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Chapter 1

INTRODUCTION

Monte Carlo simulation of interacting electron models (in particular, the Hubbard models)

has been an active topic of investigation in computational physics since the 1970s.

The Hubbard model, named after John Hubbard, is used to describe magnetism and

superconductivity in strongly correlated electron systems. It was originally developed to

explain the metal-insulator transition in strongly correlated electronic materials, and has

subsequently been applied to the study of magnetism. Over the last 20 years, the two–

dimensional (2D) Hubbard model has been used as a “minimal” model to describe high–

temperature superconductors and has been applied extensively in that context.

Mathematically, it is very difficult to solve the Hubbard model. There are some reliable

numerical solution methods, including quantum Monte Carlo, exact diagonalization and den-

sity matrix renormalization (see [2]), but these methods are limited to only small 2D clusters

with typically fewer than 16 lattice sites. Recently, cluster mean–field embedding approaches

have been developed which allow small cluster calculations to be effectively extrapolated to

larger and even infinite lattice sizes (see [4],[5], [7] and [1]). The infinite limit, also referred

to as the thermodynamic limit, is the appropriate limit of the model to describe macroscopic

crystalline materials.

In this dissertation, we introduce a new determinant approach to these studies. Our

approach is derived from a Feynman diagram expansion for the so–called single particle

Green’s function of the Hubbard model. Green’s functions are mathematical objects of par-

ticular interest in the quantum theory of many-electron systems, since they model predictions
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which can be directly compared to the data obtained in real materials by the various exper-

imental probes. For example, the single-particle Green’s function can be used to predict

the results of photo-emission spectroscopy experiments. A similar determinant formalism

was recently derived by functional integral techniques (see [10]) and used for Monte Carlo

simulations of small 2D Hubbard model clusters. In the present work, we have developed a

determinant formalism for the extended Hubbard model and developed an alternative Monte

Carlo summation algorithm to evaluate the relevant determinant diagram sums. We have

tested it on small 2× 2 Hubbard clusters.

This dissertation is organized as follows. In Chapter 2, we review methods for the cal-

culation of determinants of general matrices. We describe Feynman diagram expansions in

chapter 3 and the extended Hubbard model on a 2D rectangular lattice in Chapter 4. In

Chapter 5 we detail our new method for Monte Carlo simulation of the extended Hubbard

model. Finally, we present the results of our tests in Chapter 6.



Chapter 2

CALCULATION OF DETERMINANTS

In this chapter, we will review preliminaries for determinants in §2.1, then introduce sev-

eral algorithms for calculating determinants of general matrices in §2.2 and compare these

algorithms in §2.3.

Throughout, n is a positive integer, ~x is a column vector with components x1, x2, . . . , xl,

~ek is the kth canonical vector

(

k−1
︷ ︸︸ ︷

0, . . . , 0, 1,

n−k
︷ ︸︸ ︷

0, . . . , 0)T ,

0n is the n × n zero matrix, In is the identity matrix of order n, A = (aij) is a real n × n

matrix, AT is the transpose of A, and A(i1 : i2, j1 : j2) is the submatrix

(aij : i1 ≤ i ≤ i2, j1 ≤ j ≤ j2)

of A. We will write i1 for i1 : i1 and : for 1 : n. For two subsets I = {i1, . . . , is} and

J = {j1, . . . , jt} of {1, . . . , n}, AI,J denotes the submatrix

(aij : i ∈ I, j ∈ J).

2.1 Preliminaries

2.1.1 Signs of permutations

Let Sn be the set of all permutations of the numbers {1, 2, . . . , n}. A permutation π ∈ Sn can

be produced by kπ exchanges of two elements (these exchanges are called transpositions), and

π is called an even permutation (or odd permutation, respectively) if kπ is an even number
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(or odd number, respectively). The sign of a permutation π is defined by

sgn(π) =

{
1 if π is an even permutation;

−1 otherwise.

From algebra, we know that π ∈ Sn can be uniquely written as a product of disjoint

cycles. If k is the number of these cycles (including 1-cycles), then we have

sgn(π) = (−1)n−k. (2.1)

2.1.2 Determinants

The determinant of a n× n matrix A = (aij), denoted by detA, is defined by

detA =
∑

π∈Sn

(
n∏

i=1

aiπ(i)

)

. (2.2)

The determinant has the following properties.

(1) If matrix B results from A by exchanging two rows or columns, then

detB = − detA. (2.3)

(2) If B results from A by multiplying one row or column with a constant c, then

detB = c detA. (2.4)

(3) If B results from A by adding a multiple of one row to another row, or a multiple of

one column to another column, then

detB = detA. (2.5)

(4) For any n× n matrix B, we have

det(AB) = detA · detB. (2.6)
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2.1.3 The Laplace expansion theorem

The determinant of A = (aij) can be expanded along a row i:

detA =
n∑

j=1

(−1)i+jaijBi,j, (2.7)

where the Bi,j is the determinant of the matrix that results from A by removing the i–th

row and the j–th column.

More generally, let I be a k–subset of {1, 2, . . . , n}, 1 ≤ k < n, then we have the Laplace

expansion theorem:

detA =
∑

J

(−1)s(I,J) · detAI,J · detAIc,Jc, (2.8)

where J goes through all k–subsets of {1, 2, . . . , n}, s(I, J) is the sum of numbers in I and

J , and Ic is the complement of I. In particular, if for aij = 0 for all i ∈ I and j /∈ I, then

detA = detAI,I · detAIc,Ic. (2.9)

Formula (2.9) is useful for our simulation.

2.1.4 Determinants of some special matrices

Now, we consider the determinants of some special matrices.

(1) Triangular matrix If A is an upper triangular matrix (i.e., aij = 0 for 1 ≤ j < i ≤

n) or lower triangular matrix (i.e., aij = 0 for 1 ≤ i < j ≤ n), then

detA =

n∏

i=1

aii. (2.10)

(2) Elementary matrices Let i, j ∈ N with i 6= j. An elementary transformation matrix

L(i, j, α) = (lkl) is the identity matrix with the correction

lij = α,

and an elementary permutation matrix E(i, j) is obtained by exchanging the ith row and

the jth row of In. Using L(i, j, α) to premultiply a matrix M will add αM(j, :) to the ith
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row of M , and using E(i, j) to premultiply M will exchange the ith row and the jth row of

M. It is clear that we have

det(L(i, j, α)) = 1, det(E(i, j)) = −1. (2.11)

(3) Orthogonal matrix A is an orthogonal matrix if AAT = In, where AT is the

transpose of A. It is clear that if A is orthogonal, then

detA = ±1. (2.12)

(4) Vandermonde matrix If

A =














1 1 1 · · · 1

x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n

· · · · · · · · · · · · · · ·

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n














where x1, . . . , xn are real numbers, then A is called a Vandermonde matrix, and

detA =

j
∏

i=2

i−1∏

j=1

(xi − xj). (2.13)

(5) Cauchy matrix If

A =










1
x1+y1

1
x1+y2

· · · 1
x1+yn

1
x2+y1

1
x2+y2

· · · 1
x2+yn

· · · · · · · · · · · ·
1

xn+y1

1
xn+y2

· · · 1
xn+yn










where x1, . . . , xn and y1, y2, . . . , yn are real numbers such that for each pair (i, j), xi +yj 6= 0,

then A is called a Cauchy matrix, and

detA =

∏j
i=2

∏i−1
j=1(xi − xj)(yi − yj)

∏n
i=1

∏n
j=1(xi + yj)

. (2.14)
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2.2 Determinants of arbitrary matrices

In general, we can calculate detA in the following way: First, write A in the form

A = LBR,

where B is an upper triangular matrix, and L and R are products of triangular or orthogonal

matrices. Then we have

detA = detL · detB · detR. (2.15)

The following algorithms are adapted from the algorithms that find the LU or QR fac-

torizations. The running time for each of the algorithms is determined by the number of

multiplications required by the algorithm.

2.2.1 Gaussian elimination with Partial Pivoting (GEP)

A Gaussian transformation is a matrix of the form

Mk = Im − ~τ~eT
k =

m∏

j=k+1

L(j, k,−τj),

where the first k components of ~τ are zeros. It is clear that Mk is lower triangular and

detMk = 1. The vector ~τ is called the Gauss vector and its nonzero components are called

multipliers.

Suppose ~x ∈ R
m with xk 6= 0. Let

~τT = (0, . . . , 0, τk+1, . . . , τm), τi =
xi

xk

, i = k + 1, . . . , m.

Then we have

Mk~x = (x1, . . . , xk, 0, . . . , 0)T . (2.16)

Hence, we can upper-triangularize A by applying a series of Gaussian transformations to A.

This method is called Gaussian elimination.

