEST (v ′), b) at line

24 with LOWEST (v) ≥ LOWEST (v′) ≥ a when we visit vertex v′. Eventually

such a pair will satisfy the condition at line 27 and the procedure will return 0 at

line 32.

2.4 Time complexity analysis

To find a type 1 separation pair, we only need one depth-first search. This requires

O(m+ n) time, where m is the number of edges and n is the number of vertices in

the graph. In the process for finding type 2 separation pairs, step 1 and step 3 are

also depth-first searches. These require O(m+n) time, including various tests. Step

2 is a bucket sort of edges. It requires O(m+n) time. In Step 4, the number of pairs

added to PStack is O(m+ n). Each pair may only be modified if it is on top of the

stack. Thus the time necessary to maintain PStack is also O(m+n). Hence the time

required for the algorithm is O(m+ n).

Chapter 3

Implementation and test results

We have implemented the algorithm for general graphs and Feynman diagrams.

For general graphs, we compare the performance with Z. Chen’s accelerated algo-

rithm [2]. For Feynman diagrams, we compare the performance with Q. Wang’s

quadratic algorithm [18].

3.1 Testing on general graphs

Our first implementation was used to check graphs generated by Nauty. In Nauty, a

graph is represented by an array of n sets where each set is made up of a number of

setwords. Each set represents a vertex. The i-th set gives the vertices to which vetex

i is adjacent, for 0 ≤ i < n. We use Nauty to obtain the number of unlabeled 2-

connected graphs according to order and number of edges. Then our program is used

to check whether a generated graph is 3-edge-connected or not. For each unlabeled

graph, we can get the number of labeled isomorphic graph for it. Table 3.1 shows the

numbers of unlabeled and labeled graphs by order n. Table 3.2 shows the numbers of

unlabeled and labeled graphs by order n and size m. The numbers for labeled graphs

agree with those obtained by S. K. Pootheri [14]. Similarly, we obtain the numbers

of 3-edge-connected blocks of order up to 11 by combining our 3-edge-connectivity

algorithm with a 2-connectivity algorithm from Nauty. These numbers are also agree

with those obtained by S. K. Pootheri [14, 15].

24

25

Table 3.1: Numbers of unlabeled and labeled 3-edge-connected graphs by order n.

n unlabeled labeled

4 1 1
5 3 26
6 19 1858
7 150 236926
8 2583 53456032
9 84186 21493860332
10 5202329 15580415345706
11 577063391 20666613177952152

Because the number of graphs increases exponentially when order n increases,

it is impractical to test the running time of our program for higher order graphs in

Nauty. Instead, we wrote another program to generate higher order random graphs.

We used an array of adjacency lists to represent a random graph. For comparison

purposes, we tested the accelerated algorithm by Z. Chen [2]. For each order, we

kept increasing the number of edges in each graph until about half of the graphs

generated were 3-edge-connected. Then we used these graphs as inputs to the two

algorithms. Table 3.3 shows the average testing times for both algorithms. The data

shows that the average running time for either algorithm increases gradually as the

order increases. Our algorithm is faster by a constant factor of approximately 1.5. To

get a better idea of how the algorithms perform, we also calculated scaled times for

each algorithm by dividing the actual testing time of each graph by (n+m), where

n is the order and m is the size. The fact that the scaled times for our algorithm

stay essentially constant validates our time complexity analysis. Figure 1.2 illustrates

these results clearly.

26

Table 3.2: Numbers of unlabeled 3-edge-connected graphs by order n and size m.

