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Abstract

A Feynman diagram of order n can be viewed as a matching on 2n nodes (edges
in the matching are undirected and called V -lines) along with a permutation of
the 2n nodes (represented by directed edges called G-lines). Dynamic connectivity
algorithms for Feynman diagrams are described in this thesis. The algorithms have
two major components: diagram update and connectivity query. Two approaches are
used to maintain and update Feynman diagrams. The key data structure for the first
approach is a splay forest, which has an amortized expected cost of O(log n). The
second approach applies a treap forest, which has an expected cost of O(log n). For
query operations, three algorithms were designed and implemented having expected
costs per operation of O(n), O(log2 n) and O(log n), respectively.

Both splay forests and treap forests were implemented with arrays, allowing the
nodes to be switched to be found in constant time. Five experiments were carried
out with our implementations. The results showed good agreement with the time
complexity analysis, validating the algorithm design and implementation.

Index words: Feynman diagram, dynamic algorithm, connectivity, splay tree,
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Chapter 1

Introduction

1.1 About Feynman diagrams

The Feynman diagram, introduced by physicist Richard P. Feynman in 1949, is

widely used in physics to visualize and describe quantum electrodynamical inter-

actions [10]. In a Feynman diagram each line represents the propagation of a free

elementary particle and each node represents an interaction of elementary particles.

A Feynman diagram with order of n can be viewed as a matching on 2n nodes (edges

in the matching are undirected and called V-lines) along with a permutation of the

2n nodes (represented by directed edges called G-lines). Figure 1.1 shows an example

of a Feynman diagram of order 3.

Feynman diagram expansions are used in quantum physics to express the energy

of a system of particles, such as free electrons in a crystal [12]. It is essential to

maintain diagram connectivity because most Feynman expansions employ only con-

nected diagrams. In more specialized expansions, only irreducible diagrams (3-edge-

connected with respect to G-lines) are considered. Although this study focuses only

on connectivity problems in a dynamic Feynman diagram, it aims to serve as a

starting point for more sophiscated algorithms dealing with irreducible diagrams.

1.2 Fully dynamic connectivity algorithms

In a fully dynamic graph problem, a graph G has a fixed vertex set V . The graph

G may be updated by insertions and deletions of edges. These updates may be
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Figure 1.1: An example of a Feynman diagram of order 3.

interspersed with queries about properties of the graph. For the fully dynamic con-

nectivity problem, the queries are connectivity queries, asking whether two given

nodes are connected in graph G. Both updates and queries are presented on-line,

meaning that we have to respond to an update or query without knowing anything

about the future. A good fully dynamic algorithm is able to update the graph and

compute the relevant properties (e.g. connectivity) of the resulting graph as quickly

as possible. The main idea of a fully dynamic algorithm is to take advantage of

previous computations to speed up the solution.

Strictly speaking, the connectivity problem in Feynman diagrams is not a “true”

fully dynamic connectivity problem. In Feynman diagrams, the update is called a

switching, a combination of two edge deletions and two edge insertions (see illustra-

tion in Figure 1.2 ). The query is always after the update (switching) to make sure

that the diagram remains connected. Although any fully dynamic connectivity algo-

rithm can be directly applied to our problem, that might involve some unnecessary
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a
 a
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b
 b
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Switch(a,b)
 a
 a
́ 


b
 b
́ 


Figure 1.2: Illustration of the switch operation.

Table 1.1: The evolution of deterministic algorithms for the fully dynamic connec-
tivity problem.

Year Author Approach update | query
1985 Frederickson [3] Topology tree O(

√
m)|O(1)

1992 Epstein et al. [2] Sparsification O(
√

n)|O(1)
1997 Henzinger & King [6] ET-tree O( 3

√
n log n)|O(log n/ log log n)

1998 Holm et al. [8] ET-tree & B-tree O(log2 n)|O(log n/ log log n)

time and algorithm complexity. Based on unique characteristics of Feynman dia-

grams and the particular form of the sequence of updates and queries, it is possible

to develop specialized simple algorithms with “good” expected time complexity.

We can get a better idea of how “good” a fully dynamic algorithm can be by

reviewing existing algorithms. For deterministic algorithms, all the previous best

solutions to the fully dynamic connectivity problem were also solutions to the min-

imum spanning tree problem. The evolution of deterministic algorithms for the fully

dynamic connectivity problem is shown as table 1.1. The O(log2 n) update time for

Holm et al.’s 1998 result is an amortized time; the rest are worst-case times.

Randomization has been used to improve the bounds for the connectivity prob-

lems in fully dynamic graphs. Henzinger and King [5] showed that a spanning forest

could be maintained in O(log3 n) expected amortized time per update, and the con-

nectivity queries are supported in time O(log n/ log log n). The update time was later

improved to O(log2 n) (Henzinger and Thorup [7]). A near optimal algorithm was
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provided by Thorup [15] with O(log n(log log n)3) expected amortized update time

and O(log n/ log log log n) query time.

