
A FAST ALGORITHM TO DETERMINE

MINIMALITY OF STRONGLY CONNECTED DIGRAPHS

by

JIANPING ZHU

(Under the Direction of Robert W. Robinson)

ABSTRACT

In this thesis, we consider the following problem: Given a strongly connected

digraph G = (V, E), where V is the set of vertices and E is the set of edges , “is it a

minimal strong connected digraph?”. A reducible edges e is one for which G−e is

strongly connected. A minimal strongly connected digraph is one with no reducible

edges. Our approach is to apply depth first search on G to generate a depth first search

tree and the sets of back, forward, and cross edges. Then we determine if there are any

reducible non-tree edges. If not, we then check if there are any reducible tree edges based

on an algorithm for finding immediate dominators. We have implemented the algorithm

and report experimental results that show the algorithm can handle large digraphs

quickly.

INDEX WORDS: Digraph, Minimal strong digraph, Strongly connected,
 Nearest common ancestor, Immediate dominators

A FAST ALGORITHM TO DETERMINE

MINIMALITY OF STRONGLY CONNECTED DIGRAPHS

by

JIANPING ZHU

B.S., Nanjing Forestry University, China, 1986

M.S., Nanjing Forestry University, China, 1993

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2002

© 2002

Jianping Zhu

All Rights Reserved

A FAST ALGORITHM TO DETERMINE

MINIMALITY OF STRONGLY CONNECTED DIGRAPHS

by

JIANPING ZHU

Major Professor: Robert W. Robinson

Committee: E. Rodney Canfield
Thiab Taha

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2002

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Robert W. Robinson for his guidance and

support through out my thesis. Over the past year, he invested lots of time helping me

with the algorihms, helping me debugging my program. Without his guidance, I could

not have done this thesis.

I would also like to thank Dr. Canfield and Dr. Taha for severing as committee

members and giving me valuable suggestions.

This thesis is dedicated to my families.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT ... iv

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER

1 INTRODUCTION, NOTATION AND BASIC CONCEPTS...........................1

Introduction ...1

Notation and basic concepts ..2

2 DETECTING REDUCIBILITY OF NON-TREE EDGES10

3 DETECTING REDUCIBILITY OF TREE EDGES21

4 FINDING THE NEAREST COMMON ANCESTOR....................................25

 Special case: a complete binary tree..26

A compressed tree ...27

The balanced binary tree ...28

Algorithm to compute nearest common ancestor30

5 IMPLEMENTATION AND EXPERIMENT..32

REFERENCES ..40

v

LIST OF TABLES

Page

Table 1: Running time of MSD algorithm..34

Table 2: Running time of NCA algorithm ...36

Table 3: Running time in Sec of the immediate dominators algorithm 38

vi

LIST OF FIGURES

Page

Figure 1: A strong digraph...4

Figure 2: A spanning in-tree ..5

Figure 3: A Minimal Strong Digraph...5

Figure 4: Edge classification..8

Figure 5: A reducible forward edge ...10

Figure 6: A reducible cross edge ...11

Figure 7: Digraphs G , G1 and G2 ..12

Figure 8: Digraph G1..13

Figure 9: Reducible back edges ...15

Figure 10: Digraphs G and G1 ...16

Figure 11: Digraphs G2 and G3 ..17

Figure 12: TS and T in G ..22

Figure 13: Symmetric-order numbering of a complete binary tree25

Figure 14: An original tree ..27

Figure 15: The compressed tree...28

Figure 16: Balanced binary tree corresponding to tree in Figure 1430

Figure 17: Running time of MSD algorithm..35

Figure 18: Running time of NCA algorithm..37

Figure 19: Running time of the finding immediate dominators algorithm........................39

vii

CHAPTER 1

INTRODUCTION, NOTATION AND BASIC CONCEPTS

Introduction

One of the classic problems in computer science is to compute the connectivity

and reachability of a digraph G = (V, E), where V is the set of vertices and E is the set of

edges. In this connection, finding a minimal storage representation of a digraph is a very

important issue. The most straightforward method to solve this problem is to remove

edges one by one and to test all vertices pair by pair to see if they can still reach each

other after removing the edge. This method takes time O(n2m) in the worst case, which is

inefficient. Here n = |V| and m = |E|. Klause Simon developed an algorithm to find a

minimal transitive reduction in a strongly connected digraph [1]. He claimed his

algorithm to be a O(m+n) time and space. But his algorithm relies on Harel’s algorithm

[2] for finding dominators in a flowgraph which Harel claimed to be linear. However the

soundness of Harel’s approach has been questioned for lack of details [3]. Therefore it

could be very hard to implement Harel’s algorithm , or perhaps impossible, in which

case Klause Simon’s algorithm would not be linear.