n m number of
graphs

n m number of
graphs

n m number of
graphs

4 6 1 9 23 8235 10 49 424
5 8 1 9 24 5226 10 50 164
5 9 1 9 25 2966 10 51 66
5 10 1 9 26 1537 10 52 26
6 9 2 9 27 737 10 53 11
6 10 4 9 28 333 10 54 5
6 11 5 9 29 144 10 55 2
6 12 4 9 30 62 10 56 1
6 13 2 9 31 25 10 57 1
6 14 1 9 32 11 11 17 159
6 15 1 9 33 5 11 18 4500
7 11 4 9 34 2 11 19 49024
7 12 18 9 35 1 11 20 300079
7 13 30 9 36 1 11 21 1236614
7 14 34 10 15 14 11 22 3792554
7 15 29 10 16 306 11 23 9206283
7 16 17 10 17 3321 11 24 18429089
7 17 9 10 18 18426 11 25 31316963
7 18 5 10 19 64826 11 26 46151147
7 19 2 10 20 163711 11 27 59939408
7 20 1 10 21 319090 11 28 69460785
7 21 1 10 22 503239 11 29 72516806
8 12 4 10 23 663925 11 30 68718688
8 13 32 10 24 750352 11 31 59457139
8 14 134 10 25 739326 11 32 47188377
8 15 309 10 26 643804 11 33 34478944
8 16 465 10 27 500701 11 34 23260220
8 17 505 10 28 350608 11 35 14522369
8 18 438 10 29 222644 11 36 8408495
8 19 310 10 30 129030 11 37 4523777
8 20 188 10 31 68623 11 38 2266257
8 21 103 10 32 33736 11 39 1060080
8 22 52 10 33 15464 11 40 464664
8 23 23 10 34 6657 11 41 191795
8 24 11 10 35 2735 11 42 75099
8 25 5 10 36 1091 11 43 28156
8 26 2 10 37 424 11 44 10216
8 27 1 10 38 164 11 45 3652
8 28 1 10 39 66 11 46 1301
9 14 22 10 40 26 11 47 466
9 15 271 10 41 11 11 48 172
9 16 1357 10 42 5 11 49 67
9 17 3967 10 43 2 11 50 26
9 18 7953 10 44 1 11 51 11
9 19 11904 10 45 1 11 52 5
9 20 14134 10 46 6657 11 53 2
9 21 13828 10 47 2735 11 54 1
9 22 11465 10 48 1091 11 55 1

27

Table 3.3: Average testing times and scaled times for two algorithms on random
graphs.

Order Size Averages in
msec. for Sun’s
algorithm

Scaled times
for Sun’s
algorithm

Averages in
msec. for Chen’s
algorithm

Scaled times
for Chen’s
algorithm

10 24 0.025 0.76 0.036 1.08
20 58 0.051 0.66 0.077 0.99
50 187 0.149 0.63 0.221 0.93
100 436 0.356 0.66 0.54 1.01
200 970 0.786 0.67 1.207 1.03
300 1500 1.224 0.68 1.895 1.05
400 2100 1.832 0.73 2.982 1.19
500 2700 2.237 0.7 3.745 1.17
600 3280 2.654 0.68 4.123 1.06
700 3950 3.275 0.7 5.141 1.11
800 4550 3.692 0.69 5.838 1.09
900 5150 4.003 0.66 6.588 1.09
1000 5950 5.064 0.73 7.958 1.15
2000 12530 13.329 0.91 19.102 1.31

3.2 A simplified algorithm for Feynman diagrams

3.2.1 Introduction to Feynman Diagrams

Feynman diagrams, which were introduced into quantum field theory by Richard

Feynman in 1949, are widely used in physics to calculate rates for electromagnetic

and weak interaction particle processes [13]. The diagrams provide a convenient way

for physicists to organize their calculations. A Feynman diagram of order n can be

viewed as a perfect matching on 2n vertices (edges in the matching are undirected

and called V -lines) along with a permutation of the 2n vertices (represented by

directed edges called G-lines).

Feynman diagram expansions are used in quantum physics to express the energy

of a system of particles. Each line in a Feynman diagram represents the propagation

of a free elementary particle and each vertex represents an interaction of elementary

28

Figure 3.1: Comparison of running times and scaled times for 3-edge-connectivity
algorithms.

particles. Since most Feynman expansions employ only connected diagrams, it is

essential to maintain diagram connectivity. In more specialized expansions, it is

helpful to consider irreducible diagrams (3-edge-connected with respect to G-lines).

For purposes of computation in this thesis, the vertices of an order n Feynman

diagram are numbered {0, , . . . , 2n − 1}, and the V -line labeled i joins vertices 2i

and 2i + 1, for i = 0, . . . , n − 1. Further, the G-lines are labeled {0, 1, . . . , 2n − 1}

so that the one with label j is incident from vertex j. In this notation, a Feynman

diagram of order n can be represented by an array of size 2n.

29

3.2.2 Simplifications for Feynman diagrams

A vertex in a Feynman diagram is adjacent to only three edges; a V -line, an outgoing

G-line and an incoming G-line. Feynman diagrams satisfy the following five special

properties.