The following algorithm uses Gaussian elimination to upper-triangularize the n×n matrix

A.
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GEP(A, n)

1 sign← 1;

2 for i = 1 to n− 1 do

3 Determine t so that ait = max{aii, . . . , ani};

4 if t 6= i then

5 Exchange the tth row and the ith row of A, sign← −sign;

6 for j = i+ 1 to n do

7 aji ← aji

aii
;

8 A(j, i+ 1 : n) = A(j, i+ 1 : n)− ajiA(i, i+ 1 : n);

The Lines 3–5 are doing partial pivoting that guarantees that no multiplier is greater

than one in absolute value (large multipliers may cause large errors).

This algorithm requires at most 2
3
n3 multiplications, and can be used to compute the LU

factorization of a row permuted version of A ([3], pp.113-114).

2.2.2 Givens Rotation (GR)

A Givens rotation is a matrix G = G(i, k, θ) that is the identity matrix with corrections

gii = gkk = c, gik = s, gki = −s, c = cos(θ), s = sin(θ).

It is orthogonal with detG = 1. Premultipling a matrix A by G is equivalent to a counter-

clockwise rotation of θ radians in the (i, k) coordinate plane that affects just two rows of A.

By choosing the values of i, k and θ, we can zero selected elements in A, so we can upper

triangularize A by a series of Givens rotations.

Given scalars a and b, the following function computes a unit vector ~v = (c, s) such that

(
c s

−s c

)T ( a

b

)

=

(
r

0

)

. (2.17)

~v = givens(a, b)

1 if b = 0 then
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2 ~v ← (1, 0);

3 else

4 t← 1√
a2+b2

;

5 if |a| < |b| then ~v ← (−at, bt);

6 else ~v ← (at,−bt).

Now, the following algorithm uses Givens rotations to upper-triangularize the n × n

matrix A.

GR(A, n)

1 for j = 1 to n− 1 do

2 for i = j + 1 to n do

3 if aij 6= 0 then

4 ~v ← givens(ajj , aij)

5 ~x← v1A(j, j : n)− v2A(i, j : n);

6 A(i, j : n)← v1A(i, j : n) + v2A(j, j : n);

7 A(j, j : n)← ~x.

This algorithm requires at most 2n3 multiplications, and can be used to compute the QR

factorization of A([3],pp.226-227).

2.2.3 Householder Reflections (HR)

Let ~v ∈ R
m. An m×m matrix P of the form

P = Im − β~vT~v, β =
2

~vT~v

is called a Householder reflection. The vector ~v is called a Householder vector. If a vector ~x

is multiplied by P , then it is reflected in the hyperplane span {~v}⊥, and if we set

~v = ~x− ‖~x‖~e1,

where ‖~x‖ =
√

x2
1 + · · ·+ x2

m, then

P~x = ‖~x‖~e1. (2.18)



10

It is readily checked that P is orthogonal, so detP = ±1, and we have

detP = −1 ⇐⇒ β‖~v‖ > 1. (2.19)

Hence, we can compute detA by upper triangularizing A using a series of Householder

reflections.

The following function computes the normalized Householder vector ~v (i.e., v1 = 1) and

β for given ~x ∈ R
m.

[~v, β] = house(~x)

1 m← length(~x);

2 σ ← x(2 : m) · x(2 : m);

3 ~v ← x, v1 ← 1;

4 if σ = 0 then

5 β ← 0;

6 else

7 µ←
√

x2
1 + σ;

8 if x1 ≤ 0 then v1 ← x1 − µ;

9 else v1 ← − σ
x1+µ

;

10 β ← 2v2
1

σ+v2
1
; ~v ← ~v

v1
;

Now, the following algorithm uses Householder reflections to compute detA.

HR(A, n)

1 k ← n, sign← 1;

2 for i = 1 to n do

3 [~v, β]← house(A(i : n, i));

4 W ← Ik − β~v~vT ;

5 A(i : n, i : n)←WA(i : n, i : n);

6 if β~v · ~v > 1 then sign← −sign;

7 k ← k − 1;

8 detA← sign ·
∏n

i=1 aii.
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The algorithm HR requires at most 4
3
n3 multiplications, and can be also used to compute

the QR factorization of A ([3],pp.224-226).

2.2.4 Fast Givens Transformation(FGT)

There are two types of fast Givens transformations. The “type 1” transformation is a matrix

F1 = F1(i, k, α, β) that is the identity matrix with corrections

fik = fjk = 1, fii = β, fkk = α,

and the ‘type 2” transformation is a matrix F2 = F2(i, k, α, β) that is the identity matrix

with corrections

fik = α, fjk = β, fii = fkk = 1,

where α, β satisfy −1 ≤ αβ ≤ 0. It is clear that

detF1 < 0, and detF2 > 0.

From linear algebra (see [3], pp.219-221), applying a series of fast Givens transformations

to the matrix A, we can get a diagonal matrix

D = diag(d1, d2, . . . , dn)

with all di > 0, and an upper triangular matrix T = MTA = (Tij) where M is the product

of the fast Givens transformations, such that

Q = MD−1/2

is orthogonal, where

D−1/2 = diag(
1√
d1

,
1√
d2

, . . . ,
1√
dn

),

and if R = D1/2T where

D1/2 = diag(
√

d1,
√

d2, . . . ,
√

dn),
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then A = QR is the QR factorization of A. Note that

detQ =

{
1 if t is even;

−1 otherwise

where t is the number of fast Givens transformations used, so we have

detA = (−1)t

∏n
i=1 Tii
∏n

i=1 di
. (2.20)

Given ~x ∈ R
2 and positive ~d ∈ R

2, the following function computes a 2× 2 fast Givens

transformation M and its type, such that MT ~dM = diag(d1, d2).

[M, type] = fastgivens(~x, ~d)

1 if x2 = 0 then

2 M ← I2, type← 1;

3 else

4 α← −x1

x2
; β ← −αd2

d1
; γ ← −αβ;

5 if γ > 1 then

6 type← 1; ~d← (1 + 1
γ
)~d;

7 M ← I2; t12 ← 1
α
; t21 ← 1

β
;

8 else

9 type← −1; y ← d1;

10 t11 ← β; t22 ← α; t12 ← 1; t21 ← 1;

11 d1 ← (1 + γ)d2; d2 ← (1 + γ)y.

Now, the following algorithm computes detA by using fast Givens transformations (A is

overwritten by T ).

FGT(A, n)

1 sign← 1; ~d← (1, . . . , 1);

2 for j = 1 to n− 1 do

3 for i = n downto j + 1 do

4 if aij 6= 0 then

5 [M, type]← fastgivens(A(i − 1 : i, j), d(i− 1 : i));
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6 if type = −1 then sign = −sign;

7 A(i− 1 : i, j : n)←MA(i − 1 : i, j : n);

8 detA← sign ·
Qn

i=1 A(i,i)√
Qn

i=1 d(i)

The algorithm requires at most 4
3
n3 multiplications.

Each of the four algorithms requires 0(n3) multiplications. However, the running times

of these algorithms differ systematically and significantly from each other. This is discussed

in the next section.

2.3 Comparisons of the algorithms

To determine the most efficient and accurate of the algorithms in §1.2, we have performed

several experiments. The programs were written in FORTRAN90 based on these algorithms,

and were run on the machine origin.rcr.uga.edu. In the experiments, we used Vandermonde

matrices and Cauchy matrices since the true values of determinants of these matrices can be

easily computed by (2.13) and (2.14).

Throughout this section, T1, T2, T3, T4 and E1, E2, E3, E4 denote the CPU times and rel-

ative errors of GEP, GR, HR and FGT, respectively.

2.3.1 Experiment 1

In Experiment 1, we compute determinants of Vandermonde matrices with {x1, . . . , xn} taken

to be the first n numbers of the randomly generated sequence

{2.87076397, 2.62174494, 0.46096613, 1.79393912, 1.73782442, 2.40223898

3.06015478, 0.96327602, 2.09695352, 1.16681509, 0.52530896, 0.38936178

3.89913013, 1.72542264, 0.00551535, 2.09386799, 0.27771812, 0.00571990}

The results are in Table 2.1 and 2.2.
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Table 2.1: CPU time in Experiment 1.

n T1 (ms) T2/T1 T3/T1 T4/T1

10 0.018 2.22 9.33 11.5
12 0.026 2.31 8.96 12.2
14 0.038 2.26 8.21 12.0
16 0.053 2.25 7.60 11.8
18 0.072 2.22 7.10 11.8

Table 2.2: Relative errors in Experiment 1.

n E1 E2/E1 E3/E1 E4/E1

10 5.0× 10−10 1.15 1.37 0.83
12 1.1× 10−9 1.29 2.90 1.36
14 2.31× 10−7 3.87 0.72 5.22
16 1.16× 10−5 1.56 4.47 13.7
18 1.16× 10−5 3.98 6.98 13.5

2.3.2 Experiment 2

In Experiment 2, we compute determinants of Vandermonde matrices with with xi = i
5
. The

results are in Table 2.3 and 2.4.

