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ABSTRACT 

In this thesis, we consider the following problem: Given a strongly connected 

digraph G = (V, E), where V is the set of vertices and E is the set of edges , “is it a 

minimal strong connected digraph?”.  A reducible edges e is one for which G−e is 

strongly connected.  A minimal strongly connected digraph is one with no reducible 

edges.   Our approach is to apply depth first search on G to generate a depth first search 

tree and the sets of back, forward, and cross edges.  Then we determine if there are any 

reducible non-tree edges. If not, we then check if there are any reducible tree edges based 

on an algorithm for finding immediate dominators. We have implemented the algorithm 

and report experimental results that show the algorithm can handle large digraphs 

quickly. 
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CHAPTER 1 

INTRODUCTION, NOTATION AND BASIC CONCEPTS 

Introduction 

One of the classic problems in computer science is to compute the connectivity 

and reachability of a digraph G = (V, E), where V is the set of vertices and E is the set of 

edges. In this connection, finding a minimal storage representation of a digraph is a very 

important issue. The most straightforward method to solve this problem is to remove 

edges one by one and to test all vertices pair by pair to see if they can still reach each 

other after removing the edge.  This method takes time O(n2m) in the worst case, which is 

inefficient.  Here n = |V| and m = |E|.  Klause Simon developed an algorithm to find a 

minimal transitive reduction in a strongly connected digraph [1].  He claimed his 

algorithm to be a O(m+n) time and space. But his algorithm relies on Harel’s algorithm 

[2] for finding dominators in a flowgraph which Harel claimed to be linear.  However the 

soundness of Harel’s approach has been questioned for lack of details [3].  Therefore it 

could  be very hard to implement Harel’s algorithm , or perhaps impossible,  in which 

case Klause Simon’s algorithm would not be linear. 

In this thesis, an O(n log n) time algorithm to find whether a digraph is a Minimal 

Strong Digraph (MSD) is developed and a successful implementation is described.  This 

algorithm can be used to facilitate the process of generating MSDs.  An O(n2) time 

algorithm is utilized by Kiran Bhogadi [4] to check whether a candidate digraph is an 

MSD and we think the performance of his algorithm can potentially be improved for 

large digraphs by utilizing our algorithm. 
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An edge e of a strong digraph G is said to be reducible if G–e is strongly 

connected.  Clearly a strong digraph is an MSD if and only if it has no reducible edges. 

This thesis is divided into several chapters.  Following section contains basic 

concepts and notation, and a brief description of Depth First Search (DFS) on digraphs.  

In Chapter 2, an algorithm is developed to find if there is any reducible non-tree edge in a 

given strongly connected digraph.  In Chapter 3, the result of Chapter 2 is built on to 

provide an algorithm to detect reducible tree edges.  In Chapter 4, we will briefly 

introduce an O(n log n) time algorithm for finding nearest common ancestors in trees.  

Some experimental results of implementation of algorithm of determining minimality of 

strongly connected digraphs and some other related algorithms will be presented in 

Chapter 5.  The algorithm for finding immediate dominator has been implemented 

successfully by T. Lengauer and R. E Tarjan. We will not describe this algorithm in this 

thesis. 

Notation and basic concepts           

A directed graph (or digraph) G is a pair (V, E), where V is a non-empty finite set 

and E is an antireflective binary relation on V, V = {1, 2,… n}.  The set V is called the 

vertex set of G, and its elements are called vertices. The set of E is called the edge set of 

G, and its elements are called edges (E ⊆ V×V).  An edge joining vertex u to vertex v will 

be represented as (u, v), where u is said to be adjacent to v, and v is adjacent from u.  A 

path P in G from vertex v0 to vertex vs is a sequence of vertices v0, v1, …, vs such that (vi-1, 

vi) ∈ E for i ∈ (1, 2, …, s).  The path consists of the vertices v0, v1, …, vs and the edges (v0, 

v1), (v1, v2), …, (vs-1, vs).   The length is the number of edges in the path.  If a path joins 

vertex u to vertex v, v is reachable from u, hence the term reachability.  If there is a path 
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P from v to u, we say that u is reachable from v via P which we denote by v –(P)→u.  

The fact that v is reachable from u is denoted by u --→v.  A path is simple if the vertices 

in the path are distinct.  A single edge (v, u) is denoted by v→u. 