In our algorithms, we designed two approaches using simple data structures for

updates. The data structure used in the first approach is a splay forest, which has

an amortized expected time of O(log n) per operation; the second approach applies

a treap forest, which has an expected time of O(log n) per operation. For queries, we

designed and implemented three algorithms having expected times of O(n), O(log2 n)

and O(log n), respectively.

1.3 Terms and symbols

1. V-line: An undirected edge between two vertices, also called a boson line and

depicted in figures by a wavy edge. The V -lines form a perfect matching on

the vertices.

2. G-line: A directed edge, also called a fermion line and depicted as straight lines

in figures.

A G-line can be a loop (corresponding to a fixed point of the permutation) or

join two vertices which are matched by a V -line.

In a Feynman diagram, each vertex always has exactly one outgoing G-line

and one incoming G-line.

3. Order of a Feynman diagram: the number of V -lines, denoted by n.

For a Feynman diagram with order n, there are exactly 2n G-lines and n V -

lines. By convention the vertices of a Feynman diagram of order n are numbered

{0, 1, ..., 2n− 1}, and the V -lines join vertices 2i and 2i+1, for i = 0, ..., n− 1.

4. Connected Feynman diagram: Any vertex is reachable from any other vertex

by a mixed path of V -edges and G-edges. (It makes no difference here whether
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or not the G-edges are required to be oriented in the same direction as the

path.)

5. Switch: Switch(a,b) swaps the vertices to which a and b are incident by G-edges;

See Figure 1.2 for an illustration

1.4 Outline of the thesis

In all there are 4 chapters in this thesis.

Chapter 2 describes the approaches for maintaining the connectivity of a

Feynman diagram dynamically, including a high level description of update and

query algorithms as well as time complexity analyses. Two data structures, splay

forests and treap forests, are used for diagram update. Two query approaches, with

linear and poly-logarithmic time, are also described. Based on our time complexity

analysis, an expected amortized O(log n) time per switching can be achieved using

splay forests, and an expected O(log n) time per switching using treap forests.

Chapter 3 describes the detailed data structures and algorithm implementations.

Array-based splay forest (ASF) and array-based treap forest (ATF) data structures

were implemented using C++. Three approaches to connectivity queries are also

described in this chapter.

Chapter 4 describes the results of five experiments designed to: 1) compare the

time complexities of the ATF and ASF approaches; 2) compare the time complex-

ities of update and query operations; 3) examine the occurrence of disconnected

diagrams; 4) compare times per switching for the ATF and ASF approach with dif-

ferent number of switchings; and 5) compare the three connectivity query algorithms.

The results validate our algorithm time complexity analyses. Finally, the advantages

and disavantages of the splay forest and treap forest approaches are discussed.



Chapter 2

Algorithm design and time complexity analysis

The crux of the algorithm lies in efficiently maintaining G-cycle information for the

diagram and providing quick responses to connectivity queries. The design of our

algorithm relies on the following features in order to achieve poly-logarithmic time

complexity.

• There are a small number (O(log n)) of G-cycles in a randomly generated

Feynman diagram.

• There are known data structures for maintaining G-cycle information with

amortized or expected O(log n) time

• The query can be done in expected logarithmic or poly-logarithmic time.

Lemma 2.1 For a randomly generated Feynman diagram of order n, the expected

number of G-cycles is O(log n).

Proof: Let Pr[ ] and Ex[ ] be the probability and expectations, respectively, over

the space in which all (2n)! permutations are equally likely to be chosen as the set

of G-edges for a Feynman diagram of order n. First, pick a vertex v and let Cl

denote that the G-cycle containing vertex v has length l. We need to prove that

Pr[Cl] = 1/2n. This can be seen by iteration as follows:

Pr[C1] = 1/2n;

Pr[C2] = (2n− 1)/2n× 1/(2n− 1) = 1/2n;

6
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Pr[C3] = (2n− 1)/2n× (2n− 2)/(2n− 1)× 1/(2n− 2) = 1/2n;

:

Pr[Ci] = (2n−1)/2n×(2n−2)/2n×· · ·×(2n−i+1)/(2n−i+2)×1/(2n−i+1) =

1/2n.

Now, Let Xi = the size of the G-cycle containing node i , then the total number

of cycles S is
∑2n

i=1 1/Xi.

Now

Ex[1/Xi] =
2n∑

i=1

(1/i× Pr[1/Xi = 1/i])

=
2n∑

i=1

(1/i× 1/2n)

Thus

Ex[S] = Ex[
2n∑

i=1

1/Xi]

=
2n∑

i=1

Ex[1/Xi]

=
2n∑

i=1

2n∑

i=1

(1/i× 1/2n)

=
2n∑

i=1

(1/2n)
2n∑

i=1

(1/i)

=
2n∑

i=1

(1/i).

The sum
∑n

i=1(1/i) is called the n’th harmonic harmonic number and often denoted

by H(n). When n →∞, H(n) → log n + γ, where log denote the natural logarithm

and γ is Euler’s constant (0.57721...).