2.3.3 Experiment 3

In Experiment 3, we compute determinants of Cauchy matrices with {x1, . . . , xn} taken to

be the first n numbers of the randomly generated sequence

{ 0.07176910, 0.06554362, 0.01152415, 0.04484848, 0.04344561

0.06005598, 0.07650387, 0.02408190, 0.05242384, 0.02917038}
and {y1, . . . , yn} be the first n numbers of the randomly generated sequence

{ 0.09747825, 0.04313557, 0.00013788, 0.05234670, 0.00694295

0.00014300, 0.07939814, 0.08336780, 0.07268485, 0.06766319}
The results are in Table 2.5 and 2.6.
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Table 2.3: CPU time in Experiment 2.

n T1 (ms) T2/T1 T3/T1 T4/T1

10 0.018 2.17 9.22 11.7
12 0.026 2.35 8.73 12.3
14 0.037 2.35 8.19 12.5
16 0.053 2.31 7.58 12.2
18 0.071 2.25 7.14 11.8

Table 2.4: Relative errors in Experiment 2.

n E1 E2/E1 E3/E1 E4/E1

10 2.37× 10−11 2.96 11.5 14.3
12 6.94× 10−10 2.62 4.61 14.4
14 1.59× 10−6 0.08 0.08 2.50
16 1.42× 10−4 0.61 0.67 2.25
18 6.25× 10−2 0.01 0.11 0.02

2.3.4 Experiment 4

In this Experiment, we compute determinants of Cauchy matrices with xi = i
10

and yi = i
5
,

and the results are in Table 2.7 and 2.8.

2.3.5 Conclusion

The data in Tables 2.1 to 2.8 show that among the algorithms given in §2.2, GEP is the

most efficient, and, in most cases, the most accurate. So in terms of efficiency and accuracy,

GEP is a good algorithm for evaluating determinants. However, when GEP produced large

errors, GR may be a good alternative method. HR and FGT have their advantages when

finding QR factorizations, but they are not as good for evaluating determinants.

We used GEP to calculate determinants in our simulations.
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Table 2.5: CPU time in Experiment 3.

n T1 (ms) T2/T1 T3/T1 T4/T1

6 0.008 1.75 10.6 8.5
7 0.008 2.38 13.1 11.8
8 0.012 2.00 10.5 10.3
9 0.014 2.29 10.8 11.6
10 0.016 2.50 10.9 13.0

Table 2.6: Relative errors in Experiment 3.

n E1 E2/E1 E3/E1 E4/E1

6 2.40× 10−8 1.50 2.87 1.06
7 7.82× 10−8 2.68 11.9 3.76
8 8.37× 10−7 1.00 0.02 1.11
9 7.09× 10−5 2.84 1.27 1.56
10 1.55× 10−3 5.31 2.54 2.87

Table 2.7: CPU time in Experiment 4.

n T1 (ms) T2/T1 T3/T1 T4/T1

6 0.007 2.00 11.7 9.7
7 0.009 2.11 11.4 10.6
8 0.011 2.27 12.2 11.5
9 0.014 2.21 10.7 11.6
10 0.018 2.22 9.78 11.6

Table 2.8: Relative errors in Experiment 4.

n E1 E2/E1 E3/E1 E4/E1

6 8.70× 10−11 0.08 6.54 12.5
7 9.50× 10−9 2.33 2.07 2.72
8 2.98× 10−7 2.37 0.56 3.69
9 8.53× 10−7 7.32 17.9 14.0
10 1.51× 10−6 1.99 3.86 2.52



Chapter 3

FEYNMAN DIAGRAM EXPANSIONS

A Feynman diagram is a tool invented by Richard Feynman for performing scattering calcu-

lations in quantum field theory. To simulate an electron system, we need to expand it to a

series of Feynman diagrams. In this chapter, we describe the elements of Feynman diagrams

for general 1–electron spaces in §3.1, then introduce the Feynman diagram series §3.2 and

calculation of them in §3.3. Finally, we discuss the m–electron Green’s function in §3.4 and

the integral padding functions in §3.5.

Throughout, E denotes the (general) 1–electron space, T ∈ (0,∞) is the temperature,

βT = 1
T

is the inverse temperature, and the interval [0, βT ] is called the imaginary–time

interval.

3.1 Elements of Feynman diagrams for 1–electron spaces

There are two kinds of elements of Feynman diagrams for E : fermions and bosons. The order

of a Feynman diagram is the number of bosons in it. A vertex that incidents with a boson

is called an internal vertex and denoted by •. A diagram of order n has exactly 2n internal

vertices that labeled by 1, 2, . . . , 2n, and we will identify a vertex with its label.

3.1.1 Fermions

A fermion (or g–line) is a directed edge denoted by

•ατ ᾱτ̄
oo •

or

g(α, τ |ᾱ, τ̄)

17
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Where α, ᾱ ∈ E and τ, τ̄ ∈ [0, βT ].

3.1.2 Bosons

A boson (or interaction, or V –line) stands for an instantaneous interaction. and is denoted

by

•αiτi

oo
ᾱiτ̄j

oo

�O
�O
�O
�O

•αjτj
oo

ᾱj τ̄j
oo

or

V (ᾱj , ᾱi|αi, αj)δ(τj − τi)δ(τ̄j − τ̄i)δ(τj − τ̄i),

where i, j are two vertices, αi, αj , ᾱi, ᾱj ∈ E , τi, τj, τ̄i, τ̄i ∈ [0, βT ]), and δ is the Dirac δ–

function defined by

δ(x) =

{
0 if x 6= 0;

∞ if x = 0.

3.2 The Feynman diagram series

In this section, we will describe the Feynman diagrams and the Feynman diagram series for

m–electron systems.

3.2.1 The Feynman diagrams

Each internal vertex in a diagram has exactly 1 incident boson, 1 incoming fermion and 1

outgoing fermion. We will assume that the k–th boson connects vertices 2k − 1 and 2k.

In the case m = 0, all vertices are internal vertices, the fermions of a diagram F of order

n determine a permutation πF ∈ S2n on its vertices, and the closed fermion loops form a

cycle decomposition of πF . Then

sgn(πF ) = (−1)k (3.1)

by (2.1), where k is the number of closed fermion loops in F .

More generally, let m ≥ 0; for each electron in the m–electron system, an exterior vertex

(denoted by a pair of ⊗s) with an outgoing fermion and an incoming fermion is included in
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the diagram. The fermions in a diagram F of order n determine a permutation πF ∈ S2n+m

on the vertices, and the closed fermion loops form a cycle decomposition of πF . Then by

(2.1), we have

sgn(πF ) = (−1)k+m (3.2)

where k is the number of closed fermion loops in F

The Feynman diagram series for m–electron systems

Rm(β1, . . . , βm|β̄1, . . . , β̄m, θ1, . . . , θm|θ̄1, . . . , θ̄m)

is the sum of all Feynman diagrams for m–electron systems, where βi, β̄i ∈ E and θi, θ̄i ∈

[0, βT ]. As examples, we give more details for m = 0 and m = 1.

3.2.2 The series R0

Let Rn
0 be the series of Feynman diagrams of order n for 0–electron system, αi, ᾱi ∈ E and

τi, τ̄i ∈ [0, βT ]. Then we have

R0 =

∞∑

n=1

Rn
0 ,

where R0
0 = 1, and

R1
0 = •α1τ1 ᾱ2τ̄2oo

''/o/o/o/o/o/o

ᾱ1τ̄1 α2τ2//
77• + •ᾱ1τ̄1

α1τ1
�� ?? /o/o/o/o/o/o •

ᾱ2τ̄2

α2τ2 OO��

.

3.2.3 The series R1(β|β̄, θ|θ̄)

Let Rn
1 be the series of Feynman diagrams of order n for 1–electron systems, αi, ᾱi ∈ E and

τi, τ̄i ∈ [0, βT ]. Then we have

R1(β|β̄, θ|θ̄) =
∞∑

n=1

Rn
1 ,

where

R0
1 =⊗

β,θ β̄,θ̄
oo ⊗
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and

•
ᾱ2τ̄2 α2τ2

//

��

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

R1
1 = ⊗

β,θ ᾱ2,τ̄2
oo •α2τ2 ᾱ1τ̄1

oo ##•α1τ1 β̄,θ̄
oo ⊗ +

⊗
β,θ ᾱ1,τ̄1

oo •α1τ1 β̄θ̄
oo ⊗

•α1τ1 ᾱ2τ̄2oo
))/o/o/o/o/o/o/o/o

ᾱ1τ̄1 α2τ2//
55• •ᾱ1τ̄1

α1τ1
�� ?? /o/o/o/o/o/o/o/o/o •

ᾱ2τ̄2

α2τ2 OO��

+ +

⊗
β,θ β̄,θ̄

oo ⊗ ⊗
β,θ β̄,θ̄

oo ⊗

.

3.3 Calculation of Feynman diagram series

In this section, we will discuss the calculation of Feynman diagram series for m–electron

systems.