In this thesis, an O(n log n) time algorithm to find whether a digraph is a Minimal

Strong Digraph (MSD) is developed and a successful implementation is described. This

algorithm can be used to facilitate the process of generating MSDs. An O(n2) time

algorithm is utilized by Kiran Bhogadi [4] to check whether a candidate digraph is an

MSD and we think the performance of his algorithm can potentially be improved for

large digraphs by utilizing our algorithm.

 1

An edge e of a strong digraph G is said to be reducible if G–e is strongly

connected. Clearly a strong digraph is an MSD if and only if it has no reducible edges.

This thesis is divided into several chapters. Following section contains basic

concepts and notation, and a brief description of Depth First Search (DFS) on digraphs.

In Chapter 2, an algorithm is developed to find if there is any reducible non-tree edge in a

given strongly connected digraph. In Chapter 3, the result of Chapter 2 is built on to

provide an algorithm to detect reducible tree edges. In Chapter 4, we will briefly

introduce an O(n log n) time algorithm for finding nearest common ancestors in trees.

Some experimental results of implementation of algorithm of determining minimality of

strongly connected digraphs and some other related algorithms will be presented in

Chapter 5. The algorithm for finding immediate dominator has been implemented

successfully by T. Lengauer and R. E Tarjan. We will not describe this algorithm in this

thesis.

Notation and basic concepts

A directed graph (or digraph) G is a pair (V, E), where V is a non-empty finite set

and E is an antireflective binary relation on V, V = {1, 2,… n}. The set V is called the

vertex set of G, and its elements are called vertices. The set of E is called the edge set of

G, and its elements are called edges (E ⊆ V×V). An edge joining vertex u to vertex v will

be represented as (u, v), where u is said to be adjacent to v, and v is adjacent from u. A

path P in G from vertex v0 to vertex vs is a sequence of vertices v0, v1, …, vs such that (vi-1,

vi) ∈ E for i ∈ (1, 2, …, s). The path consists of the vertices v0, v1, …, vs and the edges (v0,

v1), (v1, v2), …, (vs-1, vs). The length is the number of edges in the path. If a path joins

vertex u to vertex v, v is reachable from u, hence the term reachability. If there is a path

 2

P from v to u, we say that u is reachable from v via P which we denote by v –(P)→u.

The fact that v is reachable from u is denoted by u --→v. A path is simple if the vertices

in the path are distinct. A single edge (v, u) is denoted by v→u.

A digraph is strongly connected if every two vertices are reachable from each

other, i.e. v--→w--→v for all v, w∈V (See Figure 1). A graph G'=(V', G') is a subgraph

of G = (V, E) if V' ∈ V and E' ∈ E. A reverse graph GR of G is formed by reversing

every edge in G.

A tree or out-tree is an acyclic digraph with one distinguished vertex called the

root r, such that r--→v for all vertices v, and no edges enters r. A tree vertex with no

edges leaving it is a leaf. If (v, w) is a tree edge, v is the father of w and w is a son of v. If

v is reachable from u via tree edges, then u is an ancestor of v and v is a descendant of u.

A tree vertex z is called a common ancestor of tree vertex u and tree vertex w if and only

if z is an ancestor for both w and u. The vertex z is called the nearest common ancestor

of w and u if and only if there is no other common ancestor x of w and u which is a son of

z. If a tree contains all vertices of G, then T is called a spanning tree of G. An in-tree or

sink-tree S is the reverse of an out-tree. The father and son relations in an out-tree is the

same as in the reversed tree. A spanning in-tree is an in-tree which contains all vertices of

G. Figure 2 is a spanning in-tree corresponding to Figure 1.

Suppose G is a strongly connected digraph with vertex s specified as tree root. If

vertices x and y are distinct and x lies on every path form s to y then x is called a

dominator of y. This is equivalent to say x dominate y if and only if y is not reachable for

s in G−{x}. The vertex x is an immediate dominator of y if x is a dominator of y and x is

dominated by every other dominator z of y. It is easy to see that each vertex other than

 3

the root has a unique immediate dominator. Furthermore, we use the concept of

dominator for an edge e in the same way as for a vertex. A particular edge e is a

dominating edge of y if and only if s can’t reach the vertex y in G − e. An edge or vertex

is called reverse dominating if it is dominating in the reverse graph GR.

a

b

g

h

c

d f

e

Figure 1. A strong digraph

A strong (or strongly connected) digraph is one in which every vertex is reachable

from each other vertex, in this article we always suppose the input digraph G is a strong

digraph.