1. Every G-line belongs to a cycle (called a G-cycle) formed only by G-lines. The

G-cycles partition both the vertex set and the set of G-lines of the diagram.

2. In a connected Feynman diagram, all G-cycles are connected by V -lines.

3. Removing a single G-line from a connected Feynman diagram cannot discon-

nect it.

In view of Property 1, every G-line belongs to a G-cycle. Removing an edge

from a cycle leaves a path which still connects the vertices of the cycle.

4. Removing two G-lines {g1, g2} from two different G-cycles c1 and c2 cannot

disconnect a connected Feynman diagram.

As for Property 3, note that the vertices of c1 are still connected by the path

c1 − g1, and similarly for c2.

5. A separation pair must consist of two G-lines from a same G-cycle.

A separation pair in Feynman diagram must consist of twoG-lines. By property

4, these two G-lines must belong to a same G-cycle.

Property 5 is the basis for our simplified algorithm. Since a separation pair in a

Feynman diagram must belong to the same G-cycle, the G-cycles play the same role

as the paths in a general 3-edge-connectivity algorithm. For a Feynman diagram, the

second DFS in the original algorithm can be removed due to the simple structure of

the palm tree generated by a DFS. Each node in a palm tree can have at most two

30

children since only V -lines and outgoing G-lines can be tree edges. Hence there is no

need to reorder the adjacency lists for the vertices. Thus, a simplified algorithm can

find separation pairs in a connected Feynman diagram in only two DFSs, as follows:

1. Apply the first DFS to a Feynman diagram of order n to generate a palm tree.

The edges are visited in the following order: first the outgoing G-line, then

the V -line. There is no need to visit the incoming G-lines explicitly because

G-lines are directed and the incoming G-line to a child vertex is the outgoing

G-line from the parent vertex. This order ensures that G-lines in a same G-

cycle will be placed in a same path. To record a G-cycle, we only need to mark

the start vertex of each G-cycle because the whole cycle can be generated

by following the G-line out from each vertex in turn. As in the first DFS for

the general algorithm, the values of NUMBER, LOWPT1, LOWPT2 and

ND will be recorded for each vertex. Also HIGHPT and NEWNUM , which

were recorded in the second DFS of the general algorithm, will now be recorded

during the first DFS. At the same time, type 1 separation pairs will be checked

as in the general algorithm but with a test to make sure that both edges are

G-lines.

2. Construct a REV NUM array which is the reversed array of NUMBER. So

if NUMBER[v] = i, then REV NUM [i] = v.

3. Convert the values in LOWPT1, LOWPT2, HIGHPT from NUMBER to

NEWNUM . For example, if LOWPT1[i] = j then LOWPT1[i] should be

changed to NEWNUM [REV NUM [j]].

4. Apply a second DFS, similar to PATHSEARCH, to detect type 2 separation

pairs.

31

Table 3.4: Comparison of running times for our linear algorithm and a quadratic
algorithm.

order number of diagrams tested linear
(sec.)

quadratic
(sec.)

ratio of times

6 15,338 0.1 0.2 0.5
7 236,122 1.6 3.37 0.47
8 4,093,058 32 70.71 0.45
9 78,951,250 693.4 1624.3 0.43
10 1,678,001,642 16857.4 40855.6 0.41

The implementation for Feynman diagrams has been tested with a program by

R.W.Robinson [16] which generates all canonical nearly irreducible (connected and

without self-loops on bows) Feynman diagrams of a given order. Because the number

of diagrams increases exponentially as the order n increases, it would take too long to

test high order diagrams. Thus we only tested diagrams of order up to 10. Q. Wang

developed three algorithms to determine the 3-edge-connectivity of Feynman dia-

grams; a quadratic algorithm, a pseudolinear algorithm and a randomized algo-

rithm [18]. The quadratic algorithm is the best for order less than 12. Table 3.4

compares our results with the results from the quadratic algorithm. Our linear algo-

rithm outperforms the quadratic algorithm even when the order is very low. Another

comparison could be done between our algorithm and Z. Chen’s accelerated algo-

rithm. However, since our algorithm for general graphs is faster than his algorithm

and our algorithm for Feynman diagrams is even faster than for general graphs,

we can safely infer that our algorithm will also outperform Z. Chen’s algorithm for

Feynman diagrams.