3.3.1 Compact notation

In the remainder of this dissertation, we will use the following compact notation.

Given α̂ = (α1, . . . , α2n, ᾱ1, . . . , ᾱ2n) ∈ E 4n and β̂ = (β1, . . . , βm, β̄1, . . . , β̄m) ∈ E 2m, let

V (n, α̂) :=







n∏

k=1

V (ᾱk, ᾱk+n|αk+n, αk) if n > 0;

1 if n = 0.

and

γ̂ := α̂⊕ β̂ := (α1, . . . , α2n, β1, . . . , βm, ᾱ1, . . . , ᾱ2n, β̄1, . . . , β̄m) ∈ E
2(2n+m)

Given τ̂ = (τ1, . . . , τn, τ̄1, . . . , τ̄n) ∈ [0, βT ]4n with

τk+n = τk, τ̄j = τj , 1 ≤ k ≤ n, 1 ≤ j ≤ 2n,
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and given θ̂ = (θ1, . . . , θm, θ̄1, . . . , θ̄m) ∈ [0, βT ]2m), let

ϕ̂ := τ̂ ⊕ θ̂ := (τ1, . . . , τ2n, θ1, . . . , θm, τ̄1, . . . , τ̄2n, θ̄1, . . . , θ̄m) ∈ [0, βT ]2(2n+m)

Let α̂, τ̂ , γ̂ and ϕ̂ as above. For i, j ∈ {1, . . . , 2n}, let

gα̂τ̂ (i, j) = g(αi, τj|ᾱi, τ̄j),

and for i, j ∈ {1, . . . , 2n+m}, let

gγ̂ϕ̂(i, j) = g(γi, ϕj|γ̄i, ϕ̄j).

Then we define matrices

ĝα̂τ̂ := (gα̂τ̂ (i, j))1≤i,j≤2n

and

ĝγ̂ϕ̂ := (gγ̂ϕ̂(i, j))1≤i,j≤2n+m .

3.3.2 Feynman rules for E

To calculate diagrams for E , we have the following rules that are called Feynman rules.

(1) Each fermion gives a factor g.

(2) Each boson gives a factor V .

(3) At each internal vertex

•
ᾱτ̄

oo
ατ

oo

�O
�O
�O

sum over α, ᾱ:
∑

α∈E

∑

ᾱ∈E

· · ·

and integrate over τ, τ̄ :
∫ βT

0

dτ

∫ βT

0

dτ̄ · · ·

(4) For each diagram F for m-electron system, multiply by the prefactor

(−1)n

2nn!
(−1)m+NL =

(−1)n

2nn!
sgn(πF ),



22

where NL is the number of closed fermion loops in F , n is the order of F and πF ∈ S2n+m is

the permutation determined by F .

3.3.3 Calculation of Feynman diagram series

For each n ≥ 0, let

α1, . . . , α2n, ᾱ1, . . . , ᾱ2n ∈ E ,

and

τ1, . . . , τ2n, τ̄1, . . . , τ̄2n ∈ [0, βT ]

with

τ̄j = τj , τk+n = τk, 1 ≤ j ≤ 2n, 1 ≤ k ≤ n.

Then, applying Feynman rules to the series R0, we have

R0

∞∑

n=0

(−1)n

2nn!

∑

α1...α2n

∑

ᾱ1...ᾱ2n

n∏

k=1

V (ᾱk, ᾱk+n|αk+n, αk)

×
∫ βT

0
dτ1 · · ·

∫ βT

0
dτn

∑

π∈S2n

sgn(π)
2n∏

j=1

g(απ(j), τπ(j)|ᾱj, τ̄j)

Rewriting in the compact notation, we have

R0 =

∞∑

n=0

∑

α̂∈E 4n

∫ βT

0

dτ1 · · ·
∫ βT

0

dτn
(−1)n

2nn!
V (n, α̂) det (ĝα̂τ̂ ) . (3.3)

Note that det (ĝα̂τ̂ ) = 1 for n = 0.

Similarly, given β̂ = (β, β̄) ∈ E 2 and θ̂ = (θ, θ̄) ∈ [0, βT ]2, then we have

R1(β̂, θ̂) =

∞∑

n=0

∑

α̂∈E 4n

∫ βT

0

dτ1 · · ·
∫ βT

0

dτn
(−1)n

2nn!
V (n, α̂) det

(

ĝα̂⊕β̂,τ̂⊕θ̂

)

. (3.4)

More generally, given

β̂ = (β1, . . . , βm, β̄1, . . . , β̄m) ∈ E
m, θ̂ = (θ1, . . . , θm, θ̄1, . . . , θ̄m) ∈ [0, βT ]m

we have

Rm(β̂, θ̂) =
∞∑

n=0

∑

α̂∈E 4n

∫ βT

0

dτ1 · · ·
∫ βT

0

dτn
(−1)n

2nn!
V (n, α̂) det

(

ĝα̂⊕β̂,τ̂⊕θ̂

)

. (3.5)
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3.4 The m–electron Green’s function

The m–electron Green’s Function Gm on E 2m × [0, βT ]2m is defined by

Gm(β̂, θ̂) =
1

R0

Rm(β̂, θ̂).

This function is what we want to calculate by Monte Carlo simulation.

Note that the fermion g can be viewed as a function on E 2 × [0, βT ]2, and is called

1–electron Green’s function. We will give some important properties of g below, and these

properties also hold for the function Gm.

(1) Anti-periodicity : for an integer l, we have

g(α, τ |ᾱ, τ̄ + lβT ) = (−1)lg(α, τ |ᾱ, τ̄)

and

g(α, τ + lβT |ᾱτ̄ ) = (−1)lg(α, τ |ᾱ, τ̄ ).

(2) Time translation invariance: for a real number δ, we have

g(α, τ + δ|ᾱ, τ̄ + δ) = g(α, τ |ᾱ, τ̄).

In particular, setting δ = −τ̄ , we have

g(α, τ − τ̄ |ᾱ, 0) = g(α, τ |ᾱ, τ̄).

Hence we can write

g(α, τ |ᾱ, τ̄) ≡ g(α|ᾱ, τ − τ̄ ).

(3) Jump discontinuity : Let τg = τ − τ̄ . Then the function g(α|ᾱ, τg) is continuous (actu-

ally, holomorphic) for τg ∈ (0, βT ), but it has jump discontinuities (assume orthonormal

1–electron basis states “|α”) at τg = lβT , where l is an integer. In particular, at τg = 0, we

have

lim
τg→0+

g(α|ᾱ, τg)− lim
τg→0−

g(α|ᾱ, τg) = δα,ᾱ.

Here δ is the Kronecker δ, defined by

δij =

{
1 if i = j,

0 otherwise.
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3.5 Integral padding functions

Given a positive integer N , let n ∈ {0, . . . , N}, p = N − n and ψ̃ = (ψ, . . . , ψp) ∈ [0, βT ]p.

Then, the integral padding function (for short, padding function) is defined by

Qp(ψ̃) =







p
∏

l=1

gl(ψl) if p > 0,

1 if p = 0.

(3.6)

Here for each l ∈ {1, . . . , p}, gl is a non–negative real function such that

∫ βT

0

gl(ψl)dψl = 1. (3.7)

It is readily seen that
∫ βT

0

dψ1 · · ·
∫ βT

0

dψp Qp(ψ̃) = 1. (3.8)

Let α̂, τ̂ , β̂ and θ̂ be as in (3.4). Recall that τ̂ = (τ1, . . . , τn, τ̄1, . . . , τ̄n) ∈ [0, βT ]4n with

τk+n = τk, τ̄j = τj , 1 ≤ k ≤ n, 1 ≤ j ≤ 2n.

Now, let

τ̃ := (τ1, . . . , τn) ∈ [0, βT ]n

and

τ̃ ⊕ ψ̃ := (τ1, . . . , τn, ψ1, . . . , ψN−n) ∈ [0, βT ]N .

Then we define

Fm(β̂, θ̂, n, α̂, τ̂ , ψ̃) :=
(−1)n

2nn!
V (n, α̂) det

(

ĝβ̂⊕β̂,τ̂⊕θ̂

)

QN−n(ψ̃).

In particular, if m = 0, we write

F0(n, α̂, τ̂ , ψ̃) =
(−1)n

2nn!
V (n, α̂) det

(

ĝβ̂,τ̂

)

QN−n(ψ̃).

Then the m–electron Green’s function can be rewritten as

Gm(β̂, θ̂) = lim
N→∞

N∑

n=0

∑

α̂∈E 4n

∫

[0,βT ]N
dN(τ̃ ⊕ ψ̃)Fm(β̂, θ̂, n, α̂, τ̂ , ψ̃)

N∑

n=0

∑

α̂∈E 4n

∫

[0,βT ]N
dN(τ̃ ⊕ ψ̃)F0(n, α̂, τ̂ , ψ̃)

. (3.8)



Chapter 4

EXTENDED HUBBARD MODEL (EHM)

The Hubbard model, is the simplest model of interacting particles in a lattice. If interactions

between particles on different sites of the lattice are included, the model is often referred as

the extended Hubbard model.