A Minimal Strong Digraph (MSD) is a strong digraph which is no longer strong if

any of its edges is removed (see Figure 3). An edge e in a strong digraph G is reducible

if G − e is strongly connected.

 4

a

b

c

g

f

e

h
d

Figure 2. A spanning in-tree

b c

a

d

h

f

eg

Figure 3. A Minimal Strong Digraph

 5

Our algorithm is based on a systematic exploration of a digraph. In particular we

rely on Depth First Search (DFS) as the basis of our algorithm. Therefore we need a

short description of the algorithm of DFS. The strategy of depth first search is to search

“deeper” in the graph when possible. In depth first search, edges are explored out of the

most recently discovered vertex v that still have undiscovered edges leaving it. When all

of v’s edges have been explored, the search “backtracks” to explore edges leaving the

vertex from which v was discovered. This process will continue until we have

discovered all vertices that are reachable from the original source vertex.

DFS will create a depth first search tree (DFS-tree) and at the same time DFS also

timestamps each vertex. Each vertex has two time stamps: The time stamp d[v] is related

to the time when v is first discovered, and timestamp f[v] accounts for the time when

search finishing examining v’s adjacent list. The set REACH contains the explored

vertices. For a given input strong digraph G, The DFS algorithm is displayed as

following.

DFS (v, V, E)

 REACH ← {v}

 discover-time ← 1

 finish-time ← 1

 d[v] ← 1

 for ∀ w with (v, w) ∈ E

 do if w ∉ REACH

 then DFS-VISIT(w)

 endif

 6

 endfor

DFS-VISIST(w)

 d[w] ← discover-time ++

 for each u ∈ adj[w]

 do if u ∉ REACH

 Then DFS-VISIT(u)

 endif

 endfor

 f[w] ← finish-time++

Based on d[v] and f[v], we partition the edges into four classes: the tree edges

TREE, the forward edges FORWARD, the cross edges CROSS and the back edges

BACK (See Figure 4) . The classes are as follows:

(v, w) in TREE: d(v) < d(w)

 and f(w)<f(v)

 (v, w) is in the depth first search tree

 (v, w) in FORWARD: d(v) < d(w)

 and f(w) < f(v)

 and (v, w) ∉ TREE

 (v, w) in CROSS: d(w) < d(v)

 7

 and f(v) < f(w)

 (v, w) in BACK: d(w) < d(v)

 and f(w) < f(v)

 Notice that d(v) < d(w) and f(v) < f(w) is impossible, and this is an elementary

fact of DFS.

a

1/8

e
7/3

g
4/1

c
2/7

f
6/4

d
5/6

h
8/5

b
3/2

Figure 4: Edge classification

: FORWARD : TREE

 : CROSS : Back

 : one or more tree edges

 Note: This style applies to following Figures.

 8

Figure 4 shows a DFS-tree and the corresponding edge classification of digraph in

Figure 1. Now we define a new notation: if there is a path from v to u via tree edges, we

denote this path by v → (TREE) → u.

 9

CHAPTER 2

DETECTING REDUCIBILITY OF NON-TREE EDGES

In order to find whether there is a reducible edge in a given strong digraph G =

(V, E), a DFS is performed and E is partitioned into sets TREE, FORWARD, CROSS,

and BACK. For convenience, we use the d[v] to identify v. Thus the root is always 1,

and n is the last vertex to be discovered among the n vertices of G.

Theorem 1. Each forward edge e = (v, w) is reducible

w

v

Figure 5. A reducible forward edge

Proof: By definition for forward edge, there must be a tree edge path form v to w

with length equal or greater than 2 , therefore edge (v, w) is reducible (see Figure 5).

The following statement is the precondition for Theorems 2 and 3.

 10

e = (v, z) is a cross edge and w is the nearest common ancestor of vertices v and z in

the DFS-tree of G.

Theorem 2: If edge e1 = (v, w) is in E then e is reducible.

Proof: There is a reducing path v→w −(TREE)→z of e. (see Figure 6).

 e1

 e

z

w

v

 Figure 6. A reducible cross edge

Theorem 3: If edge (v, w) is not in E, let G1 = G − (v,z) + (v,w). Then:

1. The edge e is reducible in G if and only if the edge e1 is reducible in the

digraph G1.

2. Let e2 be an edge of G other than e which is not a tree edge. Then e2 is

reducible in G if and only if e2 is reducible in G1.

Proof of 1: From Theorem 2, we can conclude that G1 is also a strong digraph.

Now we need to form a new graph G2 by deleting edge e from G (see Figure 7).