A digraph is strongly connected if every two vertices are reachable from each 

other, i.e. v--→w--→v for all v, w∈V (See Figure 1).  A graph G'=(V', G') is a subgraph 

of G = (V, E) if V' ∈ V and E' ∈ E.  A reverse graph GR of G is formed by reversing 

every edge in G. 

A tree or out-tree is an acyclic digraph with one distinguished vertex called the 

root r, such that r--→v for all vertices v, and no edges enters r.  A tree vertex with no 

edges leaving it is a leaf.  If (v, w) is a tree edge, v is the father of w and w is a son of v. If 

v is reachable from u via tree edges, then u is an ancestor of v and v is a descendant of u.  

A tree vertex z is called a common ancestor of tree vertex u and tree vertex w if and only 

if z is an ancestor for both w and u.  The vertex z is called the nearest common ancestor 

of w and u if and only if there is no other common ancestor x of w and u which is a son of 

z.  If a tree contains all vertices of G, then T is called a spanning tree of G. An in-tree or 

sink-tree S is the reverse of an out-tree.  The father and son relations in an out-tree is the 

same as in the reversed tree. A spanning in-tree is an in-tree which contains all vertices of 

G.  Figure 2 is a spanning in-tree corresponding to Figure 1. 

Suppose G is a strongly connected digraph with vertex s specified as tree root.  If 

vertices x and y are distinct and x lies on every path form s to y then x is called a 

dominator of y.  This is equivalent to say x dominate y if and only if y is not reachable for 

s in G−{x}.  The vertex x is an immediate dominator of y if x is a dominator of y and x is 

dominated by every other dominator z of y.  It is easy to see that each vertex other than 
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the root has a unique immediate dominator. Furthermore, we use the concept of 

dominator for an edge e in the same way as for a vertex. A particular edge e is a 

dominating edge of y if and only if s can’t reach the vertex y in G − e. An edge or vertex 

is called reverse dominating if it is dominating in the reverse graph GR. 
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Figure 1. A strong digraph 

A strong (or strongly connected) digraph is one in which every vertex is reachable 

from each other vertex, in this article we always suppose the input digraph G is a strong 

digraph. 

A Minimal Strong Digraph (MSD) is a strong digraph which is no longer strong if 

any of its edges is removed (see Figure 3).  An edge e in a strong digraph G is reducible 

if G − e is strongly connected.  
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Figure 3. A Minimal Strong Digraph 
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Our algorithm is based on a systematic exploration of a digraph.  In particular we 

rely on Depth First Search (DFS) as the basis of our algorithm.  Therefore we need a 

short description of the algorithm of DFS.  The strategy of depth first search is to search 

“deeper” in the graph when possible.  In depth first search, edges are explored out of the 

most recently discovered vertex v that still have undiscovered edges leaving it.  When all 

of v’s edges have been explored, the search “backtracks” to explore edges leaving the 

vertex from which v was discovered.  This process will continue until we have 

discovered all vertices that are reachable from the original source vertex.  

DFS will create a depth first search tree (DFS-tree) and at the same time DFS also 

timestamps each vertex. Each vertex has two time stamps: The time stamp d[v] is related 

to the time when v is first discovered, and timestamp f[v] accounts for the time when 

search finishing examining v’s adjacent list.  The set REACH contains the explored 

vertices.  For a given input strong digraph G, The DFS algorithm is displayed as 

following. 

DFS (v, V, E) 

         REACH ← {v} 

         discover-time ← 1 

         finish-time ← 1 

             d[v] ← 1 

        for ∀ w with (v, w) ∈ E 

              do  if  w  ∉ REACH   

              then DFS-VISIT(w) 

                          endif 
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                  endfor 

 

DFS-VISIST(w) 

      d[w] ← discover-time ++ 

      for each u ∈ adj[w] 

           do if  u ∉ REACH  

                                Then DFS-VISIT(u) 

                                 endif 

     endfor 

                   f[w] ← finish-time++ 

Based on d[v] and f[v], we partition the edges into four classes: the tree edges 

TREE, the forward edges FORWARD, the cross edges CROSS and the back edges 

BACK ( See Figure 4 ) .  The classes are as follows: 

   