In this chapter, we introduce an extended Hubbard model (for short, EHM) on a 2–

dimensional rectangular lattice that can be used to describe strongly interacting electrons

in 3–dimensional transition metal compounds, such as high temperature superconductors.

We will describe the 2–dimensional real space lattice L and 1–electron space on it in §4.1

and discuss the interaction potential function V for EHM on L in §4.2. Then, we define the

~k–space and reciprocal lattice of L in §4.3. Finally, we will discuss the 1–electron Green’s

function g and m–electron Green’s function for EHM in real space representations in §4.4

and §4.5, respectively.

4.1 The lattice L and 1–electron space

Given two positive integers Lx and Ly, a 2-dimensional rectangle lattice L of size

|L | = Lx · Ly

is defined by

L := {~r = (rx, ry) | rx ∈ {0, . . . , Lx − 1}, ry ∈ {0, . . . , Ly − 1}}.

The following periodic boundary condition (PBC) holds for any ~r1, ~r2 ∈ L :

~r1 ⊕ ~r2 = ((r1x + r2x) mod(Lx), (r1y + r2y) mod(Ly)) . (4.1)

25
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Now, let the spin space S be defined by

S := {1
2
,−1

2
}.

Then the 1–electron space E is defined by

E := L ×S = {α = (~r, s) | ~r ∈ L , s ∈ S }.

4.2 Interaction potential function V

In this section, we will discuss the interaction potential function V and its properties.

4.2.1 Definition

Suppose that αl = (~rl, sl) ∈ E , l = 1, . . . , 4. Then the interaction potential function is given

by

α2 • oooo

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O α3

V (α1, α2|α3, α4) ≡ = Vc(∆~r)δ~r1~r4δ~r2~r3δs1s4δs2s3,

α1 • oooo α4

where Vc(∆~r) is called the Coulomb potential function, and δ is the Kronecker δ. We may

write V (~r1, s1, ~r2, s2|~r3, s3, ~r4, s4) for V (α1, α2|α3, α4).

Note that comparing this to the definition of boson in § 3.1.2, τ–labels and the Dirac δ

for τ ’s are removed, and spins and the Kronecker δ for spins are added.

4.2.2 The simplest EHM for Vc

Let ~Rx := (Lx, 0) and ~Ry := (0, Ly) (called lattice size vectors) and

L∞ := {~r = (rx, ry) | rx ∈ Z, ry ∈ Z}.

Then the norm of ∆~r = ~r1 − ~r2 ∈ L∞ is defined by

|∆~r|L := min
(nx,ny)∈Z2

|∆~r − nx
~Rx − ny

~Ry|.
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Here the norm

|~a| =
√

a2
x + a2

y, ~a = (ax, ay) ∈ Z
2

is the Euclidean distance.

Now, let V0 be the Hubbard on–site repulsion energy, V1 the first neighbor repulsion energy

and Rc the Coulomb cut–off radius. Then the Coulomb potential function Vc is defined by

Vc(∆~r) =

{
V0 if |∆~r|L = 0;

V1
θc(Rc−|∆~r|L )

|∆~r|L otherwise.
(4.2)

Here

θc(x) =

{
1 if x ≥ 0,

0 otherwise

is the step function.

4.2.3 LTI and PBC for function V

Let ~r1, . . . , ~r4 ∈ L and s1, . . . , s4 ∈ S . The function V has the following lattice translation

invariance property (LTI): for ~r0 ∈ L∞, we have

V (~r1, s1, ~r2, s2|~r3, s3, ~r4, s4) = V (~r1 − ~r0, s1, ~r2 − ~r0, s2|~r3 − ~r0, s3, ~r4 − ~r0, s4)

= Vc(~r1 − ~r2)δ~r1~r4δs1s4δ~r2~r3δs2s3

(4.3)

The PBC also holds for V : let lx, ly ∈ Z and let ~R := lx ~Rx + ly ~Ry, then

V (~r1, s1, ~r2, s2|~r3, s3, ~r4, s4) = (~r1 + ~R, s1, ~r2, s2|~r3, s3, ~r4, s4)

= V (~r1, s1, ~r2 + ~R, s2|~r3, s3, ~r4, s4)

= V (~r1, s1, ~r2, s2|~r3 + ~R, s3, ~r4, s4)

= V (~r1 + ~R, s1, ~r2, s2|~r3, s3, ~r4, s4)

(4.4)

since Vc(∆~r +R) = Vc(∆~r).

4.3 The ~k–space and reciprocal lattice of L

In this section, we will define the ~k–space and reciprocal lattice of L
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4.3.1 The ~k–space of L

The ~k–space KL∞
of L is defined by

KL∞
:= {~k = (

2πmx

Lx

,
2πmy

Ly

) | (mx, my) ∈ Z
2}

and the ~k–zone KL of L is defined by

KL := {~k = (
2πmx

Lx
,
2πmy

Ly
) | (mx, my) ∈ L }.

Let RL be the PB vector space defined by

RL := {~R = (lxLx, lyLy) ≡ lx ~Rx + ly ~Ry | (lx, ly) ∈ Z
2};

then we have
~k ∈ KL∞

⇐⇒ ~k • ~R ∈ {2πj | j ∈ Z}, ∀~R ∈ RL

⇐⇒ ei~k•~R = 1, ∀~R ∈ RL .
(4.5)

Here “•” is the dot (or inner) product of vectors.

4.3.2 The reciprocal lattice of L

The reciprocal lattice QL of L is defined by

QL := { ~K = (2πmx, 2πmy) | (mx, my) ∈ Z
2}.

It is readily seen that

~K ∈ QL ⇐⇒ ~r • ~K ∈ {2πj | j ∈ Z}, ∀~r ∈ L∞

⇐⇒ ei~r• ~K = 1, ∀~r ∈ L∞

(4.6)

4.4 The 1–electron Green’s function g

Through this section, i denotes an imaginary unit (that is, i2 = −1).
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4.4.1 Energy band

Let tl (l = 1, 2, 3) be the l–th neighbor hopping (or hybridization) energy and µ be the

chemical potential. Then the energy band E~k of ~k = (kx, ky) ∈ KL∞
is defined by

E~k := −2t1(cos kx + cos ky)− 4t2 cos kx cos ky − 2t3 (cos(2kx) + cos(2ky))− µ.

The following LTI property for E~k holds:

E~k+ ~K = E~k, ∀~k ∈ KL∞
, ∀ ~K ∈ QL (4.7)

4.4.2 The Fourier sum over Matsubara frequencies

Let F be the set of Matsubara frequencies defined by

F := {iν | ν = (2m+ 1)πT,m ∈ Z}

and let

˜̃g0(
~k, iν) :=

1

iν − E~k
, iν ∈ F , ~k ∈ KL∞

.

Then, the Fourier sum over Matsubara frequencies

g̃0(~k,∆τ) := T
∑

iν∈F

˜̃g0(
~k, iν)e−iν∆τ (4.8)

can be evaluated analytically by complex contour integration. This yields

g̃0(~k,∆τ) = eE~k
∆τ [f(E~k)− θc(∆τ)] (4.9)

and

g̃0(~k,∆τ + lβT ) = (−1)lg̃0(~k,∆τ) (4.10)

for

−βT < ∆τ < βT , l ∈ Z.

Where

θc(x) =

{
1 if x ≥ 0;

0 if x < 0.
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and f is the Fermi function defined by

f(E) :=
1

eβT E + 1
.

By (4.7) and (4.9), the LTI property for g̃0 holds:

g̃0(~k + ~K,∆τ) = g̃0(~k,∆τ) (4.11)

4.4.3 The function g

For α1 = (~r1, s1) ∈ E , α2 = (~r2, s2) ∈ E and τ1, τ2 ∈ [0, βT ], the 1–electron Green’s function

g is defined by

g(α1, τ1|α2, τ2) ≡ g(~r1, s1|~r1, s1, r1 − r2) := δs1s2

T

|L|
∑

~k∈KL

∑

iν∈F

˜̃g0(~k, iν)e
i~k•∆~r−iν∆τ

Let

g0(∆~r,∆τ) :=
1

|L|
∑

~k∈KL

g̃0(~k,∆τ)e
i~k•∆~r; (4.12)

then we have

g(~r1, s1|~r1, s1, r1 − r2) = δs1s2g0(∆~r,∆τ). (4.13)

Note that in the sum on the right side of (4.11), the conjugate of each summand is also a

summand, so the sum is a real number.