 11

Let us first prove that if e is reducible in G, e1 is reducible in G1.

Because e is reducible in G and G2 is formed by deleting e, we see that G2 is still

strongly connected, and so must contain a path P1 from v to w. Now G1 is G2+e1, so e1 is

reducible in G1.

We can similarly prove that if e1 is reducible in G1, then e is reducible in G.

 e1

 e
zv

w

zv

w

zv

w

 G G1 G2

Figure 7. Digraphs G , G1 and G2

Proof of 2: Let us first prove that if e2 is reducible in G, e2 is reducible in G1

Let P1 be a reducing path for e2 in G. The trivial case is given if e is not an edge

of P1, obviously P1 is also in G1 so e2 is reducible in G1. In the nontrivial case, the

reducing path P1 contain e, we see that G1 has a path P2 containing v → w — (TREE) →

z. P2 connects the same endpoints as P1. This accounts for that there is also a reducing

path P2 in for e2 in G1.

 12

 Next we need to prove that if e2 is reducible in G1, it is also reducible in G.

Also let P2 be a reducing path of e2 in G1. The trivial case is that e1 is not an edge

of P2. Obviously in this case e2 is also reducible in G. If e1 is an edge of P2, let u1 be the

first vertex after the starting edge w in the tree edges w → (TREE) → z, u2 is the first

vertex after starting vertex w in the tree edges path w → (TREE) → v (see Figure 8).

Here v > u2> z > u1 > w. Because e2 is reducible in G1, G1 −e2 is still strongly connected.

So there must be a path from z to w in G1−e2. Now we want to prove that e1 is not an

edge of the path from z to w.

z

u1u2

v

w

Figure 8. Digraph G1

Assumption: (v, w) is an edge of the path from z to w.

Under this assumption, it is evident that there must exist a path which starts at u1

and ends at u2 via edge (v, w). So in order for this path to exist, there must exist such a

path that starts from a vertex v1 in subtree rooted at u1 ends at a vertex v2 which is in

subtree rooted at u2. But such an edge is impossible because according to the definition

 13

of different class of edges, it is not a forward edge or tree edge because (f[v1] < f[v2]) and

it is not a cross edges or back edge because (d[v2] > d[v1]). Therefore the assumption is

not right and we can have the conclusion that (v, w) is not an edge of P2. In this situation

v can reach w in G via P2. Therefore e2 is also reducible in G.

Theorem 3 allows us to use the following strategy to find reducible edge. First we

check if there are any forward edges. Then we check if there are any cross edges which

are reducible by Theorem 2. Then we can use Theorem 3 to replace each cross edge by

back edge.

 Theorem 4. Let {(v, w1) … (v, ws)} be the set of back edges emanating from

vertex v in such a way that w1<w2< …<ws then all edges (v, w2) … (v, ws) are

reducible.

 Proof: This situation is illustrated in Figure 9. We can easily see that edge (v, w2)

is reducible because there is a path v → w1→ w2. Edges (v, w3), … (v, ws) are similarly

seen to be reducible.

Theorem 5. Let e = (v, w) be a back edge in G, x be a descendant of v with v ≠

x and z be a vertex such that there is an edge from x to z (illustrated by G in Figure

10).

1. If e1 = (z, w) is an edge in G1, then e is reducible (illustrated by G1 in Figure

10).

2. If e1 is not an edges in G, then e is reducible in G if and only if e1 is

reducible in the digraph G2 = G − e + e1.

3. Let e2 = (a, b) be an edge in G with e ≠ e2 ≠ e1 and e2 is a not a tree edge.

Then e2 is reducible in G if and only if e2 is reducible in G2.

 14

Figure 9. Reducible back edges

ws

v

w1

w2

w3

Proof of 1: Because there is a reducing path v → (TREE) → x → z → w of (v, w)

in G, so (v, w) is reducible.

From 1, we can see that if e1 is not an edge in G, then G2 = G − e + e1 is strongly

connect.

Proof of 2: Let us first prove that if e is reducible in G, e1 is reducible in G2.

Because e is reducible in G, after removing e from G we get G3 (see Figure 10, G3)

which is still strongly connected. Therefore there must exist a path from z to w in G3.

We notice that G2 has one more edge e1 than G3. Thus e1 is reducible in G2.

We can similarly prove that if e1 is reducible in G2, then e is reducible in G.

 15

 e1

 e

x

v

z

w

x

v

z

w

 G G1

Figure 10. Digraphs G and G1

Proof of 3: Let us prove if e2 is reducible in G, it is reducible in G2.

Let P1 be a reducing path of e2 in G. The trivial case is that P1 does not contain e.