Thus,

Ex[S] = O(log n).
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2.1 Update using splay forest data structure

In this approach, we maintains a splay forest F for a Feynman diagram D. Each

individual splay tree T in F represents a G-cycle in D, where the in-order traversal

of T is the sequence of a G-cycle. The V -line information is represented implicitly

according to the convention based on vertex numbering given in Section 1.3.

A splay tree is a binary search tree (BST) on which splaying operations are

performed [14]. A splaying operation is one that causes a node in the BST to move

up the tree and become the root. Splaying of a node is done by rotating the nodes

of a BST, as described below.

Each switch(a,b) operation triggers a series of splay tree operations. Here we

describe the basic splay tree operations. In Chapter 3 the switch(a,b) operation is

detailed in terms of the basic splay tree operations.

1. Splay(x): Repeat the following splaying steps until x becomes the root of the

tree. Let x be the node being accessed, p(x) the parent of node x and g(x) the

grandparent of node x.

• Case 1 (zig). If p(x) is the root, rotate the edge joining x with p(x).

• Case 2 (zig-zig). If p(x) is not the root and x and p(x) are both left or

both right children, rotate the edge joining p(x) with g(x) and then rotate

the edge joining x with p(x).

• Case 3 (zig-zag). If p(x) is not the root and x is a left child and p(x) a

right child, or vice-versa, rotate the edge joining x with p(x) and then

rotate the edge joining x with the new p(x) (i.e., with the old g(x).)

2. Join(t1, t2) : Let y be the first element of t2 (in-order ordering); splay(y), then

link t1’s root as left child of y;
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3. Split(x, t) : Construct and return two trees, t1 and t2, where t1 contains all

items in t less than or equal to x (with respect to the in-order ordering). Split

is done by calling splay(x), then cutting off the right subtree to form t2, and

leaving the rest to form t1.

Lemma 2.2 (From [14]) Each splay operation has an amortized time of O(log n)

over Ω(n) operations such that the tree size is always O(n).

2.2 Update using treap forest data structure

This is similar to the splay forest approach, with treaps instead of splay trees.

A treap is a BST in which each node has both a key and a priority [13]. Nodes

are ordered in in-order with respect to the keys and are heap-ordered with respect

to their priorities. “In-order” means for any node x in the tree y.key ≤ x.key for all

y in the left subtree of x and x.key ≤ y.key for y in the right subtree of x. “Heap

order” means that each parent has a higher priority than its children). We can easily

see that given a set of nodes with keys and priorities, the treap is unique (assuming

priorities are all distinct).

Each switch(a, b) operation triggers a series of treap operations as follows:

1. Insert(x): Attach x to T in an appropriate leaf position. At this point the keys

of all nodes in the modified tree are in in-order. Rotate the tree to satisfy the

priority requirement.

2. Delete(x): Reverse the Insert(x) operation. Find x in the treap, set the priority

of x to be the smallest, rotate x down until it reaches the leaf, clip away x.

3. Rotate(x): See Figure 2.1 for rotating left and rotating right.

4. Split (x,t): Insert a node y as the right child of x, set the priority of y to be

“infinite”. y becomes the root of tree t. The left subtree of y forms t1 and
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b


a
 Rotate right


Rotate left


b


a


Figure 2.1: Illustration of the rotate operation in a treap

right subtree of y forms t2. t1 and t2 satisfy that for any node a in the tree t1

a.key ≤ b.key for all b in the tree t2.

5. Join (t1,t2): Create a dummy root, link t1 as the left subtree and t2 as the

right subtree to the root, then delete the dummy root as described in Delete(x)

Lemma 2.3 (From [13]) Each treap operation has an expected time of O(log n)

averaged over all permutations of the nodes for the priority attribute.

2.3 Query on connectivity of Feynman diagrams

Three approaches are used to query the connectivity of Feynman diagram. They are

called Simplified Connectivity Query (SCQ) , Advanced Connectivity Query (ACQ)

and Integrated DFS (depth first search) Query (IDQ).

SCQ is a straightforward approach for querying the connectivity of a Feynman

diagram. It arbitrarily chooses a G-cycle to start with by marking it as discovered,

then checks for any other G-cycle connected to it via V -lines. If it discovers a new

G- cycle, mark it as discovered. Otherwise, it continues checking other discovered

G-cycles. The checking is done until either 1) all the discovered G-cycles have been
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checked and the number of the discovered G-cycles is less than the total number of

G-cycles or 2) The number of the discovered G-cycles is equal to the number of G-

cycles. The diagram is not connected in the first case but connected in the second

case.

SCQ can easily lead to a linear time complexity even though the number of G-

cycle has an expected value of O(log n). The reason is that the time to discover a

new G-cycle can be O(n). To improve performance, ACQ is a better algorithm with

an expected time complexity of O(log n). Instead of arbitrarily choosing a G-cycle

to start with in SCQ, ACQ chooses a G-cycle with the smallest size, which allows

us to have a better chance of finding a new G-cycle in a short time. After a new

G-cycle is discovered, these two cycles are thought of as forming one new G cycle.