Both LTI and PBC hold for the function g. That is, for ~r1, ~r2 ∈ L , ~r0 ∈ L∞ and ~R ∈ RL ,

we have

g(~r1, s1|~r1, s1,∆τ) = g(~r1 − ~r0, s1|~r1 − ~r0, s1,∆τ) (4.14)

and

g(~r1, s1|~r1, s1,∆τ) = g(~r1 + ~R, s1|~r1, s1,∆τ) = g(~r1, s1|~r1 + ~R, s1,∆τ) (4.15)

4.5 The m–electron Green’s function Gm for EHM

We now turn to the m–electron Green’s function Gm (m ≥ 0) for EHM in the real space

representation.
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4.5.1 Notation

Let n,N be integers with 0 ≤ n ≤ N .

Let the external vertices be denoted by

β̂ := (r̂(β), ŝ(β)),

where

r̂(β) := (~r
(β)
1 , . . . , ~r(β)

m |~̄r
(β)
1 , . . . , ~̄r

(β)
m ) ∈ L

2m

and

ŝ(β) := (s
(β)
1 , . . . , s(β)

m |s̄
(β)
1 , . . . , s̄(β)

m ) ∈ S
2m.

Given r̃ = (~r1, . . . , ~r2n) ∈ L 2n, let

r̂ := (~r1, . . . , ~r2n|~̄r1, . . . , ~̄r2n) ∈ L
4n

and

r̂(g) := r̂ ⊕ r̂(β) = (~r1, . . . , ~r2n, ~r
(β)
1 , . . . , ~r(β)

m |~̄r1, . . . , ~̄r2n, ~̄r
(β)
1 , . . . , ~̄r

(β)
m ) ∈ L

2(2n+m)

where ~̄rj = ~rj for j = 1, . . . , 2n.

Given s̃ = (s1, . . . , s2n) ∈ S 2n, let

ŝ := (s1, . . . , s2n|s̄1, . . . , s̄2n ∈ S
4n)

and

ŝ(g) := ŝ⊕ ŝ(β) = (s1, . . . , s2n, s
(β)
1 , . . . , s(β)

m |s̄1, . . . , s̄2n, s̄
(β)
1 , . . . , s̄(β)

m ) ∈ S
2(2n+m)

with s̄j = sj for j = 1, . . . , 2n.

Given τ̃ := (τ1, . . . , τn) ∈ [0, βT ]n and

θ̂ := (θ1, . . . , θm|θ̄1, . . . , θ̄m) ∈ [0, βT ]2m,

let

τ̂ := (τ1, . . . , τ2n|τ̄1, . . . , τ̄2n) = τ̃ ⊕ τ̃ ⊕ τ̃ ⊕ τ̃ ∈ [0, βT ]4n
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and

τ (g) := τ̂ ⊕ θ̂ = (τ1, . . . , τ2n, θ1, . . . , θm|τ̄1, . . . , τ̄2n, θ̄1, . . . , θ̄m) ∈ [0, βT ]2(2n+m).

with τk+n = τk, 1 ≤ k ≤ n and τ̄j = τj , 1 ≤ j ≤ 2n.

Let

α̂ = (α1, . . . , α2n, ᾱ1, . . . , ᾱ2n) ∈ E
4n

with

αj = (~rj, sj), ᾱj = (~̄rj, s̄j), 1 ≤ j ≤ 2n.

4.5.2 The function Gm

Given ψ̃ := (ψ1, . . . , ψN−n) ∈ [0, βT ]N−n, let

Fm(r̂(β), s(β), θ̂, n, r̃, s̃, τ̃ , ψ̃) ≡ Fm(β̂, θ̂, n, α̂, τ̂ , ψ̃)

= (−1)n

2nn!
(
∏n

k=1 Vc(~rk+n − ~rk)) det ĝ~r(g),s(g),τ̂ (g)QN−n(ψ̃)

(4.16)

where the Coulomb potential function Vc is given in (4.2), the padding function QN−n is

given in (3.6), and

ĝ~r(g),s(g),τ̂ (g) :=
[

g(~r
(g)
i , s

(g)
i |~̄r

(g)
j , s

(g)
j , τ

(g)
i − τ

(g)
j )
]

1≤i,j≤2n+m
(4.17)

is a (2n+m)× (2n+m) matrix. Then the m–electron diagram series is given by

Rm(r̂(β), s(β), θ̂) = lim
N→∞

N∑

n=0

∑

r̃∈L 2n

∑

s̃∈S 2n

∫

[0,βT ]n
dnτ̃

∫

[0,βT ]N−n

dN−nψ̃Fm(β̂, θ̂, n, α̂, τ̂ , ψ̃).

(4.18)

Now, the m–electron Green’s function is defined by

Gm(r̂(β), s(β), θ̂) :=
Rm(r̂(β), s(β), θ̂)

R0

. (4.19)



Chapter 5

MONTE CARLO EVALUATION OF EHM

In this chapter, we will discuss the Monte Carlo evaluation of the extended Hubbard model

defined in Chapter 4. We first discuss the Monte Carlo simulation of EHM in §4.1. Then, we

discuss the Metropolis Markov Chain Monte Carlo method in $5.2 and MC move types in

§5.3.

5.1 Monte Carlo simulation of EHM

Let n,N ∈ N with 0 ≤ n ≤ N , α̃ = (α1, . . . , αn) ∈ E 2n and α̂ = α̃⊕ α̃ ∈ E 4n. Let τ̃ , τ̂ , ψ̃, β̂

and θ̂ be as in §4.5. Then we define the domain to be the set of all tuples (n, α̃, τ̃ , ψ̃):

D := {X | X = (n, α̃, τ̃ , ψ̃)}.

For short, we will write
∫

X
for

N∑

n=0

∑

α̃∈E 2n

∫

[0,βT ]N
dN(τ̃ ⊕ ψ̃).

5.1.1 Score, weight and probability functions for EHM

The weight function W on D for EHM is defined by

W (X) := |F0(X)| (5.1)

and the score function Sm is defined by

Sm(β̂, θ̂, X) :=
Fm(β̂, θ̂, X)

W (X)
. (5.2)
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Let

P (X) :=
1

∫

X
W (X)

W (X). (5.3)

Then we have
∫

X

P (X) = 1

and

P (X) ≥ 0, ∀X ∈ D .

Hence, P is a probability distribution on D ..

5.1.2 Monte Carlo evaluation of Gm

For any function A = A(X) on D , the average of A for the probability distribution P is

defined by

〈A(•)〉P :=

∫

X

A(X)P (X). (5.4)

Then the function Gm can be rewritten as

Gm(β̂, θ̂) = lim
N→∞

〈Sm(β̂, θ̂, •)〉P
〈S0(•)〉P

(5.5)

To evaluate 〈A(•)〉P , we generate a random sample of K points

X(1), . . . , X(K), X(j) ∈ D

that is distributed according to P (X). Let

〈A(•)〉(K) :=
1

K

K∑

j=1

A(X(j)). (5.6)

Then, by the central limit theorem, we have

lim
K→∞

〈A(•)〉(K) = 〈A(•)〉P . (5.7)
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5.1.3 Evaluation of det ĝ

To evaluate the scores, we need to calculate the determinant of the (2n + m) × (2n + m)

matrix

ĝ = ĝ~r(g),s(g),τ̂ (g) = (gij)1≤i,j≤2n+m,

where ~r(g), s(g), τ̂ (g) are as in §4.5, and

gij = g(~ri, si|~̄rj , sj, τi − τj).

Let I = {i | si = 0.5, 1 ≤ i ≤ 2n +m} and J = {j | sj = −0.5, 1 ≤ j ≤ 2n +m}. Then

{I, J} is a partition of {1, . . . , 2n + m} such that gij = 0 for all i ∈ I and j ∈ J by (4.13).

Hence,

det ĝ = det ĝII · det ĝJJ (5.8)

by (2.9). In particular, if V1 = 0 and m = 0, det ĝ 6= 0 implies that

~rj = ~rj+n, sj 6= sj+n, 1 ≤ j ≤ n (5.9)

by (4.2) and (4.13). It follows that |I| = |J | and det ĝII = det ĝJJ , so we have

det ĝ = (det ĝII)
2 . (5.10)

5.2 Metropolis MCMC method

The Metropolis method is one of the most important MCMC (Markov Chain Monte Carlo)

methods. It is used to generate a Markov chain by reject sampling.

Let {1, . . . ,M} be the set of available move types. We assign to each move type u a

number pM(u) ≥ 0, such that
m∑

u=1

pM(u) = 1.

Then pM = {pM(1), . . . , pM(M)} defines a probability distribution on {1, . . . ,M}.

Let P (X) > 0 (∀X ∈ D) be a probability distribution on D ; we want to generate a

Markov chain

X(1), . . . , X(K), K ∈ N, X(j) ∈ D , 1 ≤ j ≤ K, (5.11)
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from P (X).

5.2.1 Metropolis method

Given X ∈ D with W (X) > 0, we generate X⊕ from X (i.e., do an MC move) as follows.

(1) Randomly select a move type u ∈ {1, . . . ,M} according to the probability distribu-

tion pM .

(2) Randomly generate X ′ ∈ D with proposed probability T
(P )
u (X → X ′) according the

rule for move type u. X ′ is called the proposal.