It is evident that e2 is also reducible in G2. In the nontrivial case, P1 contains e. G2 has no

has a path v → (TREE) → x → z → w, therefore there exist a reducing edge for e2 and

thus e2 is also reducible in G2. Next we will prove that if e2 is reducible in G2, it is also

reducible in G. Let P2 is a reducing path of edge e2 in G2. The trivial case is that P2 does

not contain edge e1. It is evident that e2 is also reducible in G. In the nontrivial case, P2

contains e1 = (z, w). We notice that, in G there exists a path z → v → w which connects z

and w. Therefore, there exist a reducing edge for e2 and thus e2 is also reducible in G.

 16

 e1

x

v

z

w

x

v

z

w

 G2 G3

Figure 11. Digraphs G2 and G3

Based on the above discussion, we have following algorithm to deal with non-tree

edge of a given strongly connected digraph G. Our implementation use array backpoint(v)

to indicate the back point of vertex v.

 Algorithm 1:

Input A strongly connected digraph G(V, E)

Output true: the input digraph may be an MSD

 (need to check if there are reducible tree edges)

 false: the input digraph is not an MSD

 17

1. do depth first search to get the partitions of edges TREE, BACK, CROSS,

FORWARD, The depth first search tree DFS-Tree.

 2. for ∀ v ∈ V backpoint(v) ← v

 endfor

 3. if the set FORWARD is not empty

 return false;

 endif

 4. for ∀ e = (v, w) ∈ BACK

 backpoint(v) ← min (backpoint(v), w);

 if there exists an e = (v, w) ∈B with w ≠ backpoint(v)

 return false;

 endif

 endfor

 5. for ∀ e = (v, w) ∈ CROSS do

 let n be the nearest common ancestor of v and w

 if (w < backpoint(v))

 add (v, n) to G;

 delete (v, backpoint(v)) from G;

 backpoint(v) ← w;

 else

 return false

 endif

 endfor

 18

 6. //R-test (root of DFS-tree)

 R-test(v)

 for ∀ w with (v, w) ∈ T do R-test(w)

 if w is not a leaf;

 z ← min (backpoint(w),(v, w) ∈ TREE);

 if (v ≠ z);

 if (backpoint(v) < backpoint(z))

 backpoint(z) ← backpint(v);

 else if (v ≠ backpoint(v))

 return false

else

 backpoint(v) ← z;

 endif

 endif

 7. return false

Let us take a look at the running time and space of algorithm 1 complexites. It is

well known that depth first search can be done with linear time and storage complexity.

Therefore step 1 takes linear time and storage. It is trivial to see that steps 2, 3, and 4 can

be implemented in O(1) time per edge considered. This is also true for step 5 without

calculation of the nearest common ancestor w for the vertices v and z. In Chapter 4 it will

be shown that finding nearest common ancestor can be done in O(n log n) time and O(n)

 19

storage. For any fixed vertex v the step 6 takes linear time in the number of edges

emanating form v. So the total cost of 6 is linear. Because we have O(n log n) time and

linear storage complexity in finding nearest common ancestor and linear time and space

complexity in each other of our steps, we reach O(n log n) time and linear storage

complexity for the whole algorithm 1.

 20

CHAPTER 3

DETECTING REDUCIBILITY OF TREE EDGES

If we can not find any reducible edge by running Algorithm 1, we have to test the

reducibility of tree edges. Our strategy is to find reducible tree edges in the process of

finding a subgraph containing a spanning in-tree which does not have any reducible

edges. It is a well-known fact that if an edge (u, v) is reducible in a strong digraph G, then

the edge (v, u) is reducible in the reverse digraph GR. We reverse every edge of a strong

digraph G to obtain the reverse graph of GR, then we apply algorithm 1 to GR. If we find a

reducible non-tree edge, we conclude that G is not an MSD. Otherwise we know that

there is no reducible non-tree edge in GR. In this process we calculate DFS tree TR of GR

and the spanning sink tree TS which is given by the reversal of TR. Next we run algorithm

1 on the original graph G and, if we find a reducible non-tree edge, it follows that G is

not an MSD. Otherwise let T be the DFS tree formed by running algorithm 1 on G. We

observe that every edge which might be reducible is both an edge of TS and an edge of T.

We call such edges critical.

Then we will check each critical edge (x, y) to see if it is a reverse dominating

edge for x or a dominating edge for y, if we find any critical edge (w, z) which is not a

reverse dominating edge for w and not a dominating edge for z, we mark this edge as

reducible.

Now we will prove that such an edge (w, z) must be reducible.