The size of this new cycle is the sum of the sizes of the two joined cycles. Then ACQ

chooses the G-cycle with smallest size, and starts over again until no new G-cycles

are found. If the number of joins is fewer than 1 less than the initial number of

G-cycles, the diagram is not connected, and otherwise it is connected. We provide a

heuristic argument that this algorithm has an expected time complexity of O(log2 n).

Lemma 2.4 ACQ algorithm has an expected cost of O(log2 n) time to query the

connectivity of Feynman diagram

Heuristic justification: A random Feynman diagram can be obtained by choosing

a random permutation on the 2n vertices for the G-edges, and a random matching for

the G-edges. let C be the number of components in the graph consisting of G-cycles

and V -edges chosen so far (one for each prior round).

If C = 1, we are finished, as the diagram must be connected. If C ≥ 2, let S be

the number of vertices in the smallest component; then S ≤ n.

Now let Di be the probability that, in examing V -edges at vertices in the smallest

component, a V -edge joining it to another component will be found in ≤ i attempts,

and let Si be the probability that at least i attempts will be needed. Thus S1 = 1
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and Si+1 = 1−Di. Then Ex[Steps] =
∑

i≥1 Si < 1+1/2+1/4+ ... = 2 assuming that

the V -edge choices are independently random. This is not quite true, as previously

examined edges affect the probabilities.

From Lemma 2.1, we know that the expected number of G-cycles for a randomly

generated Feynman diagram is O(log n). Therefore, the maximum expected number

of component joins is also O(log n)(if the diagram is connected). After each join, it

takes expected time O(log n) to find the component with smallest size (based on our

unordered linked list implementation). Therefore, the total expected time to query

for connectivity is O(log2 n).

The calculation D1 = (2n − s)/(2n − 1) > 1/2 and others based on it are

approximations in general, as they assume that no V -edge is known (and hence,

all perfect matchings are equally likely as the set of V -edges). However, these are

applied in situations where some V -edges have in fact already been explored and

thus known. Thus our analysis of expected time is heuristic rather than rigorous. It

seems likely that the heuristic analysis is very close to correct in worst cases, and

this is supported by the results of experiments as discussed in Chapter 4.

The third algorithm, IDQ, is more integerated with the update process than

SCQ and ACQ. When we store and update the G-cycle information, we also store a

V -edge which connects two G-cycles. This connecting set of V -edges is denoted by

C. Since that the expected number of G-cycle is m = O(log n) (Lemma 2.1), then

|C| ≥ m− 1, and C contains |C| −m + 1 “extra” edges.

A switching which joins two G-cycles maintains connectivity, so we only need to

update the names of G-cycles and delete possible extra edges caused by merging two

G-cycles. If a switching splits a G-cycle into two, at most two connected components

can be created. If one G-cycle, say A, is split into A1 and A2, any V -edge in C which

connects to A, say e, is now either connected to A1 or A2. C is updated based on
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the stored information about e (vertices which e joins). Knowing the vertex in an

edge e allows us to find which G-cycle it is in, in time O(log n).

As the average degree of our DFS tree is under 2, we would expect only about

2 or so ends in the cycle A which need resolution into A1 or A2. However we can

expect some bias toward larger cycles, and correlating with that toward cycles of

higher degree in C, when we condition on a cycle splitting due to a switching (bigger

cycles are more likely to split). Perhaps this pushes the expected time above O(log n)

asymptotically, but probably not nearly to O(log2 n), which is the estimate of time

complexity of ACQ.

The next two lemmas summarize the results of this section. These results are

heuristic, not rigorous.

Lemma 2.5 Using a splay forest data structure for Feynman diagram updates

combined with ACQ for connectivity queries gives an amortized expected time per

operation of O(log2 n). Using a treap forest data structure for Feynman diagram

updates combined with ACQ for connectivity queries gives an expected time per

operation of O(log2 n).

Lemma 2.6 Using a splay forest data structure for Feynman diagram updates

combined with IDQ for connectivity queries gives an amortized expected time per

operation of O(log n). Using treap a forest data structure for Feynman diagram

updates combined with IDQ for connectivity queries gives an expected time per

operation of O(log n).



Chapter 3

Data structures and implementations

3.1 Array-based Splay Forest (ASF) update approach

Feynman diagrams are created at random for testing. For a Feynman diagram of

order n, an array named Wout[ ] of size 2n is created, which is defined as follows: for

each node i, Wout[i] is the node to which i is adjacent by its outgoing G-line, which

is a random permutation of {0, ..., 2n − 1}. Another four arrays are also created.

They are listed as follows:

1. P [i]: Parent of node i in the splay tree

2. LC[i]: Left child of node i in the splay tree

3. RC[i]: Right child of node i in the splay tree

4. S[i]: Size of subtree rooted at node i

To explain the algorithm more clearly, we use the Feynman diagram shown in

Figure 1.1 as an example.

Step 1: Randomly generate a Feynman diagram

Node i: 0 1 2 3 4 5

Wout[i]: 2 0 5 4 1 3

Step 2: Insert nodes into a splay forest

14
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Figure 3.1: Splay tree after insertions.