(v, w) in TREE:                    d(v) < d(w) 

                 and f(w)<f(v) 

                                                 (v, w) is in the depth first search  tree 

    

   (v, w) in FORWARD:          d(v) < d(w) 

                                                 and f(w) < f(v) 

                                                 and  (v, w) ∉ TREE 

                                                             

   (v, w) in CROSS:                  d(w) < d(v) 
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                                                 and f(v) < f(w) 

 

   (v, w) in BACK:                   d(w) < d(v) 

                                                 and f(w) < f(v) 

 

 Notice that d(v) < d(w) and f(v) < f(w) is impossible,  and this is an elementary 

fact of DFS. 
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Figure 4: Edge classification 

: FORWARD                        : TREE 

                                         : CROSS                                : Back 

                                             : one or more tree edges 

                             Note: This style applies to following Figures.  
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Figure 4 shows a DFS-tree and the corresponding edge classification of digraph in 

Figure 1.  Now we define a new notation:  if there is a path from v to u via tree edges, we 

denote this path by v → (TREE) → u.   
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CHAPTER 2 

DETECTING REDUCIBILITY OF NON-TREE EDGES 

In order to find whether there is a reducible edge in a given strong digraph G = 

( V, E ), a DFS is performed and E is partitioned into sets TREE, FORWARD, CROSS, 

and BACK.  For convenience, we use the d[v] to identify v.  Thus the root is always 1, 

and n is the last vertex to be discovered among the n vertices of G. 

Theorem 1. Each forward edge e = (v, w) is reducible 
 

 

 

 

  

 

 

 

                       

 

w

v

Figure 5. A reducible forward edge 

Proof: By definition for forward edge, there must be a tree edge path form v to w 

with length equal or greater than 2 , therefore edge (v, w) is reducible (see Figure 5).  

 

The following statement is the precondition for Theorems 2 and 3.  
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e = ( v, z ) is a cross edge and w is the nearest common ancestor of vertices v and z in 

the DFS-tree of G. 

Theorem 2: If edge e1 = (v, w) is in E then e   is reducible. 

Proof: There is a reducing path v→w −(TREE)→z of e. (see Figure 6). 

 

 

 

             

 

                              e1 

                                                             

                                                          

                                                           e                                

z

w

v 

                           

                                          Figure 6. A reducible cross edge 

  

Theorem 3: If edge (v, w) is not in E, let G1 = G − (v,z) + (v,w). Then:  

1. The edge e is reducible in G if and only if the edge e1 is reducible in the 

digraph G1. 

2.  Let e2 be an edge of G other than e which is not a tree edge. Then e2 is 

reducible in G if and only if e2 is reducible in G1. 

Proof of 1:  From Theorem 2, we can conclude that G1 is also a strong digraph. 

Now we need to form a new graph G2 by deleting edge e from G (see Figure 7 ). 
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Let us first prove that if e is reducible in G, e1 is reducible in G1. 

Because e is reducible in G and G2 is formed by deleting e, we see that G2 is still 

strongly connected, and so must contain a path P1 from v to w.  Now G1 is G2+e1, so e1 is 

reducible in G1. 

We can similarly prove that if e1 is reducible in G1, then e is reducible in G. 

 

 

 

 

 

                                                              e1 

                                                                                           

                                 e 
zv 

w

zv

w

zv 

w 

 

                             G                                                 G1                                           G2    

Figure 7. Digraphs G , G1 and G2 

 

Proof of 2:  Let us first prove that if e2 is reducible in G, e2 is reducible in G1 

Let P1 be a reducing path for e2 in G.  The trivial case is given if e is not an edge 

of P1, obviously P1 is also in G1 so e2 is reducible in G1. In the nontrivial case, the 

reducing path P1 contain e, we see that G1 has a path P2 containing v → w — (TREE) → 

z.  P2 connects the same endpoints as P1.  This accounts for that there is also a reducing 

path P2 in for e2 in G1. 
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  Next we need to prove that if e2 is reducible in G1, it is also reducible in G. 

Also let P2 be a reducing path of e2 in G1. The trivial case is that e1 is not an edge 

of P2. Obviously in this case e2 is also reducible in G.  If e1 is an edge of P2, let u1 be the 

first vertex after the starting edge w in the tree edges w → (TREE) → z, u2 is the first 

vertex after starting vertex w in the tree edges path w → (TREE) → v  (see Figure 8). 