(3) Accept X ′ as X⊕ (i.e., set X⊕ = X ′) with acceptance probability T
(A)
u (X → X ′)

defined by

T (A)
u (X → X ′) := min

{

1,
T

(P )
u (X ′ → X)P (X ′)

T
(P )
u (X → X ′)P (X)

}

. (5.12)

That is, generate a random variable p ∼ U [0, 1], where U [0, 1] is the uniform distribution on

[0, 1]. If p ≤ T
(A)
u (X → X ′), then accept the proposal and set X⊕ = X ′. Otherwise, reject

the proposal and set X⊕ = X.

5.2.2 Generating the chain

Let L, S ∈ N with L > 0, S > 0. To generate the chain (5.11), we start with a randomly

generated Y (1−L) ∈ D with W (Y (1−L)) > 0, then do MC moves L+KS−1 times and obtain

a chain of length L+KS:

Y (1−L), . . . , Y (0), Y (1), . . . , Y (KS).

Now, for j = 1, . . . , K we set X(j) = Y (jS) for the chain (5.11).

5.2.3 Convergence

Since the set {1, . . . ,M} of available move types is obviously ergodic (that is, they enable

any configuration to be reached from any other with positive probability), and the transition

probabilities

Tu(X → X ′) := T (P )
u (X → X ′) · T (A)

u (X → X ′)
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obviously satisfy the detailed balance relation (DBR)

Tu(X → X ′)P (X) = Tu(X
′ → X)P (X ′),

the points X(j) in the chain (5.11) will have probabilities distributed according to P (X) as

L→∞. Hence, these points can be used as MC samples for calculating 〈A(•)〉(K).

5.3 MC move types for EHM

There are 7 available (MC) move types for EHM, and move type 6 contains two subtypes of

equal probabilities. We will give the rules and acceptance probabilities for each move type.

Let

X = (n, (~r1, s1), . . . , (~r2n, s2n), τ1, . . . , τn, ψ1, . . . , ψN−n) ∈ D ,

with

|~rk − ~rk+n|L ≤ Rc, ∀k ∈ {1, . . . , n},

so that Vc(~rk − ~rk+n) 6= 0 and P (X) 6= 0.

For each ~r ∈ L , we define the interaction sphere by

CL (~r) := {~r′ ∈ L | |~r′ − ~r|L ≤ Rc}.

Hereafter, we assume that the value of Rc is chosen so that CL (~r) contains 1 or 5 elements.

For each move type u, we define

R(P )
u (X → X ′) :=

T
(P )
u (X ′ → X)

T
(P )
u (X → X ′)

.

5.3.1 Move type 1: move a pair of V–lines.

Randomly select k0 ∈ {1, . . . , n} and ~r0 ∈ L . Then propose X → X ′ with

~rk0 → ~r ′
k0

= ~rk0 ⊕ ~r0

and

~rk0+n → ~r ′
k0+n = ~rk0+n ⊕ ~r0.
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It is clear that

T
(P )
1 (X ′ → X) = T

(P )
1 (X → X ′).

Hence we have R
(P )
1 (X → X ′) = 1 and

T
(A)
1 (X → X ′) = min

(

1,
W (X ′)

W (X)

)

. (5.13)

5.3.2 Move type 2: flip the spin at a vertex.

Randomly select j0 ∈ {1, . . . , 2n}, and propose X → X ′ with

sj0 → s ′
j0

= −sj0 .

Similarly to move type 1, we have

T
(A)
2 (X → X ′) = min

(

1,
W (X ′)

W (X)

)

. (5.14)

Note that in the case of V1 = 0, we must have W (X ′) = 0 by (5.9), and hence X → X ′

is always rejected.

5.3.3 Move type 3: move the ~r at a vertex.

Randomly select j0 ∈ {1, . . . , 2n}, and let

k0 =

{
j0 − n if j0 > n;

j0 + n otherwise.

Then, randomly select

~r0 ∈ CL (~rj0)

with ~r0 6= ~rk0 and propose X → X ′ with

~rj0 → ~r ′
j0

= ~r0.

Similarly to move type 2, we have

T
(A)
3 (X → X ′) = min

(

1,
W (X ′)

W (X)

)

, (5.15)

and in the case of V1 = 0, X ′ is always rejected.



39

5.3.4 Move type 4: move τ at a V–line.

Randomly select k0 ∈ {1, . . . , n}, and randomly generate a homogeneously distributed

number δ ∈ [−∆τ ,∆τ ] with 0 ≤ ∆τ ≤ βT . Let τ0 = τk0 + δ. Then, propose X → X ′

with

τk0 → τ ′
k0

=







τ0 if τ0 ∈ [0, βT ];

2βT − τ0 if τ0 ∈ (βT , 2βT ];

−τ0 otherwise.

Similarly to move type 1, we have

T
(A)
4 (X → X ′) = min

(

1,
W (X ′)

W (X)

)

. (5.16)

5.3.5 Move type 5: update τ-padding variable ψ.

Randomly select l0 ∈ {1, . . . , N−n}, and randomly generate ψ0 ∈ [0, βT ] according to gl0(ψ)

(see (3.7)). Then propose X → X ′ with

ψl0 → ψ ′
l0

= ψ0.

It is readily seen that

T
(P )
5 (X ′ → X) =

1

N − ngl0(ψ
′

l0
).

Hence

R
(P )
5 (X ′ → X) =

gl0(ψl0)

gl0(ψ
′

l0
)

and

T
(A)
5 (X → X ′) = 1. (5.17)

That is, this move type has 100% acceptance probability.

5.3.6 Move type 6: raise or lower diagram order.

Move type 6 has two subtype: move type 6+ and 6−. Once move type 6 is selected, we

randomly choose 6+ or 6− with equal probabilities.
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Move type 6+: raise diagram order

If n = N , we reject this move type and proceed to the next move.

Now, assume n < N . We randomly select k0 ∈ {1, . . . , n+1}, l0 ∈ {1 . . .N −n}, ~r0 ∈ L ,

~r−1 ∈ CL (~r0) and s0, s−1 ∈ S . Then, we construct X ′ from X by inserting a new V–line

(k0, k0 + n) with τ–value

τ ′
k0

= ψl0 ,

and new vertex E –coordinates

(~r ′
k0
, s ′

k0
) = (~r0, s0), (~r ′

k0+n′ , s ′
k0+n′) = (~r−1, s−1)

and deleting the old ψl0 from the list of ψ̃–variables. That is, we propose X → X ′ with

n→ n′ = n + 1

and

. . .→ (τ ′k, ~r
′
k, s

′
k, ~r

′
k+n′, s ′

k+n′) =







(τk, ~rk, sk, ~rk+n, sk+n) if 1 ≤ k < k0;

(ψl0 , ~r0, s0, ~r−1, s−1) if k = k0;

(τk−1, ~rk−1, sk−1, ~rk+n−1, sk+n−1) if k0 < k ≤ n′

and

. . .→ ψ′
l =

{
ψl if 1 ≤ l < l0;

ψl+1 if l0 < l ≤ N − n′.

Move type 6−: lower diagram order

If n = 0, we reject this move type and proceed to the next move.

Now, assume n > 0. We randomly select k0 ∈ {1, . . . , n} and l0 ∈ {1 . . .N−n+1}. Then,

we construct X ′ from X by deleting the old V–line (k0, k0 +n) and insert τk0 as new ψl0 into

the list of ψ̃–variables. That is, we propose X → X ′ with

n→ n′ = n− 1

and

. . .→ (τ ′k, ~r
′
k, s

′
k, ~r

′
k+n′, s ′

k+n′) =

{
(τk, ~rk, sk, ~rk+n, sk+n) if 1 ≤ k < k0;

(τk+1, ~rk+1, sk+1, ~rk+n+1, sk+n+1) if k0 ≤ k ≤ n′
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and

. . .→ ψ′
l =







ψl if 1 ≤ l < l0;

τk0 if l = l0;

ψl+1 if l0 < l ≤ N − n′.

Acceptance probability of move type 6

Let |L | = Lx × Ly be the size of the lattice L , |CL | the size of the interaction sphere, and

|CS | =
{

2 if V1 = 0 or |CL | = 1;

4 otherwise.

Now, let u = 6+ and X → X ′ with n′ = n+ 1. Then we have

T (P )
u (X → X ′) =

1

2n′(N − n)|L | · |CL | · |CS |

and

T (P )
u (X ′ → X) =

1

2n′(N − n)
.

It follows that

R(P )
u (X → X ′) = |L | · |CL | · |CS |

and

R(P )
u (X ′ → X) =

1

|L | · |CL | · |CS |
.