The equence of insertions is based on Wout[i]. In our example, it is 0, 2, 5, 3, 4,

1. Each inserted node is treated as the root of a newly formed splay tree, and the

previous node becomes the left child of the current root. Therefore, the in-order of

splay tree follows the cyclic order in the G-cycle containing 0 (where started). The

value of P [i], LC[i], RC[i] and S[i] are also updated corresponding to each insertion.

The newly formed tree after insertions is shown in Figure 3.1, and the arrays P [i],

LC[i],RC[i], and S[i] have following values.

P [i]: 2 1 5 4 1 3

LC[i]: # 4 0 5 3 2

RC[i]: # # # # # #

S[i]: 1 6 2 4 5 3

Here, if a node v is the root of a splay tree, p[v] = v. If v is a left child of pv,

p[v] is stored as bit complementary of pv (∼ pv). Conversely, if v is a right child of

pv, p[v] is stored as pv. Using bit complementary can make the update and query

operation easier and faster. # is a special value indicating the there is no left child

of v or no right child of v. In the implementation a value greater than 2n is assigned

to # to avoid any conflicts with node numbers.
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Step 3: Making switches

Switch(a,b)

There are three different cases when switching nodes a and b.

• Case 1: a = b. Do nothing.

• Case 2: a 6= b, node a and b lie in two different G-cycles. Switch without

querying connectivity.

• Case 3: a 6= b, node a and b in the same G-cycle. Switch, then query connec-

tivity. If connected, switch successfully; otherwise, switch back.

Case 2 is relatively simple. As shown in Figure 3.2, splay node a in tree T1, node

b in tree T2, split both a and b from their right subtrees, then connect a to b’s right

subtree and b to a’s right subtree. Finally, find the leftmost node (w) of the tree

rooted at b, splay w, connect a as left child of w.

In case 3, there are following two subcases to be considered based on the sequence

of in-order traversal in the splay tree, as follows.

• case 3.1: Shown in Figure 3.3 (node a precedes b). After the splay at node a,

split node a from its right subtree. We will see that nodes a and b have different

roots. Splay node b, then connect node a to node b’s right subtree.

• case 3.2: Shown in Figure 3.3 (node b precedes a). After the splay at node a,

split node a from its right subtree. Nodes a and b still share the same root,

which is node a. Split node a from both its right and left subtrees, splay node b

and split node b from its right subtree, and then connect a to b’s right subtree

and b to a’s right subtree.

The reason for maintaining an array S[i] is that this information will be used

later in the connectivity query algorithm, where a tree with the smallest size will
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be selected to start the connectivity checking (detailed algorithms are described in

section 2.3). As we can see, for each splay operation, S[i] is updated for at most

three nodes, which is O(1) in time complexity.

3.2 Array-based Treap Forest (ATF) update approach

In this approach, all the arrays used in ASF maintained. In addition, one more array,

Prio[i], is created to represent the priority information for each node i. Prio[i] is

another random permutaiton of {0, ..., 2n− 1}.
To explain the algorithm more clearly, we again use the Feynman diagram shown

in Figure 1.1 as an example.

Step 1: Randomly gnerate a Feynman diagram

Node i: 0 1 2 3 4 5

Wout[i]: 2 0 5 4 1 3

Prio[i]: 3 2 4 0 5 1

Step 2: Insert nodes into a treap forest

As for the ASF approach, the sequence of insertions is based on Wout[i]. Starting

from node 0 as the root of the tree, each node is inserted as a right child of the

rightmost node of the treap. If the priority of this node is higher than its parent

node, rotate this node with its parent node. The value of P [i], LC[i], RC[i] and

S[i] are also updated corresponding to each insertion and rotation. Each step of the

insertion and the final treap is shown in Figure 3.4. We can see that the sequence

of an in-order traversal of this treap is same as the cyclic order of the G-cycle. The

arrays P [i], LC[i],RC[i] and S[i] have following values.
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P [i]: 2 4 4 5 4 2

LC[i]: # # 0 # 2 #

RC[i]: # # 5 # 1 3

S[i]: 1 1 4 1 6 2

The notations used above is same as for the ASF approach.

Step 3: Making switches

Switch(a,b)

When switching nodes a and b the same three cases 1, 2, and 3 are considered

as for the ASF approach.

In case 2, no connectivity query is necessary. As shown in Figure 3.5, this case

involves a procedure to split and then join two treaps as described in chapter 2.

In case 3, there are following two subcases to be considered based on the sequence

of in-order traversal in the treap, as follows.

• Case 3.1: Shown in Figure 3.3 (node a precedes b).

Insert a special node w with highest priority into this treap (w is the right

child of a). the new node w becomes the root of this treap after a series of

rotations. Cut the edge between w and its left and right subtrees, creating two

separate treaps T1 and T2. Repeat the same operations on T2 with node b;

T2 is split and forms T3 and T4; join T1 and T4.