Here v > u2> z > u1 > w.  Because e2 is reducible in G1, G1 −e2 is still strongly connected.  

So there must be a path from z to w in G1−e2.  Now we want to prove that e1 is not an 

edge of the path from z to w.  

 

 

 

 

 

 

 

 

                                        

z

u1u2

v

w

Figure 8.  Digraph G1 

Assumption: (v, w) is an edge of the path from z to w. 

Under this assumption, it is evident that there must exist a path which starts at u1 

and ends at u2 via edge (v, w).  So in order for this path to exist, there must exist such a 

path that starts from a vertex v1 in subtree rooted at u1 ends at a vertex v2 which is in 

subtree rooted at u2.  But such an edge is impossible because according to the definition 
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of different class of edges, it is not a forward edge or tree edge because (f[v1] < f[v2]) and  

it is not a cross edges or back edge because (d[v2] > d[v1]).  Therefore the assumption is 

not right and we can have the conclusion that (v, w) is not an edge of P2.  In this situation 

v can reach w in G via P2.  Therefore e2 is also reducible in G. 

Theorem 3 allows us to use the following strategy to find reducible edge. First we 

check if there are any forward edges.  Then we check if there are any cross edges which 

are reducible by Theorem 2.  Then we can use Theorem 3 to replace each cross edge by 

back edge.   

  Theorem 4.  Let {(v, w1) … (v, ws)} be the set of back edges emanating from 

vertex v in such a way that w1<w2< …<ws then all edges  (v, w2) … (v, ws) are 

reducible. 

 Proof: This situation is illustrated in Figure 9.  We can easily see that edge (v, w2) 

is reducible because there is a path v → w1→ w2.  Edges (v, w3), … (v, ws) are similarly 

seen to be reducible. 

Theorem 5.  Let e = (v, w) be a back edge in G, x be a descendant of v with v ≠ 

x and z be a vertex such that there is an edge from x to z  (illustrated by G in Figure 

10). 

1. If e1 = (z, w) is an edge in G1, then e is reducible ( illustrated by G1 in Figure 

10 ). 

2. If e1 is not an edges in G, then e is reducible in G if and only if e1 is 

reducible in the digraph G2 = G − e + e1.  

3. Let e2 = (a, b) be an edge in G with e ≠ e2 ≠ e1 and e2 is a not a tree edge. 

Then e2 is reducible in G if and only if e2 is reducible in G2. 
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Figure 9.  Reducible back edges 
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v
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Proof of 1:  Because there is a reducing path v → (TREE) → x → z → w of (v, w) 

in G, so (v, w) is reducible. 

From 1, we can see that if e1 is not an edge in G, then G2 = G − e + e1 is strongly 

connect.  

Proof of 2: Let us first prove that if e is reducible in G, e1 is reducible in G2. 

Because e is reducible in G, after removing e from G we get G3 (see Figure 10, G3) 

which is still strongly connected.  Therefore there must exist a path from z to w in G3.  

We notice that G2 has one more edge e1 than G3. Thus e1 is reducible in G2. 

We can similarly prove that if e1 is reducible in G2, then e is reducible in G. 
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                                    G                                                                     G1 

Figure 10.  Digraphs G and G1 

Proof of 3: Let us prove if e2 is reducible in G, it is reducible in G2. 

Let P1 be a reducing path of e2 in G.  The trivial case is that P1 does not contain e. 

It is evident that e2 is also reducible in G2. In the nontrivial case, P1 contains e.  G2 has no 

has a path v → (TREE) → x → z → w, therefore there exist a reducing edge for e2 and 

thus e2 is also reducible in G2. Next we will prove that if e2 is reducible in G2, it is also 

reducible in G.  Let P2 is a reducing path of edge e2 in G2.  The trivial case is that P2 does 

not contain edge e1.  It is evident that e2 is also reducible in G.  In the nontrivial case, P2 

contains e1 = (z, w).  We notice that, in G there exists a path z → v → w which connects z 

and w. Therefore, there exist a reducing edge for e2 and thus e2 is also reducible in G. 
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                       G2                                                                           G3 

Figure 11.    Digraphs G2 and G3 

 

Based on the above discussion, we have following algorithm to deal with non-tree 

edge of a given strongly connected digraph G. Our implementation use array backpoint(v) 

to indicate the back point of vertex v. 