Chapter 4

Conclusions and future work

In this thesis, a new algorithm for determining whether a graph is 3-edge-connected

is presented. It was developed by adapting the 3-connectivity algorithm of Hopcroft

and Tarjan [9]. The algorithm uses three DFSs to check for separation pairs in a

general graph. The time required for the algorithm is O(m + n), where m is the

size and n is the order of a graph, so the algorithm is theoretically optimal to

within a constant factor. A variation of the algorithm was developed specifically for

testing Feynman diagrams, and uses only two DFSs. The general algorithm and the

variation for Feynman diagrams were both implemented. Experiments were carried

out to compare their performance with that of other algorithms and to ensure the

correctness of the implementations. These tests showed that the implementations

are correct and also faster than the available alternatives.

One direction for future work would be to extend our algorithm to deal with

the fully dynamic 3-edge-connectivity problem. In a fully dynamic graph problem,

a graph G has a fixed vertex set V . The graph G may be updated by insertions

and deletions of edges. These operations may be interspersed with queries about

the properties of the graph. A fully dynamic 3-edge-connectivity algorithm should

be able to answer queries about whether a graph is 3-edge-connected after some

update operations by taking advantage of previous computations. The success of

such dynamic algorithms relies on suitable data structures to store information about

the graph from previous computations. Several data structures have been applied

32

33

to this problem, including topology trees [4], ET-trees [8], splay forests and treap

forests [10].

For Feynman diagrams, the most natural update operation is a switching, which

combines two edge deletions with two edge insertions [10]. The query is always

to make sure that the diagram remains 3-edge-connected. If none of the G-cycles

contains a separation pair, the diagram is 3-edge-connected. A switching operation

can have two types of effect on a Feynman diagram: splitting a G-cycle into two

G-cycles or joining two G-cycles into one G-cycle. A promising direction for future

research is to find an efficient 3-edge-connectivity algorithm for Feynman diagrams

which is dynamic with respect to switching operations.

Bibliography

[1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, NY, 1998.

[2] Z. Chen, A Linear Time Algorithm for Testing a Graph for 3-Edge-Connectivity,

M.S. thesis, University of Georgia, Athens, GA, 2001.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, 2nd edition, MIT Press, Cambridge, MA, 2001.

[4] G. N. Frederickson, Data structures for on-line updating of minimum spanning

trees, with applications, SIAM J. Comput. 14 (1985), 781-798.

[5] D. Fussell, V. Ramachandran and R. Thurimella, Finding triconnected compo-

nents by local replacement, SIAM J. Comput. 22 (1993), 587-616.

[6] Z. Galil and G. F. Italiano, Reducing edge connectivity to vertex connectivity,

SIGACT News 22 (1991), 57-61.

[7] F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New

York, NY, 1973.

[8] M. R. Henzinger and V. King, Maintaining minimum spanning trees in dynamic

graphs. Internat. Colloq. on Automata, Languages, and Programming (1997),

594-604.

[9] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components,

SIAM J. Comput. 2 (1973), 135-157.

34

35

[10] R. Ji, Dynamic Connectivity Algorithms for Feynman Diagrams, M.S. thesis,

University of Georgia, Athens, GA, 2002.

[11] B. D. Mckay, Nauty User’s Guide (Ver. 2.0), Technical report TR-CS-9002,

Computer Science Department, Australian National University, Canberra,

ACT, 1990.

[12] H. Nagamochi and T. Ibaraki, A linear time algorithm for computing 3-edge-

connected components in a multigraph, Japan J. Indust. Appl. Math. 9 (1992),

163-180.

[13] N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach Science

Publishers, New York, NY, 1971.

[14] S. K. Pootheri, Counting Classes of Labeled 2-Connected Graphs, M.S. thesis,

University of Georgia, Athens, GA, 2000.

[15] S. K. Pootheri, Characterizing and Counting Classes of Unlabeled 2-Connected

Graphs, PhD thesis, University of Georgia, Athens, GA, 2000.

[16] R. W. Robinson, Counting irreducible Feynman diagrams, CATS seminar, Uni-

versity of Georgia, Athens, GA, 1999.

[17] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput.

1 (1972), 146-160.

[18] Q. Wang, A Linear Time Algorithm for Testing a Feynman Diagram for 3-

Edge-Connectivity, M.S. thesis, University of Georgia, Athens, GA, 2001.

[19] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River,

NJ, 1996.