• Case 3.2: Shown in Figure 3.6 (node b precedes a). Insert a special node w

with highest priority into treap (w is the right child of a). w becomes the root

of this treap after a series of rotation. Two separate treaps T1 and T2 are

created by cutting the edge between w and its left and right subtrees. Repeat

the same operation on the T1 with node b. T1 is splited and forms T3 and T4;

join T3 and T2.
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3.3 Implementation of SCQ

During the update of G-cycles, a list of roots for the different cycles is maintained.

Since the expected number of G-cycles is O(log n), the expected time complexity

for each operation on this list is also O(log n). SCQ uses the information stored in

this list for connectivity checking. A stack is declared for operation on discovered

G-cycles. The detailed algorithm is as follows:

bool SCQ()

mark root of first G-cycle r1 as discovered;

discover = 1;

push r1 into a stack S;

while (S not empty){

topitem = S.top();

call VConn(topitem)

if a new G-cycle with root r is found connected

discover ++ ;

if(discover = number of G-cycles) return true

mark r as discovered;

S.push(r);

else

S.pop();

}

return false

3.4 Implementation of ACQ

As in SCQ, ACQ also uses the information stored in the list of roots for all G-cycles.

In order to facilitate the operations for joining and searching the G-cycles, each item

in the list is “spawned” and creates a single-item list. For example, if there are m

items in the list of roots, then m lists are created with each item as a single-item

list. In this way, we can easily add and remove items in each list, as well as join two

different lists. The total number of items has an expected value of O(log n), and so is
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the size of each spawned list. The detailed algorithm for ACQ is as follows (assume

there are m G-cycles in a Feynman diagram)

bool ACQ

while (total list join < m-1){

Scan m lists and find list l with smallest size*

traverse each root r in list l

call VConn(r)

if(another root (vr) in different

list is found connected via V-line)

join list where vr is in to list where r is in

make list where vr is in empty

else

return false

}

return true

* Here, size means the total number of forest nodes

3.5 Implementation of IDQ

In order to maintain set C as described in Section 2.3. an adjacency list is created

to represent the G-cycle graph (Figure 3.7). Basically it is a linked list with two

different types of nodes. The list of type A nodes contain a G-cycle list. Each type A

node also points to a list of type B nodes which represent a adjacency list. Detailed

structure is described as follows:

Type A node:

1. node: root vertex of a G-cycle

2. visited: 0 means not visited yet, 1 means visited

3. down: pointer to its adjacency list

4. next: pointer to next type A node
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Type B node:

1. node: root vertex of G-cycle

2. visited: 0 means not visited yet, 1 means visited

3. p1: the start vertex of a V -edge connecting two G-cycles

4. p2: the end vertex of a V -edge connecting two G-cycles

5. adj next: pointer to next type B node

6. link: pointer to the type A node with same root vertex number

When a switching is made, there are 3 cases to be considered.

• Case 1: a = b. Do nothing.

• Case 2: a 6= b, nodes a and b lie in two different G-cycles. Two type A nodes

are merged into one. Change the adjacency lists accordingly.

• Case 3: a 6= b, nodes a and b lie in the same G-cycle. Split the corresponding

type A node into two. Change the adjacency list accordingly.

Case 2 is rather simple because we know the diagram will remain connected. In

Case 3, If a type A node, say a, is split into a1 and a2, the edge used to connect to

node a needs now to connect to a1 or a2. The p1 and p2 information stored in type

B nodes is used to make this decision. After updating of adjacency list, a DFS is

made and the G-cycle graph will probably now disconnected (if still connected, no

further steps necessary). Now we have two components in the G-cycle graph, say D1

and D2. The DFS explored one of these fully, so we know how many original vertices

are in one of these (adding up the sizes of the G-cycles in it), say n1 in D1. Thus

there are n2 = 2× n− n1 in D2, where n is the order of the diagram. So if n1 ≤ n2,
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we search D1 for V -edges joining it to D2 (and vice versa if n1 > n2). The expected

time to find such an edge is O(1) assuming a random Feynman diagram. As soon as

we find such an edge, add it to C and conclude that the diagram is connected. If the

diagram is not connected, switch back. The time to know it is not connected will be

O(n), but on average this only occurs with probability of O(1/n) [1]. So these cases

only contribute O(1) to the average time taken per switching.

Notice that in type B nodes, a pointer called “link” is used to avoid searching

for the corresponding type A node. In this way, the DFS only takes time linear in

the number of G-cycles.

In the SCQ, ACQ and IDQ algorithms, a subroutine VConn( ) has been called

to check if there is a new G-cycle connected via a V -line. The basic idea in this

subroutine is an in-order traversal of a binary tree. The detailed algorithm is:

int VConn(r)

if(r is an odd number)

Find the root of the G-cycle containing r-1

else

Find the root of the G-cycle containing r+1

If the found G-cycle is newly discovered

return the root of that G-cycle

else

VConn(r.leftchild)

VConn(r.rightchild).



Chapter 4

Experimental results

Five experiments have been carried out to ensure the correctness of implementation

and to compare the time complexities of different algorithms.