            Algorithm 1: 

Input A strongly connected digraph G(V, E) 

Output true: the input digraph may be an MSD 

                       (need to check if there are reducible tree edges)  

                        false: the input digraph is not an MSD 

 

 17



1. do depth first search to get the partitions of edges TREE, BACK, CROSS, 

FORWARD, The depth first search tree DFS-Tree. 

       2.   for ∀ v ∈ V  backpoint(v) ← v                               

             endfor 

           3.   if the set FORWARD is not empty 

              return false;                                 

            endif 

           4.  for ∀ e = (v, w) ∈ BACK                                                 

            backpoint(v) ← min (backpoint(v), w);               

            if there exists an e = (v, w) ∈B with w ≠ backpoint(v)  

               return false;               

                endif 

                  endfor 

               5. for ∀ e = (v, w) ∈ CROSS do 

          let n be the nearest common ancestor of v and w 

          if (w < backpoint(v)) 

                add (v, n) to G; 

               delete (v, backpoint(v)) from G; 

               backpoint(v) ← w; 

          else 

              return false 

                  endif 

                endfor 
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              6. //R-test (root of DFS-tree) 

        R-test(v) 

         for ∀ w with (v, w) ∈ T do R-test(w) 

          if w is not a leaf; 

             z ← min (backpoint(w),(v, w) ∈ TREE); 

             if (v ≠ z); 

                       if ( backpoint(v) < backpoint(z)) 

                                        backpoint(z) ← backpint(v); 

                           else if (v ≠ backpoint(v)) 

                           return false         

else 

      backpoint(v) ←  z; 

                                     endif 

       endif 

      7.   return false 

    

Let us take a look at the running time and space of algorithm 1 complexites. It is 

well known that depth first search can be done with linear time and storage complexity. 

Therefore step 1 takes linear time and storage. It is trivial to see that steps 2, 3, and 4 can 

be implemented in O(1) time per edge considered.  This is also true for step 5 without 

calculation of the nearest common ancestor w for the vertices v and z. In Chapter 4 it will 

be shown that finding nearest common ancestor can be done in O(n log n)  time and O(n) 
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storage. For any fixed vertex v the step 6 takes linear time in the number of edges 

emanating form v. So the total cost of 6 is linear. Because we have O(n log n) time and 

linear storage complexity in finding nearest common ancestor and linear time and space 

complexity in each other of our steps, we reach O(n log n) time and linear storage 

complexity for the whole algorithm 1.  
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CHAPTER 3 

DETECTING REDUCIBILITY OF TREE EDGES 

If we can not find any reducible edge by running Algorithm 1, we have to test the 

reducibility of tree edges. Our strategy is to find reducible tree edges in the process of 

finding a subgraph containing a spanning in-tree which does not have any reducible 

edges. It is a well-known fact that if an edge (u, v) is reducible in a strong digraph G, then 

the edge (v, u) is reducible in the reverse digraph GR.  We reverse every edge of a strong 

digraph G to obtain the reverse graph of GR, then we apply algorithm 1 to GR. If we find a 

reducible non-tree edge, we conclude that G is not an MSD. Otherwise we know that 

there is no reducible non-tree edge in GR.  In this process we calculate DFS tree TR of GR 

and the spanning sink tree TS which is given by the reversal of TR.  Next we run algorithm 

1 on the original graph G and, if we find a reducible non-tree edge, it follows that G is 

not an MSD. Otherwise let T be the DFS tree formed by running algorithm 1 on G.  We 

observe that every edge which might be reducible is both an edge of TS and an edge of T.  

We call such edges critical.  

Then we will check each critical edge (x, y) to see if it is a reverse dominating 

edge for x or a dominating edge for y, if we find any critical edge (w, z) which is not a 

reverse dominating edge for w and not a dominating edge for z, we mark this edge as 

reducible. 