Hence, we have

T (A)
u (X → X ′) = min

(

1, |L | · |CL | · |CS | ·
W (X ′)

W (X)

)

. (5.18)

Analogously, for u = 6−, we have

T (A)
u (X → X ′) = min

(

1,
1

|L | · |CL | · |CS |
· W (X ′)

W (X)

)

. (5.19)

5.3.7 Move type 7: exchange a pair of spins.

If n = 0, we reject this move type and proceed to the next move.
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Now, assume that n > 0. Then we randomly select j0 ∈ {1, . . . , 2n}, and propose X → X ′

with

sj0 → s ′
j0 = sj0+n.

and

sj0+n → s ′
j0+n = sj0.

Similarly to move type 1, we have

T
(A)
7 (X → X ′) = min

(

1,
W (X ′)

W (X)

)

. (5.20)

Note that in the case of n > 0 and V1 = 0, we must have W (X) = W (X ′) by (5.9), and

hence X → X ′ is always accepted.



Chapter 6

Results

We performed Monte Carlo simulations of EHM for 1-electron systems over 12 parameter sets

using the evaluation method detailed in Chapter 5. We will describe briefly the experiments

in §6.1, and present and discuss the results in §6.2. Finally, we draw conclusions about our

method in §6.3.

6.1 The experiments

In this section, we will briefly describe our experiments and give the parameter sets used in

the experiments.

6.1.1 The program

Our program is written in C and MPI, and run at the computer rcluster.rcc.uga.edu.

For each parameter set, the program uses R processors. Each of the processors randomly

generates an X ∈ D with a common initial seed seed0 for the random number generator,

and then randomly generates a Markov chain of length K starting with X and initial seed

seedj = Seed0 + 1000j, where j is the ordinal of the processor. Then, we collect the scores

of the R chains and compute the final scores (S0, S1 and G1) and their standard deviations

in the major processor.

We use the algorithm GEP (see §2.2.1) and the formula (5.8) or (5.10) to calculate

determinants. Note that the running time of GEP is O(n3), so the use of (5.8) or (5.10)

gives rise to a speed-up factor of up to 8.
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Let the function gl(ψ) in (3.6) be defined by

gl(ψ) := T, ∀ψ ∈ [0, βT ].

It is the simplest function that satisfies (3.7). Then, the padding function is just

QN−n(ψ̃) = TN−n.

6.1.2 continuous time scheme

Let the external vertex be (r̂, ŝ), where

r̂ = (~r|~̄r) ∈ L
2, ŝ = (s|s̄) ∈ S

with s = s̄, and let θ̂ = (τ, τ̄) ∈ [0, βT ]. By (4.13) and (4.16), we need to compute score S1

and G1 for selected pairs of the form

(∆~r = ~r − ~̄r,∆τ = τ − τ̄ ).

We use the continuous time scheme to select these pairs as follows. Let Lτ be a large integer.

Given integers

0 = a1 < b1 < a2 < b2 < a3 < b3 = Lτ ,

and c1, c2, c3, such that (ck − 1)|(bk − ak) for k = 1, 2, 3, let

J = {±(ak + jkdk) | k = 1, 2, 3; dk =
bk − ak

ck − 1
, jk = 0, . . . , ck − 1.

Then, the scores will be computed at each point in the set

{(~r,∆τ =
j

Lτ

βT ) | ~r ∈ L , j ∈ J}.

In our experiments, we set Lτ = 4096, and the values of ak, bk, ck are given in Table 6.1.
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Table 6.1: Parameters ak, bk, ck

k ak bk ck

1 0 112 8
2 256 3840 15
3 3984 4096 8

6.1.3 The parameter sets

Our experiments used 12 parameter sets. The values of most parameters are the same, except

N, V0, µ and T .

The parameter sets and the values of the three variable parameters N, V0 and T are

given in Table 6.2. Note that we always have µ = 0.5V0, and the values of N were chosen so

that the orders of diagrams in the Markov chains never exceed them.

Table 6.2: Parameter Sets

Set N V0 T
1a 32 1.0 1.0
1b 32 1.0 0.5
1c 32 1.0 0.25
1d 48 1.0 0.125
2a 32 2.0 1.0
2b 32 2.0 0.5
2c 64 2.0 0.25
2d 80 2.0 0.125
1a 48 4.0 1.0
1b 56 4.0 0.5
1c 84 4.0 0.25
1d 128 4.0 0.125

The values of the common parameters are given in Table 6.3. Note that we set

pM(2) = pM(3) = 0
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because that in the case V1=0, an MC move of type 2 or 3 is always rejected.

Table 6.3: Common Parameters

R 32 L 2× 107 pM(3) 0.0
Lx 2 K 108 pM(4) 0.15
Ly 2 S 4 pM(5) 0.15
V1 0 |CL | 1 pM(6) 0.3
t1 1.0 seed0 1011 pM(7) 0.2
t2 0.0 pM(1) 0.2
t3 0.0 pM(2) 0.0

6.2 Results

In this section, we present and discuss the results of our experiments.

6.2.1 Accept ratios of MC moves

By Table 6.3, MC move types 2 and 3 are not used in our experiments and the accept ratio

for move type 5 is 1. The accept ratios for other move types are given in Table 6.4. Note that

the accept ratio of move type 7 tends to 1 as V0 and βT increase, meaning that the number

of diagrams of order 0 tends to 0 as V0 and βT increase.

6.2.2 Running time

The running time Tr of the program is the system time for the major processor. It is obvious

that Tr ∝ K, and the experiments show that Tr ∝ β1+cT

T and Tr ∝ V 1+cV

0 approximately,

(see Figure 6.1), where cT and cV are some constants. Hence, we have

Tr ∝ KV 1+cV

0 β1+cT

T .

6.2.3 Order frequencies

The order frequencies are important in our simulations.
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Table 6.4: Accept ratios

u V0 βT = 1 βT = 2 βT = 4 βT = 8

1 0.510 0.646 0.691 0.688
1 2 0.595 0.635 0.627 0.611

4 0.554 0.553 0.536 0.512
1 0.564 0.719 0.791 0.818

4 2 0.728 0.765 0.760 0.751
4 0.795 0.744 0.703 0.653
1 0.581 0.695 0.715 0.698

6 2 0.657 0.669 0.652 0.631
4 0.593 0.586 0.571 0.554

1.0 0.598 0.804 0.925 0.977
7 2.0 0.809 0.933 0.981 0.998

3.0 0.938 0.988 0.999 1.000

Given a Markov chain C of length K on D , let n+ be the number of even–order points

in C and n− be the number of odd-order points in C (n+ and n− will be used hereafter).

Assume V1 = 0; then for each X ∈ C, we have

F0(X)

{
> 0 if n is even;

< 0 if n is odd

by (5.10) and (4.16). It follows that for the chain C

S0 =
n+ − n−

K
(6.1)

by (5.2) and (5.7).

Our experiments show that the maximal order nmax and the most frequent order nh of

points in the R Markov chains generated increase as βT or V0 increases (see Figure 6.2 and

6.3, respectively).
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6.2.4 Convergence for parameter set 3b

Let var(S0) and var(S1) be the square of the standard deviations of S0 and S1, respectively.

The results for parameter set 3b (see Figure 6.4) show that as K →∞, S0 becomes stable,

and that 1
var(S1)

(at ∆τ ∈ {0.0078, 1.0, 1.9922}) and 1
var(S0)

increase quickly . This indicates

that the simulation converged well. Note that the figure also shows that 1
var(S1)

increased

significantly faster at ∆τ = 1.0 than at ∆τ = 0.0078 or ∆τ = 1.9922, indicating that S1

converged faster in the middle than near the two ends of the interval [0, βT ].

6.2.5 S0 or S1 vs. βT

Figure 6.5 shows the relation between lg(|S1|) and βT at ((0,0),0), and the relation between

lg(|S0|) and βT . From the figure, we have

|S0| = ec0βT

and

|S1| = ec1βT ,

where c0 and c1 are nearly constant.
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6.2.6 The Green’s function G1

The 1–electron Green’s functions for the 12 parameter sets are plotted in Figure 6.6 and

Figure 6.7. In the figures, the anti-periodicity and jump discontinuity are easy seen. Note

that the relative errors were large for parameter sets 2d, 3c and 3d, and we only plotted the

three paraneter sets for ∆~r = (0, 0).

The three parameter sets for which V0βT ≥ 16 had large relative errors because for each

of the 3 sets, n+ and n− are very close. Thus in the R chains for each of these sets, the

number of chains with positive score S0 and the number of chains with negative score S0

were close. This leads to a small sum due to cancellations, while the variance accumulates

resulting in large relative errors. To verify this, we plotted S+
1 and S−

1 for parameter set 3d

in Figure 6.8, where

S+
1 =

∑
(S1(X))

K
,

the sum goes through all points of even order, and S−
1 is defined analogously. As expected,

the error bars in Figure 6.8 were small, and S+
1 ≈ S−

1 .

6.3 Conclusion

From the results, we conclude that our new method works well over a large region of the

parameter space. Our program can be used for any rectangular lattice, and can be used

for m–electron systems with m > 1 with only slight modifications. However, it appears

impractical when V0βT ≥ 16.
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