4.1 Comparison of time complexities for ATF and ASF

In this experiment, we applied ATF and ASF to the same diagrams. The orders of

the diagrams increase from 10 to 100,000. In both approaches ACQ was used for

connectivity checking. For each diagram, a total of 5,000 switches were made to

insure that the results were statistically significant. In each switch(a,b) operation,a

and b were randomly generated.

Figure 4.1 shows a poly logarithmic relationship between the order of the diagram

and the switching times for both ATF and ASF. There is a consistent trend for the

ASF implementation to take less time. This result indicates that when number of

switches is large enough, the amortized expected O(log2 n) time for ASF is less

than the expected O(log2 n) time for ATF. The difference looks to be statistically

significant though not large enough to be a major consideration in choosing between

the two.

4.2 Comparison of time complexities for update and query

It is interesting to see the percentage of time used to update a diagram and to

query the connectivity of a diagram during switching. This information is critical

29
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Figure 4.1: Comparison of time costs for ASF and ATF.

for improving our algorithms. For example, Figure 4.2 shows that for both ATF and

ASF with ACQ, queries take longer than updates.

Again, these results agree very well with the time complexity analysis. They

suggest that improving the query algorithm would affect time efficiency more signif-

icantly than improving the update algorithm. It can also be seen that the proportion

of time taken by queries decreases as the diagram order increases (Figure 4.3). Two

types of explanation for this trend can be hypothesized: 1) faster than expected

increase in update times; or 2) slower than expected increase in query times.

It is not likely the first hypothesis will hold because for ASF the amortized time is

O(log n). Increasing the diagram order will asymptotically decrease the update time

per switching relative to the O(log2 n) query time. For ATF, the increase of diagram
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Figure 4.2: Comparison of update and query times for ASF and ATF.
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Figure 4.3: Percentage of update and query times for ASF and ATF.

order on the expected time per switching should be similar. See the detailed results

in Table 4.1. The second hypothesis might hold if the probability of occurrence

of a disconnected diagram decreases significantly. Therefore, the query algorithm

would tend to return a positive result quickly. This is tested by our next experiment.

However, as we can see in Figure 4.4, there is almost no occurrence of a disconnected

diagram if the order is greater than 50.

To improve the connectivity algorithms, a more sophiscated data structure, such

as a heap, could be applied to achieve O(log m) time for finding the root with smallest

size, where m is the number of G-cycles. Then the total (amortized) expected time

per operation would become O((log log n) log n) for ACQ.
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Figure 4.4: Unsuccessful switchings as a function of diagram order.

4.3 The frequency of a disconnected diagram

Figure 4.4 shows that with the increase of diagram size, the occurrence of a discon-

nected diagram during switching drops exponentially as a function of order. When

the order of the diagram increases from 3 to 50, the proportion of unsuccessful

switchings (due to the occurrence of a disconnected diagram) decreases from 0.09

to almost 0, indicating that if the diagram order is greater than 50, the diagram is

almost always connected no matter how the switches are made.
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4.4 Time per switching

A splay tree is a self-adjusting binary tree with an amortized time of O(log n) per

operation. In our implementation, the initialization of the splay tree is done by

inserting new nodes as the root of the tree, which means the newly generated tree is

linear, a worst case scenario. When the switching starts, it is expected that the first

few switches take longer per switching time than the later ones. If more switches are

made, then the average switching time should decrease. On the other hand, a treap

is initialized differently. After each new node is inserted, the treap rotates based on

the priority assigned to the node. Thus we expect to see that there is no significant

difference in time per switching between the early and the later switchings for ATF.

Table 4.1 shows this pattern clearly. In our experiment, the order of the diagram was

5,000. The number of switches varied from 1 to 9000. It is seen that ASF approach

has a much longer time per switching than ATF during the first 1000 switches.

However, when more than 2000 switches were made, ASF approach caught up and

showed a shorter per switching time, indicating that the splay forest had adjusted

itself and had a better performance than the treap forest.

It is important to notice that the order of diagram could be important for the

turning point (where ASF become faster than ATF). That is because ASF may take

longer to adjust itself in a larger diagram.

4.5 Comparison of SCQ, ACQ and IDQ

Table 4.2 indicates that both IDQ and ACQ show a significant improvement over

SCQ. The experiment was carried out using ASF. The order of the tested diagrams

ranged from 10 up to 20,000. In SCQ, the switching time is linear in the order of

diagram or even worse when n is greater than 10,000. The difference between IDQ

and ACQ is smaller. IDQ performs a little better than ACQ. The improvement
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Table 4.1: Comparison of time per switching for ASF and ATF.