Now we will prove that such an edge (w, z) must be reducible. 
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From the above discussion, we notice that G contains a spanning sink-tree TS and 

a spanning tree T (see Figure 12).  Let r be the root of TS and T.  Because (w, z) is not a 

reverse dominating edge for w, in the reversal of G there is a path from r to w which 

avoids edge (z, w).  Thus in G, there is a path from w to r which avoids (w, z). On other 

hand, because (w, z) is not a dominating edge for z, there exists a path r-- → z in G 

avoiding (w, z).  Concatenating theses two paths gives a path w to z in G which avoids (w, 

z) and thus (w, z) is reducible. 
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x

r 

w

z

 

 

 

 

 

 

         

 

 

  

                                     TS in G                                                                    T in G 

Figure 12 TS and T in G 

Obviously any tree edge (x, y) which is either a dominating edge for y or a reverse 

dominating edge for x is not reducible. 
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Now we can state the final algorithm for finding whether a strong digraph is an 

MSD or not. 

       Algorithm 2: 

1. reverse G to get GR, 

             run Algorithm 1 on GR   

if  (Algorithm 1 returns false) 

                     return false; 

else 

      let TR
 be the DFS tree associated with GR 

      let TS
 be the reverse graph of TR 

      go to step 2. 

              endif 

          2. run Algorithm 1 on G  

 if ( Algorithm 1 return false) 

       return false 

 else 

       let T be the DFS tree associated tree with G 

       for edges (x, y) which are in both T and TS   

              if (x is not dominating y and y is not reverse dominating x ) 

                    return false 

             endif 

      endfor 

endif 
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In Algorithm 2, in step 1 has O(n log n) time complexity and linear storage 

complexity.  In step 2 the process for finding an immediate dominator takes O(n log n) 

time and linear space. Therefore Algorithm 2 has O(n log n) time complexity and  linear 

storage complexity. 
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CHAPTER 4 

FINDING THE NEAREST COMMON ANCESTOR 

Let T = (V, E) be a tree with root r, and let P ⊆ V×V be a set of pairs of vertices of 

T. we wish to computer the Nearest Common Ancestor NCA(x, y) for each pair {x, y} ∈ 

P. In this chapter, we will introduce at first how to deal with NCA issue in a complete 

binary tree and then to deal with common tree.  In order to find NCA on an arbitrary tree 

T, our plan is to convert the NCA problem on T into an NCA problem of a complete 

binary tree. This transformation proceeds by a sequence of steps, which involves solving 

on two auxiliary trees, a compressed tree C and a balanced binary tree B.  We will discuss 

C and B in following sections too. 
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              Figure 13. Symmetric-order numbering of a complete binary tree 

Special case: a complete binary tree 
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Let us begin our process for finding NCA (x, y) by considering a complete binary 

tree CB. 

We number the n nodes in CB in such a way that an inorder traversal gives the 

natural number sequence 1, 2, 3, … n  (see Figure 13).  This is called the symmetric-

order numbering.  We use sym(v) to denote the number of vertex v, sym -1(i) to denote 

the vertex whose number is I,  h(v) to denote the height of vertex v, d0 to denote the depth 

of the nearest common ancestor, and d to denote the depth of the tree . In a complete 

binary tree, the nearest common ancestor can be solved in O(1) time by direct calculation.   

The algorithm to compute the nearest common ancestor of two given vertices v 

and w can be given in two steps.  First note that d =  log n  where log denotes the 

logarithm to base 2.  This is the length of the binary representation of n, which is 

assumed to be determinable in O(1) time. Similarly the height h(m) of the vertex v with 

sys(v) = m  is the number of trailing 0's in the binary representation  of m which is also 

assumed to be determinable in O(1). 

             Step 1. Compute the d0 , the depth of NCA(v, w)  

 Step 2. Compute the ancestor of v at d−d0 steps above.  

Step 1 can be accomplished in O(1) time as follows. 

If v is an ancestor of w (sym(w)∈[sym(v) − 2h(v) + 1, sym(v) + 2h(v) –1]), 

 let d0 = d − h(v).  If w is an ancestor of v ((sym(w)∈[sym(v) −2h(v) + 1, sym(v)+2h(v) –1]), 

let d0 = d − h(w).  If v and w is unrelated let d0=d − log(sym(v)⊕sym(w) 

Step 2 can be accomplished in O(1) time as follows. 