 21

From the above discussion, we notice that G contains a spanning sink-tree TS and

a spanning tree T (see Figure 12). Let r be the root of TS and T. Because (w, z) is not a

reverse dominating edge for w, in the reversal of G there is a path from r to w which

avoids edge (z, w). Thus in G, there is a path from w to r which avoids (w, z). On other

hand, because (w, z) is not a dominating edge for z, there exists a path r-- → z in G

avoiding (w, z). Concatenating theses two paths gives a path w to z in G which avoids (w,

z) and thus (w, z) is reducible.

x

r

z

w

x

r

w

z

 TS in G T in G

Figure 12 TS and T in G

Obviously any tree edge (x, y) which is either a dominating edge for y or a reverse

dominating edge for x is not reducible.

 22

Now we can state the final algorithm for finding whether a strong digraph is an

MSD or not.

 Algorithm 2:

1. reverse G to get GR,

 run Algorithm 1 on GR

if (Algorithm 1 returns false)

 return false;

else

 let TR
 be the DFS tree associated with GR

 let TS
 be the reverse graph of TR

 go to step 2.

 endif

 2. run Algorithm 1 on G

 if (Algorithm 1 return false)

 return false

 else

 let T be the DFS tree associated tree with G

 for edges (x, y) which are in both T and TS

 if (x is not dominating y and y is not reverse dominating x)

 return false

 endif

 endfor

endif

 23

In Algorithm 2, in step 1 has O(n log n) time complexity and linear storage

complexity. In step 2 the process for finding an immediate dominator takes O(n log n)

time and linear space. Therefore Algorithm 2 has O(n log n) time complexity and linear

storage complexity.

 24

CHAPTER 4

FINDING THE NEAREST COMMON ANCESTOR

Let T = (V, E) be a tree with root r, and let P ⊆ V×V be a set of pairs of vertices of

T. we wish to computer the Nearest Common Ancestor NCA(x, y) for each pair {x, y} ∈

P. In this chapter, we will introduce at first how to deal with NCA issue in a complete

binary tree and then to deal with common tree. In order to find NCA on an arbitrary tree

T, our plan is to convert the NCA problem on T into an NCA problem of a complete

binary tree. This transformation proceeds by a sequence of steps, which involves solving

on two auxiliary trees, a compressed tree C and a balanced binary tree B. We will discuss

C and B in following sections too.

1513 119753 1

14 1062

124

8

 Figure 13. Symmetric-order numbering of a complete binary tree

Special case: a complete binary tree

 25

Let us begin our process for finding NCA (x, y) by considering a complete binary

tree CB.

We number the n nodes in CB in such a way that an inorder traversal gives the

natural number sequence 1, 2, 3, … n (see Figure 13). This is called the symmetric-

order numbering. We use sym(v) to denote the number of vertex v, sym -1(i) to denote

the vertex whose number is I, h(v) to denote the height of vertex v, d0 to denote the depth

of the nearest common ancestor, and d to denote the depth of the tree . In a complete

binary tree, the nearest common ancestor can be solved in O(1) time by direct calculation.

The algorithm to compute the nearest common ancestor of two given vertices v

and w can be given in two steps. First note that d = log n where log denotes the

logarithm to base 2. This is the length of the binary representation of n, which is

assumed to be determinable in O(1) time. Similarly the height h(m) of the vertex v with

sys(v) = m is the number of trailing 0's in the binary representation of m which is also

assumed to be determinable in O(1).

 Step 1. Compute the d0 , the depth of NCA(v, w)

 Step 2. Compute the ancestor of v at d−d0 steps above.

Step 1 can be accomplished in O(1) time as follows.

If v is an ancestor of w (sym(w)∈[sym(v) − 2h(v) + 1, sym(v) + 2h(v) –1]),

 let d0 = d − h(v). If w is an ancestor of v ((sym(w)∈[sym(v) −2h(v) + 1, sym(v)+2h(v) –1]),

let d0 = d − h(w). If v and w is unrelated let d0=d − log(sym(v)⊕sym(w)

Step 2 can be accomplished in O(1) time as follows.

Given a vertex v of depth d1 let d2 < d1, h = d−d2, the ancestor of v whose depth is

d2 is sym-1(2h+1 sym(v)/ 2h+1+2h).