Switches Time per switching (milliseconds)
ASF ATF

1 10.00 0.00
2 20.00 0.00
3 16.67 0.00
4 15.00 0.00
5 12.00 0.00
6 10.00 0.00
7 10.00 0.00
8 10.00 0.00
9 8.89 1.11

10 9.00 1.00
20 5.00 0.00
30 4.00 0.33
40 3.00 0.25
50 2.40 0.40
60 2.00 0.17
70 1.71 0.29
80 1.62 0.25
90 1.44 0.22

100 1.30 0.20
200 0.70 0.25
300 0.53 0.23
400 0.43 0.23
500 0.38 0.22
600 0.33 0.23
700 0.30 0.24
800 0.28 0.24
900 0.24 0.24

1000 0.25 0.24
2000 0.18 0.22
3000 0.17 0.20
4000 0.15 0.20
5000 0.14 0.20
6000 0.14 0.20
7000 0.14 0.19
8000 0.13 0.19
9000 0.14 0.19
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Table 4.2: Comparison of times for SCQ, ACQ and IDQ.

Order Time (seconds)
IDQ ACQ SCQ

10 0.08 0.11 0.10
100 0.13 0.21 0.37
200 0.14 0.24 0.81
300 0.15 0.27 1.32
400 0.16 0.35 1.60
500 0.16 0.30 1.88

1000 0.17 0.31 3.31
1500 0.19 0.35 6.28
2000 0.20 0.38 8.21
2500 0.20 0.38 9.39
3000 0.20 0.40 13.47
3500 0.18 0.40 9.35
4000 0.23 0.46 21.58
4500 0.22 0.43 21.54
5000 0.19 0.34 14.84

10000 0.22 0.40 33.36
15000 0.33 0.67 174.07
20000 0.30 0.55 341.06

is not as marked as the difference between the O(log n) and O(log2 n) amortized

times from our time complexity analysis (Chapter 2, Section 2.3). There are several

possible reasons for this, all of which may be simultaneously involved. First, log n

is very slowly growing as a function of n, so the true asymptotic behavior of IDQ

and ACQ may not be reflected in the data. Second, the O(log n) analysis for IDQ is

heuristic, and as explained in Section 2.3 may be overoptimistic. Third, the O(log2 n)

analysis for ACQ is only an upper bond argument and maybe overpessimistic.



Chapter 5

Discussion and Future work

5.1 Advantages and disadvantages of the splay tree and treap

approaches

Some balanced binary search trees, such as red-black trees, offer O(log n) worst-

case time complexity per operation. We chose splay trees because 1) splay trees are

conceptually simple and easy to implement; 2) splay trees need less space, since

no balance information is stored; 3) splay trees offer O(log n) amortized time per

operation, which is good for a long sequence of operations on Feynman diagrams.

The drawbacks of splay trees are that individual operations within a sequence can

be expensive, and more local adjustments are required [14].

The treap approach uses randomization to balance the binary search tree. It

seems to have advantages over the splay tree. For example, it can achieve expected

case bounds that are comparable to amortized bounds in a splay tree without any

assumption about the inputs. In our case, the generation of a diagram and the

switching operations are both random. We expected improved performance with

the treap approach. However, a treap needs to store priority information and keep

checking the priority, which may degrade the performance. That probably is the

reason that treaps did not show better performance in our experiment, as shown in

Figure 4.1. Actually, the time for ATF is even a little higher compared to ASF when

the order of the Feynman diagram is greater.

37
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5.2 ASF initialization

The ASF approach shows a longer time per switching for the earlier switches as

we saw in Table 4.1. Future investigation might show how to mitigate this effect

by initializing the splay tree in a better way. For example, in Figure 5.1, node 4 is

inserted as a root of a seperate tree. It is attached to node 3 if either the height of

the tree containing node 4 is same as height of the tree containing node 3 or no more

nodes are to be inserted. In this way, we can always keep the tree approximately

balanced when new nodes are inserted. This should reduce the time for the splay

tree to adjust itself and improve the per switching time for the earlier switches.

5.3 Switching from disconnected to connected diagrams

In our switching operations, if a disconnection occurred, the diagram needed to be

switched back immediately to maintain connectivity. An alternative worth exploring

would be to modify the algorithms to allow for disconnected diagrams, and to keep

switching until the diagram becomes connected again.

5.4 Dynamic irreducibility for Feynman diagrams

A Feynman diagram is irreducible if and only if it is 3-edge-connected with respect

to G-lines. It is hoped that the work of this thesis will provide a basis upon which

to develop algorithms for the more difficult problem of dynamic irreducibility for

Feynman diagrams. For a general graph, Galil and Italiano [4] developed an algo-

rithm with time complexity O((n+m)α(m,n)) for the incremental dynamic 3-edge-

connectivity problem, where m is the number of queries, n is the number of ver-

tices, and α(., .) is the inverse of Ackermann’s function. La Poutre [11] obtained

similar results for this problem. Using a sparsification technique [2], fully dynamic

maintenance of 3-edge connected components can be done in O(n2/3)) time per
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Figure 5.1: A better way of initializing a splay tree.
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update and per query. Liang et al. [9] devoloped an NC algorithm, which takes

O(log n log m
n

+ log n log log n/α(3n, n)) time using O(nα(3n, n)/ log n) processors

per update and O(1) time with a single processor per query. For Feynman diagrams,

a better time complexity should be achieveable due to their special structure and

the restricted nature of the query sequences. This problem is a challenging one for

future research.
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