Given a vertex v of depth d1 let d2 < d1, h = d−d2, the ancestor of v whose depth is 

d2 is sym-1( 2h+1 sym(v)/ 2h+1+2h  ). 
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A compressed tree 

Let T be an arbitrary n-vertex tree rooted at r. A compressed tree C of T is defined 

as following.  For each vertex v in T, let sizeT (v) be the number of descendants of v 

(including v itself) in T,   pT (v) be parent of v, Define a n edge pT (v) → v to be light if 

2sizeT(v) ≤  sizeT(pT(v)) and heavy otherwise. Since the size of a vertex is one greater 

than the sum of sizes of its children, at most one heavy edge enters each vertex. Thus the 

heavy edges partition the vertices of T into a collection of heavy paths (see Figure 14).  
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Figure 14.  An original tree (heavy edges are shown as thick)  

The apex of a heavy path is the vertex on the path of smallest depth. For any 

vertex v we denote by apex(v) the apex of the heavy path containing v,  and by hp_size(v) 

the number of descendants of v on the same heavy path as v.  The compressed tree C is 

defined by the set of edges: 

       {apex(pT(v)) → v | v is a vertex of T other than r} 
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It takes O(n) time to transform an ordinary tree with n vertices into a compressed 

tree.  In O(n) time, We can also compute the following information for each vertex v: pT 

(v), pC (v), apex(v), hp size(v), dC(v) (the depth of v in C) and sizeC(v) (the size of v in C ). 
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Figure 15.  The compressed tree 

The balanced binary tree 

Now we have the compressed tree.  We need to solve the nearest common 

ancestor problem on the compressed tree.  For this purpose we transform C to another 

auxiliary tree called a balanced binary tree B.  The tree B will contain all vertices of C 

and possibly some additional vertices.  Let u equal to NCAC(v, w) which equals to 

NCAB(v, w).  If u is on T or the nearest ancestor of u which is on T if u is not on T.  

 The algorithm for constructing the balanced binary tree is listed below.  We 

suppose C contains a parent v and a set of children W such that |W| ≥ 2.  The binarize 

process can guarantees that B has depth O(log n). 

            binarize (v, W) 

Step 1. Let W = (w1, w2, …wk), and .  Let j be the )(
1
∑
=

=
k

i
iC wsizes
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            minimum index such that∑ . If j = k, replace j by k−1.               2/)(
1

swsize
j

i
iC ≥

=

Step2. If j = 1, attach w1 as the left child of v, otherwise, let x1 be a new node. 

attach x1 as the left child of v and execute binarize( x1, W 1), where W1 = 

(w1, …wj). 

Step3. If j = k−1, attach wk as the right child of v. Otherwise let x2 be a new  

vertex, attach x2 as the right child of v and execute binarize(x2, W2) where W2 = 

(wj+1,…,wk) . 

This method can be implemented to run in O(W) time[6]. But in this 

implementation, we use binary search in step 1 to find j,  thus we use O(n log n) time to 

finish the process of binarizing.  To construct B (see Figure 16), we binarize each family 

of C using the method above.  The total run time to construct B is O(n log n).    

In order to find NCA on C, we need to embed B in a complete binary tree B1, and 

use the direct calculation as described before. All we need to know for each vertex in B is 

its symmetric-order number and height, we use following algorithm to number the tree (v 

is a vertex, h is the height of this vertex in B,  and i is the number of the vertex). 

 

number(v, h, i) 

Step 1. Assign number i and height h to v 

Step 2. If v has a left child w1, execute                   number(w1, h −1, i − 2
i+1

). 

            Step 3. If v has a right child w2, execute                 number(w2, h −1, i + 2
i+1

) 

It is easy to see that the procedure number(v, h, i) takes linear time and space. 
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Figure 16. Balanced binary tree corresponding to tree in Figure 14 

After we find the nearest common ancestor v in B1, it is possible that v is not a 

vertex in the original tree T.  We need to trace the parent of v in B until we find a real 

vertex in the T.  Because B has a height of O(log n), therefore the run time per vertex is 

O(log n), thus the run time for find NCAC for all vertices is O(n log n).  

Algorithm to compute nearest common ancestor  

To compute NCAT(v, w), we first compute the nearest common ancestor NCAC(v, 

w) in C by using the balanced tree B.  Recall that for each vertex v  we have computed pT 

(v), pC (v), apex(v), hp_size(v), dC(v) (the depth of v in C ) and sizeC(v) (the size of v in C ) 

in the process of building the compressed tree C. 