 26

A compressed tree

Let T be an arbitrary n-vertex tree rooted at r. A compressed tree C of T is defined

as following. For each vertex v in T, let sizeT (v) be the number of descendants of v

(including v itself) in T, pT (v) be parent of v, Define a n edge pT (v) → v to be light if

2sizeT(v) ≤ sizeT(pT(v)) and heavy otherwise. Since the size of a vertex is one greater

than the sum of sizes of its children, at most one heavy edge enters each vertex. Thus the

heavy edges partition the vertices of T into a collection of heavy paths (see Figure 14).

g

jh i l k

fed

cb

a

Figure 14. An original tree (heavy edges are shown as thick)

The apex of a heavy path is the vertex on the path of smallest depth. For any

vertex v we denote by apex(v) the apex of the heavy path containing v, and by hp_size(v)

the number of descendants of v on the same heavy path as v. The compressed tree C is

defined by the set of edges:

 {apex(pT(v)) → v | v is a vertex of T other than r}

 27

It takes O(n) time to transform an ordinary tree with n vertices into a compressed

tree. In O(n) time, We can also compute the following information for each vertex v: pT

(v), pC (v), apex(v), hp size(v), dC(v) (the depth of v in C) and sizeC(v) (the size of v in C).

e

h i j

f

lkg

cd b

a

Figure 15. The compressed tree

The balanced binary tree

Now we have the compressed tree. We need to solve the nearest common

ancestor problem on the compressed tree. For this purpose we transform C to another

auxiliary tree called a balanced binary tree B. The tree B will contain all vertices of C

and possibly some additional vertices. Let u equal to NCAC(v, w) which equals to

NCAB(v, w). If u is on T or the nearest ancestor of u which is on T if u is not on T.

 The algorithm for constructing the balanced binary tree is listed below. We

suppose C contains a parent v and a set of children W such that |W| ≥ 2. The binarize

process can guarantees that B has depth O(log n).

 binarize (v, W)

Step 1. Let W = (w1, w2, …wk), and . Let j be the)(
1
∑
=

=
k

i
iC wsizes

 28

 minimum index such that∑ . If j = k, replace j by k−1. 2/)(
1

swsize
j

i
iC ≥

=

Step2. If j = 1, attach w1 as the left child of v, otherwise, let x1 be a new node.

attach x1 as the left child of v and execute binarize(x1, W 1), where W1 =

(w1, …wj).

Step3. If j = k−1, attach wk as the right child of v. Otherwise let x2 be a new

vertex, attach x2 as the right child of v and execute binarize(x2, W2) where W2 =

(wj+1,…,wk) .

This method can be implemented to run in O(W) time[6]. But in this

implementation, we use binary search in step 1 to find j, thus we use O(n log n) time to

finish the process of binarizing. To construct B (see Figure 16), we binarize each family

of C using the method above. The total run time to construct B is O(n log n).

In order to find NCA on C, we need to embed B in a complete binary tree B1, and

use the direct calculation as described before. All we need to know for each vertex in B is

its symmetric-order number and height, we use following algorithm to number the tree (v

is a vertex, h is the height of this vertex in B, and i is the number of the vertex).

number(v, h, i)

Step 1. Assign number i and height h to v

Step 2. If v has a left child w1, execute number(w1, h −1, i − 2
i+1

).

 Step 3. If v has a right child w2, execute number(w2, h −1, i + 2
i+1

)

It is easy to see that the procedure number(v, h, i) takes linear time and space.

 29

kg

l

j
i hc

d

f
e

b

a

Figure 16. Balanced binary tree corresponding to tree in Figure 14

After we find the nearest common ancestor v in B1, it is possible that v is not a

vertex in the original tree T. We need to trace the parent of v in B until we find a real

vertex in the T. Because B has a height of O(log n), therefore the run time per vertex is

O(log n), thus the run time for find NCAC for all vertices is O(n log n).

Algorithm to compute nearest common ancestor

To compute NCAT(v, w), we first compute the nearest common ancestor NCAC(v,

w) in C by using the balanced tree B. Recall that for each vertex v we have computed pT

(v), pC (v), apex(v), hp_size(v), dC(v) (the depth of v in C) and sizeC(v) (the size of v in C)

in the process of building the compressed tree C.

The algorithm is described as following.

Step 1: Compute NCAC(v, w)

 30

 1a compute NCAB (v, w)

 1b look up NCAC (v, w)

 Step 2: Look up the depth in C of NCAC(v, w), Compute NCAT (v, w)

Step 2 is composed of following procedures:

 2a. Let u ← NCAC (v, w). If (u = v or u = v), return u, otherwise lookup dc(u).

2b. Compute the ancestor v1 of v whose depth is dC(u)+1. If (apex(v1) = u),

 let v2 ← v, and otherwise let v2 ← pT(v1)

2c. Compute the ancestor w1 of w2 whose depth is dC(u)+1, if (apex(w1) = u),

 let w2 ← w1, and otherwise let w2 ← pT(w1)

Return whichever of v2, w2 has the larger value of hp_size

 It takes O(n log n) time and linear space to finish step 1 and it takes linear time

and space to finish step 2. Thus the time complexity for this algorithm is O(n log n) and

storage complexity for this algorithm is linear.