The algorithm is described as following.  

Step 1: Compute NCAC(v, w) 
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  1a compute NCAB (v, w) 

  1b look up  NCAC (v, w) 

  Step 2: Look up the depth in C of NCAC(v, w), Compute NCAT (v, w)   

Step 2 is composed of following procedures: 

      2a. Let u ← NCAC (v, w). If (u = v or u = v), return u, otherwise lookup dc(u). 

2b. Compute the ancestor v1 of v whose depth is dC(u)+1. If (apex(v1) = u),  

       let  v2 ← v, and otherwise let v2  ← pT(v1) 

2c. Compute the ancestor w1 of w2 whose depth is dC(u)+1, if (apex(w1) = u), 

       let w2  ← w1, and otherwise let w2 ← pT(w1) 

Return whichever of v2, w2 has the larger value of hp_size 

 It takes O(n log n) time and linear space to finish step 1 and it takes linear time 

and space to finish step 2. Thus the time complexity for this algorithm is O(n log n) and 

storage complexity for this algorithm is linear. 
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CHAPTER 5 

IMPLEMENTATION AND EXPERIMENT 

We implemented this algorithm with C++. The input for the whole algorithm is a 

given strong digraph G. Four classes are used in our program. The first is for finding 

nearest common ancestor, the second is for finding the immediate dominators, the third is 

for dealing with non-tree edges in G. The fourth is to deal with tree edges in G.  

We tested the running time for randomly generated digraphs up to 1000 vertices. 

We generated 20 digraphs for each number of vertices from 4 starter digraphs, and we 

tested running time on the 20 digraphs and then took average.  

The algorithm for generating digraph G1 (with N vertices) from starter MSD 

digraph G: 

1. Randomly choose two vertices until we find two vertices a and b which satisfy 

two conditions: first, there is no edge (a, b), second if we add another vertex 

between  a and b, the resulted digraph is still MSD 

          2.  Let n be the umber of vertices of current digraph  

               while n < N 

                      pick a random integer i < 10 ,  

                       if  i+n < N then 

                              add i vertices between  a,  b. 

                       else 

                           add N −n vertices between a, b 
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                    endif 

         endwhile 

 We test the run time of finding whether a given strong digraph is MSD on the 

generated digraph (see Table1. Figure 17). 

We use the DFS tree of the generated graph to test the running time of finding 

nearest common ancestor of two arbitrary vertices (see Table 2, Figure 18). 

We use the same graph to test the running time of finding immediate dominators 

(see Table 3,  Figure 19). 

The three algorithms are tested independently. 

The algorithm can surely be implemented in linear time. Adam L. Buchsbaum 

claimed a new simpler linear time dominator algorithm [7] which has been implemented 

successfully. There is also a linear algorithm for finding nearest common ancestor [2] but 

which is very hard to implement. Obviously if the linear time algorithms can be 

implemented successfully, the performance of  finding if a give strong digraph is MSD 

for sufficient large digraph will be greatly improved. 

 

 

 

 

 

 

 

 33



 

 

Table 1. Running time of MSD algorithm 

      No. of vertices Seconds 

20 0.301 

40 0.353 

60 0.364 

80 0.388 

100 0.415 

200 0.476 

300 0.518 

400 0.560 

500 0.602 

600 0.659 

700 0.707 

800 0.758 

900 0.795 

1000 0.829 
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Figure 17.  Running time of MSD algorithm 
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Table 2. Running time of NCA algorithm 

      No. of vertices Seconds 

20 0.171 

40 0.192 

60 0.198 

80 0.178 

100 0.201 

200 0.210 

300 0.221 

400 0.235 

500 0.241 

600 0.298 

700 0.325 

800 0.343 

900 0.356 

1000 0.368 
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Figure 18. Running time of NCA algorithm 
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Table 3 Running time in Sec of the immediate dominators algorithm 

      No. of vertices Seconds 

20 0.013 

40 0.014 

60 0.016 

80 0.017 

100 0.019 

200 0.022 

300 0.020 

400 0.025 

500 0.026 

600 0.032 

700 0.036 

800 0.039 

900 0.042 

1000 0.047 
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Figure 19. Running time of the finding immediate dominators algorithm   
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