 31

CHAPTER 5

IMPLEMENTATION AND EXPERIMENT

We implemented this algorithm with C++. The input for the whole algorithm is a

given strong digraph G. Four classes are used in our program. The first is for finding

nearest common ancestor, the second is for finding the immediate dominators, the third is

for dealing with non-tree edges in G. The fourth is to deal with tree edges in G.

We tested the running time for randomly generated digraphs up to 1000 vertices.

We generated 20 digraphs for each number of vertices from 4 starter digraphs, and we

tested running time on the 20 digraphs and then took average.

The algorithm for generating digraph G1 (with N vertices) from starter MSD

digraph G:

1. Randomly choose two vertices until we find two vertices a and b which satisfy

two conditions: first, there is no edge (a, b), second if we add another vertex

between a and b, the resulted digraph is still MSD

 2. Let n be the umber of vertices of current digraph

 while n < N

 pick a random integer i < 10 ,

 if i+n < N then

 add i vertices between a, b.

 else

 add N −n vertices between a, b

 32

 endif

 endwhile

 We test the run time of finding whether a given strong digraph is MSD on the

generated digraph (see Table1. Figure 17).

We use the DFS tree of the generated graph to test the running time of finding

nearest common ancestor of two arbitrary vertices (see Table 2, Figure 18).

We use the same graph to test the running time of finding immediate dominators

(see Table 3, Figure 19).

The three algorithms are tested independently.

The algorithm can surely be implemented in linear time. Adam L. Buchsbaum

claimed a new simpler linear time dominator algorithm [7] which has been implemented

successfully. There is also a linear algorithm for finding nearest common ancestor [2] but

which is very hard to implement. Obviously if the linear time algorithms can be

implemented successfully, the performance of finding if a give strong digraph is MSD

for sufficient large digraph will be greatly improved.

 33

Table 1. Running time of MSD algorithm

 No. of vertices Seconds

20 0.301

40 0.353

60 0.364

80 0.388

100 0.415

200 0.476

300 0.518

400 0.560

500 0.602

600 0.659

700 0.707

800 0.758

900 0.795

1000 0.829

 34

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 500 1000 1500

Number of vertices

Ti
m

e
in

 s
ec

on
ds

Series1

Figure 17. Running time of MSD algorithm

 35

Table 2. Running time of NCA algorithm

 No. of vertices Seconds

20 0.171

40 0.192

60 0.198

80 0.178

100 0.201

200 0.210

300 0.221

400 0.235

500 0.241

600 0.298

700 0.325

800 0.343

900 0.356

1000 0.368

 36

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500

Number of vertiece

Ti
m

e
in

 s
ec

on
ds

Series1

Figure 18. Running time of NCA algorithm

 37

Table 3 Running time in Sec of the immediate dominators algorithm

 No. of vertices Seconds

20 0.013

40 0.014

60 0.016

80 0.017

100 0.019

200 0.022

300 0.020

400 0.025

500 0.026

600 0.032

700 0.036

800 0.039

900 0.042

1000 0.047

 38

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

0 500 1000 1500

Number of vertices

Ti
m

e
in

 s
ec

on
ds

Series1

Figure 19. Running time of the finding immediate dominators algorithm

 39

REFERENCES

[1] K. Simon. Finding a minimal transitive reduction in a strongly connected digraph

within linear time. Graph-theoretic Concepts in Computer Science Proceedings, 15th

International Workshop WG’ 89 Castle Rolduc, The Netherlands., 245-259, 1989.

[2] D. Harel and R.E. Tarjan. Fast algorithm for finding nearest common ancestor. SIAM

J. Comput., 13: 338-355, 1984.

[3] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thomrup. Dominators in linear time

SIAM J. Comput., 28: 2117-32, 1999.

[4] K. K. Bhogadi. Decomposition and generation of minimal strongly connected

digraphs. Master’s thesis, The University of Georgia, Athens, 1999.

[5] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph.

ACM Trans. Prog. Lang. Sys., 1: 121-41, 1979.

[6] M. L. Fredman. Two applications of a probabilistic search technique: sorting X+Y

and building balanced search trees. Proc. Seventeenth ACM Symposium on Theory of

Computing., 2: 240-244, 1975.

[7] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. A new

simpler linear-time dominator algorithm. AT&T Labs-Research., TR 97.31.2., 1998.

 40

http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP

