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ABSTRACT 

Multiple Sequence Alignment (MSA) is one of the most important tools in 
modern biology.  The MSA problem is NP-hard, therefore, heuristic approaches are 
needed to align a large set of data within a reasonable time.  Among existing heuristic 
approaches, CLUSTALW has been found to be the progressive alignment program that 
provides the best quality alignments, while the program POA provides very fast 
alignments.   

In this thesis, a new MSA algorithm is implemented and tested extensively.  We 
use a Traveling Salesman Problem (TSP) algorithm to determine a circular tour in which 
the sequences are aligned.  Sequences are aligned progressively by repeatedly merging 
the closest nodes along the TSP tour.  Quality assessment of our algorithm, TspMsa, with 
CLUSTALW and POA was conducted using the BAliBASE benchmarks.  It is found that 
TspMsa provides alignments which are similar to those from CLUSTALW in most test 
cases.  Both programs give alignments which are significantly better than those from 
POA.  For alignments of large sets of sequences, TspMsa and POA run in considerably 
shorter execution times than CLUSTALW. 
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CHAPTER 1 

INTRODUCTION 

Significance 

Proteins and DNA are the two most fundamental molecules for all life forms.  

Proteins are the building blocks for all cells while DNA stores all genetic information.  

The primary structure of a protein is a linear chain of amino acids.  There are twenty 

amino acids, denoted by A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V.  

DNA molecules are chains of nucleotides.  There are four different types of nucleotides, 

denoted by A, T, G, C.  Therefore, both proteins and DNA molecules can be represented 

as strings of letters from relatively small alphabets. 

A multiple alignment of protein or DNA sequences refers to the procedure of 

comparing two or more sequences to look for maximum matching of characters (Mount, 

2001).  It is one of the most important tools in modern biology.  Multiple sequence 

alignment (MSA) provides key information for evolutionary biology and serves as an 

essential prelude to much molecular biology analysis.  Multiple alignments are most 

commonly used in the following types of analysis: finding consensus regions among 

several sequences to determine patterns that characterize protein/gene families; detecting 

homology between new sequences and known protein/gene family sequences; predicting 

secondary and tertiary structures of new protein sequences; predicting function of new 

sequences; molecular evolutionary analysis. 
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MSA has been an active area of study in computer science and bioinformatics for 

the last thirty years.  The problem of finding an optimal solution has been shown to be 

NP-complete (Wang and Jiang, 1994).  A number of heuristic MSA algorithms have been 

developed for practical usage.  These algorithms can only partially solve the 

computational challenge due to their heuristic nature.  Recent genome sequencing 

projects have led to a rapid explosion of sequence data.  Large scale data sets pose new 

demands on the speed requirement for computing alignments.  Therefore MSA continues 

to be an area of active research.   

Statement of Problem 

Given the importance of sequence alignments, it is necessary to clearly define the 

sequence alignment problem.  We can describe the problem as follows.  Given two 

sequences of letters, and a scoring scheme for evaluating two matching letters, two 

mismatching letters, and gap penalties, the goal of the sequence alignment problem is to 

produce a pairing of letters from one sequence to the other such that the total score is 

optimal.  We can insert gaps at any positions in the two sequences, but the order of 

characters in each sequence must be preserved.  If two sequences are compared, it is 

called a pairwise alignment.  If there are more than two sequences, then it is a multiple 

sequence alignment problem. 

 There are two different types of alignment, global and local.  In global alignment, 

attempts are made to detect the best alignment of the entire sequences (Mount, 2001).  In 

local alignment, the best alignment is constructed for segments of sequences with the 

highest density of matches, while the rest of the sequences are ignored (Mount, 2001).  

Examples of global and local alignments are shown in Figure 1.1.  In global alignment, 
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consideration is stretched over the entire lengths of the sequences to match as many 

characters as possible.  In local alignment, islands of highest matching are given the 

highest priority, and the alignment stops at the ends of such regions.  It is very likely that 

these regions are not aligned in a global alignment in order to favor matching more 

characters along the entire sequence lengths.  An example of this is the region of FGKG 

aligned in the local alignment in Figure 1.1.  In the global alignment of the same 

sequences, these letters are not all aligned.  In this thesis, only global alignments are 

investigated.  Hereafter, alignments refer to global alignments. 

 

Global alignment 
                       F G K - G K G 
                       | | |   | | |   
                       F G K F G K G 
 

Local alignment 
                       - - - F G K G K G  
                             | | | |     
                       F G K F G K G - - 
 

Figure 1.1  Global alignment and local alignment of two hypothetical protein sequences.   
 

 

Basic Dynamic Programming Algorithm 

Pairwise alignments can be solved in O(L2) time by following a dynamic 

programming approach, where L is the length of the sequences.  The key idea is that the 

best alignment that ends at a given pair of positions in the two sequences is the best 

alignment previous to the two positions plus the score for aligning the two positions.  The 

algorithm was first proposed by Needleman and Wunsch (Needleman and Wunsch, 1970).  
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To illustrate the algorithm we use an example adapted from 

http://www.sbc.su.se/~per/molbioinfo2001/dynprog/adv_dynamic.html.   

The two sample sequences to be aligned are  

• G A A T T C A G T T A (sequence #1) and 

• G G A T C G A (sequence #2).   

Suppose that the scoring scheme is: 

• match score = 2, if two letters are identical;  

• mismatch score = −1, if two letters are different;  

• g = −2 for the gap penalty, if a gap is inserted.  

The alignment process can be accomplished in the three steps, as follows. 

1)  Initialization  

Let m and n denote the lengths of sequence #1 and sequence #2, respectively.  In 

our example, m = 11 and n = 7.  We create a sequence versus sequence scoring table with 

m + 1 columns and n + 1 rows and fill in the first row and first column of the table with 

0s (see Figure 1.2).   

 

 
Figure 1.2  The score table after initialization. 

 

 

http://www.sbc.su.se/~per/molbioinfo2001/dynprog/adv_dynamic.html
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2)  Table fill  

Let Mi, j denote the score to be filled in the table cell at row i, column j.  We want 

Mi, j to be the best possible score for alignments of the initial segments ending with the 

character at position i of sequence #1 and the character at position j of sequence #2.  The 

value of Mi, j can be calculated recursively using the following formula, where Si, j 

denotes the value from the scoring scheme if we pair the letter at position i of sequence 

#1 with the letter at position j of sequence #2: 

Mi, j = max { Mi−1, j−1 + Si, j, Mi, j−1 + g, Mi−1, j + g }. 

Here Mi−1, j−1 + Si, j corresponds to a match or mismatch in the diagonal, Mi, j−1 + g 

corresponds to a gap in sequence #1, and Mi−1, j + g corresponds to a gap in sequence #2. 

In Figure 1.3, an arrow is placed to point back to the table element that leads to 

the maximum score.  If there are two different ways to obtain the maximum score, 

pointers are placed back to all of the cells that can produce the maximum score; an 

example is the cell with the value −1 at column 3 and row 2.  Using this method, we fill 

in all the cells of the scoring table. 

 

Figure 1.3  The completed scoring table after the table fill step of dynamic programming. 
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3)  Traceback  

In this step, we trace back through the scoring table to determine the alignment(s) 

that result in the maximum score.  After the table fill step, the maximum global alignment 

score for the two sequences is at the (m, n) position in the table.  In our example, the 

score is 3 (see Figure 1.3).  We follow the pointer to the predecessor that gives this score.  

If the pointer is diagonal, we report the two letters as aligned, otherwise, we report a gap 

in one of the sequences.  We reconstruct a path tracing back to the null positions of both 

sequences.  

There can be multiple paths leading to the maximum alignment score.  Since all 

of them produce the same score, we can simply choose one as our optimal solution.  

Therefore, if there are multiple pointers originated from the same cell in the table, one of 

the pointers is arbitrarily chosen.  In our example there are two possible paths, resulting 

in the two alignments shown in Figure 1.4.  Both of these alignments achieve the 

maximal alignment score of 3.  

 

       
  

   G A A T T C A G T T A 
   |   |   | |   |     |  
   G G A _ T C _ G _ _ A 

   G A A T T C A G T T A 
   |   | |   |   |     | 
   G G A T _ C _ G _ _ A 

Figure 1.4  Two possible traceback paths and their corresponding alignments. 
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Scoring Matrices  

 The scoring used in the previous example is a simplified scheme in which all 

matches have the same score and all mismatches have the same penalty.  In practice, all 

letters represent chemical compounds such as amino acids.  Due to their evolution and 

chemical properties, some amino acids have higher matching scores than others and some 

have higher mismatch scores as well.  The degree of match between two letters can be 

represented in a matrix, commonly called a scoring matrix.  An example is shown in 

Figure 1.5.  A scoring matrix is a summary of how to map an alphabet to itself.  If the 

scoring matrix is changed, the output alignments will in general be changed.   

 

 A R N D C Q E G H I L K M F P S T W Y V 
A 2                    
R −2 6                   
N 0 0 2                  
D 0 −1 2 4                 
C −2 −4 −4 −5 4                
Q 0 1 1 2 −5 4               
E 0 −1 1 3 −5 2 4              
G 1 −3 0 1 −3 −1 0 5             
H −1 2 2 1 −3 3 1 −2 6            
I −1 −2 −2 −2 −2 −2 −2 −3 −2 5           
L −2 −3 −3 −4 −6 −2 −3 −4 −2 2 6          
K −1 3 1 0 −5 1 0 −2 0 −2 −3 5         
M −1 0 −2 −3 −5 −1 −2 −3 −2 2 4 0 6        
F −4 −4 −4 −6 −4 −5 −5 −5 −2 1 2 −5 0 9       
P 1 0 −1 −1 −3 0 −1 −1 0 −2 −3 −1 −2 −5 6      
S 1 0 1 0 0 −1 0 1 −1 −1 −3 0 −2 −3 1 3     
T 1 −1 0 0 −2 −1 0 0 −1 0 −2 0 −1 −2 0 1 3    
W −6 2 −4 −7 −8 −5 −7 −7 −3 −5 −2 −3 −4 0 −6 −2 −5 17   
Y −3 −4 −2 −4 0 −4 −4 −5 0 −1 −1 −4 −2 7 −5 −3 −3 0 10  
V 0 −2 −2 −2 −2 −2 −2 −1 −2 4 2 −2 2 −1 −1 −1 0 −6 −2 4 

Figure 1.5  PAM 250 scoring matrix (Dayhoff et al., 1978). 

 

 Many scoring matrices have been developed and it remains an area of active 

research.  There are four different types of scoring matrices: identity matrices, genetic 

code matrices, chemical similarity matrices and substitution matrices.  Identity matrices 
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are the simplest form of scoring schemes and are generally considered less effective.  In 

an identity scoring matrix, identical amino acid pairs are given a positive score, whereas 

non-identical pairs are scored 0.  In a genetic code matrix, amino acids are scored based 

on similarities in the genetic code (three DNA/RNA bases) (Fitch, 1966).  Today this 

scheme is rarely the first choice for scoring alignments of protein sequences.  In a 

chemical similarity matrix, amino acids with similar physical-chemical properties, such 

as hydrophobicity, polarity, size, shape, and charge, receive high scores (McLachlan, 

1972).  Substitution matrices are compiled based on statistical observations of the 

substitution frequencies seen in alignments of sequences.  Early substitution matrices 

were derived by analyzing manually aligned sequences (Dayhoff et al., 1978).  More 

recent substitution matrices have had the benefit of analysis of alignments built on earlier 

matrices (Henikoff and Henikoff 1992).  Extensive experience with substitution matrices 

suggests that they are superior to simple identity, genetic code, or intuitive physical-

chemical property matrices.  Therefore, substitution matrices have become the most 

commonly used scoring schemes.   

 Two series of substitution matrices are most popular in practice. 

1)  PAM (Percent Accepted Mutation) 

In a PAM matrix, the score given an amino acid pair is a measure of the 

probability of the change of one amino acid to the other in a family of related proteins 

(Dayhoff et al., 1978).  First, a concept of PAM units was introduced to quantify the 

amount of evolutionary change in a protein sequence.  Two sequences S and T are 

defined to be one PAM unit diverged if a series of accepted point mutations (with no 
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insertion or deletion) can convert S to T with an average of one amino acid substitution 

per 100 amino acids (Dayhoff et al., 1978). 

In order to derive the PAM1 matrix, closely related sequences within a protein 

family were aligned.  For each pair of amino acids, the frequency of substitutions 

(aligning) between these two in the alignment was determined.  These probabilities were 

placed into a matrix representing all possible amino acid changes. The matrix was then 

normalized into values that represented the probability that 1 amino acid in 100 would 

undergo change (PAM units).  For a pair of amino acids (a, b), let M (a, b) be the 

observed substitution frequency, and let P be the expected frequency; then  

score (a, b) = 10 log10 ( M (a, b) / P ). 

The score is rounded up to the next integer, as shown in Figure 1.5.  A positive score 

indicates that substitutions between amino acids a and b are more likely than random.  A 

zero score indicates that substitutions between a and b occur at the random base rate.  A 

negative score indicates that substitutions between a and b are less likely than random.   

A series of PAM matrices, such as PAM160 or PAM250, have been constructed 

based on the PAM1 matrix.  A PAMn matrix is a look-up table in which scores have been 

calculated based on sequences that are diverged n PAM units apart.  The PAM250 matrix 

has been the most commonly used PAM matrix.   

2)  BLOSUM (Blocks Substitution Matrix)  

 In BLOSUM matrices, scores for each pair of amino acids are derived from 

observations of the frequencies of substitutions in blocks of local alignments of related 

proteins in the BLOCKS database (Henikoff and Henikoff 1992).  In BLOCKS there are 

3,000 blocks of highly conserved sequences representing hundreds of protein groups.  
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Similarly to the construction of PAM matrices, a log odds score of substitution frequency 

for each pair of amino acids is calculated to build a BLOSUM matrix. 

 There is a series of BLOSUM matrices, each denoted BLOSUMn for some n, 

where the number n indicates the similarity of the sequences from which the BLOSUM 

matrix was derived (Henikoff and Henikoff, 1992).   In the BLOSUM80 matrix, for 

example, the alignment from which scores were derived was created using sequences 

sharing no more than 80% identity.  The BLOSUM62 matrix is believed to be a good all-

around matrix while BLOSUM45 is recommended for more divergent sequences and 

BLOSUM100 is suggested for strongly related sequences (Henikoff and Henikoff, 1992).  

BLOSUM62 has been found to be most similar to the PAM250 matrix, but is considered 

more reliable than the PAM250 matrix for finding members of most protein families 

(Henikoff and Henikoff, 1992).   

Gap Penalties 

 In the example, we used a constant gap penalty for each gap insertion.  To 

provide a better biological modeling scheme, the gap penalty should be a function of the 

gap length.  Based on statistical studies, opening a gap should be more expensive than 

extending an existing gap (Thompson et al., 1994).  In practice, gap penalties are often 

represented as linear functions.  In that case, the score for a gap of length x can be 

represented as 

w(x) = g + g' x, 

where g is the cost of opening a gap and g' is the cost of extending a gap.  Accordingly, in 

the dynamic programming algorithm, the recursive formula for calculating the score at  

cell (i, j) in the table fill step should be changed to  
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Mi, j = max { Mi−1, j−1 + Si, j, max{Mi−x, j−1 + w(x−1)}, max{Mi−1, j−y + w(y−1)} }, 

where Mi−1, j−1 + Si, j  corresponds to a match or mismatch in the diagonal, Mi−x, j−1 + w(x−1) 

corresponds to (x−1) gaps in sequence #1, Mi−1, j−y + w(y−1) corresponds to (y−1) gaps in 

sequence #2, and the ranges are 2 ≤ x ≤ i and 2 ≤ y ≤ j for the respective max operators. 

Evaluation of an Alignment 

 How do we assess the quality of an alignment?  The scoring scheme defines the 

objective function of the multiple sequence alignment.  The goal for a pairwise alignment 

is simply to achieve the maximum total pairing score.  However, when consideration is 

extended to multiple sequence alignments, several scoring methods have been proposed 

to evaluate the quality of an alignment.  Here we discuss the two most commonly used 

scoring methods.  

1)  Sum-of-pairs (SP) 

 The sum-of-pairs method directly extends the scoring method used in pairwise 

alignments (Nicholas et al., 2002).  It is the most popular scoring method.  In this thesis, 

it is the default scoring method.   

The SP score for an aligned column in the MSA is computed by evaluating the 

matching score between each pair in the column.  Let cx,i denote the character located at 

row x and column i in the MSA, and let S(c1, c2) denote the matching score for the 

characters c1 and c2 in the amino acid scoring matrix.  Then the SP score for column i, 

SP(i), is  

SP(i)   =   ∑    S (cx,i , cy,i ). 
        x < y 
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The total SP score for an MSA can be calculated by adding all the column SP scores.  

Thus 

SP score   =      ∑    SP(i), 
        1 ≤ i ≤ n 

where n is the string length of the MSA including gaps.  When the SP score is used as the 

objective function, an optimal MSA solution is one which achieves the maximum SP 

score. 

2)  Entropy scoring 

 The entropy scoring method is preferred in mathematically and statistically 

oriented studies (Nicholas et al., 2002).  The overall entropy for an MSA is the sum of 

entropies over the columns.  The entropy for the ith column in an MSA, denoted by 

entropy(i), can be computed as: 

entropy(i)   =  − ∑    cia log pia 
            a 

where cia is the count for character a in column i, and pia is the probability of character a 

in column i.  That is, 

pia   =      cia   /  ∑    cia' . 
         a' 

A column receives zero entropy score if all the characters aligned in the column 

are the same.  The more variable the column is, the higher the entropy.  The column 

entropy reaches the highest if there are equal numbers of all possible characters in the 

column.  When entropy scoring is used as the objective function, the goal is to achieve 

minimum entropy. 

In addition to these two scoring methods, several other models such as 

consistency scoring have been suggested and used in some software packages (Nicholas 
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et al., 2002).  All of the scoring methods try to give a quantitative evaluation of the 

biological and evolutionary significance of an alignment.  However, due to the complex 

nature of biological data, all scoring methods have their limitations.  There is no universal 

standard to measure the quality of a multiple sequence alignment.     
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CHAPTER 2 

EXISTING MSA PROGRAMS 

Multidimensional Dynamic Programming 

The Needleman-Wunsh dynamic programming algorithm can be generalized from 

pairwise alignments to multiple alignments of n sequences by using an n-dimensional 

scoring table instead of the 2-dimensional scoring table used for normal dynamic 

programming.  As shown in Figure 2.1, in a 2-dimensional scoring table the value in a 

cell is derived form one of its three neighbors, while a cell in a 3-dimensional scoring 

table depends for its value on seven neighbors.  For n sequences of length L, the time 

complexity for multidimensional dynamic programming is O(2nLn) and the space 

complexity is O(Ln).  This approach is so computationally expensive that it is considered 

impractical for n > 4. 

    

Figure 2.1  2- and 3-dimensional scoring tables. 
 

 Multidimensional dynamic programming has been optimized to make it feasible 

for aligning a moderate number of sequences of reasonable lengths (Lipman et al., 1989).  

A program called MSA was implemented based on the Lipman optimization.  Later, 
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several improvements were reported which reduced the memory and time requirements 

of MSA (Gupta et al., 1995).  The improved version is freely available for research use 

and can be downloaded via ftp://fastlink.nih.gov/pub/msa.   

 The key idea of the Lipman algorithm is that the sum-of-pairs score for any pair 

of sequences in an optimal multiple sequence alignment should be lower than the SP 

score for the optimal pairwise alignment of the pair of the sequences, and that the total SP 

score should be higher than the SP score in a heuristic solution.  By setting the lower 

bound and upper bound, only a restricted space needs to be explored in the n-dimensional 

scoring table, as shown in Figure 2.2.  This can reduce the computation time greatly.  The 

main steps of an optimized MSA algorithm are described below. 

1) Compute the optimal pairwise alignment for each pair of sequences. 

2) Apply a fast heuristic multiple sequence alignment program to align all the 

sequences.  Extract the pairwise alignments from the heuristic solution. 

3) For each pair of sequences, define the 2-dimensional restricted space using the 

optimal and extracted pairwise alignments.  This space covers the area in the 

scoring table where alignments have SP scores lower than the optimal but higher 

than the extracted alignment (see Figure 2.2 A).  Normally the 2-dimensional 

restricted area is extended to somewhat beyond this limit.  

4) Lift the 2-dimensional restricted spaces up to the n-dimensional scoring table to 

determine the multidimensional restricted space, as shown in Figure 2.2 B.   

5) Use dynamic programming to fill in the cells within the restricted space in the 

scoring table. 

6) Traceback to reconstruct the alignment. 

 

ftp://fastlink.nih.gov/pub/msa
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(http://www.psc.edu/general/software/packages/msa/), the input data size 

is limited to fewer than 50 sequences with each sequence having fewer than 150 amino 

acids, fewer than 25 sequences with each sequence having fewer than 500 amino acids, or 

fewer than 10 sequences with each sequence having fewer than 1000 amino acids.   

Progressive Alignment Methods  

Since finding an optimal multiple sequence alignment is extremely expensive 

computationally, many heuristic approaches have been developed to find near optimal 

solutions within reasonable lengths of time.   Depending on the fundamental strategies 

used, these heuristic alignment algorithms can be classified into two categories: 

progressive and iterative methods (see Figure 2.3).  The progressive approach has been 

the more popular. 

 

 

Iterative

prrp

GA
saga

HMMs 
hmmt 

Progressive 

UPGMA 
multalign 

pileup 

SB 
multal

NJ 
clustalw poa

 

Figure 2.3  Classification of different alignment programs and algorithms 

(modified from Thompson et al., 1999). 

 

 

 

http://www.psc.edu/general/software/packages/msa/
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The basic idea of progressive alignment methods is to repeatedly apply the 

pairwise alignment algorithm instead of aligning all sequences simultaneously.  Given n 

sequences of length L, the running time for progressive alignments is O(nL2).  The major 

steps of a progressive algorithm are described below.   

1) Choose two sequences and align them.  

2) Choose another sequence and align it to the current group. 

 3) Repeat step 2 until all the sequences are aligned.   

 In some progressive algorithms, sequences are first aligned into subgroups and 

then subgroups are merged to one group.  Although all progressive algorithms adopt the 

same basic strategy, they apply different modifications to the pairwise dynamic 

programming algorithm to align two subgroups of sequences.  Aligning a sequence to a 

group of sequences is a special case for aligning two groups in which one group contains 

only one sequence.  Two algorithms for the modified dynamic programming alignment 

process are introduced below.  In the Feng-Doolittle progressive alignment algorithm, 

groups of sequences are reduced into a sequence of one-dimensional profiles before the 

pairwise dynamic programming algorithm is applied.  In alignments using partial-order 

graphs, groups of sequences are represented as a partial-order graph and then a dynamic 

programming algorithm is applied.   

1)  Feng-Doolittle progressive alignment 

Traditionally, the Feng-Doolittle progressive alignment algorithm has been the 

most popular method.  It is based on their landmark work (Feng and Doolittle, 1987).  

The program ALIGN (Feng and Doolittle, 1996) implements the algorithm and is freely  
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available at  

http://www-biology.ucsd.edu/~msaier/transport/software.html.   

In the Feng-Doolittle progressive alignment, in order to compute the matching 

score for two positions from the two groups, matching scores for every pair of characters 

from the two positions are added up and averaged.  For example, in the process of 

aligning the two groups of sequences in Figure 2.4, the matching score of the position in 

group 1 with the amino acids T and A versus the position in group 2 with V, M and V is  

(S(T, V) + S(T, M) + S(T, V) + S(A, V) + S(A, M) + S(A, V)) / 6, 

where S(c1, c2) denotes the matching score for characters c1 and c2 in the scoring matrix.  

With this scoring scheme, we can compute the dynamic programming scoring table for 

two groups of sequences using the pairwise alignment algorithm.  

 

group 1: VSLKTHPD 
  MSLKAHPD 

 
group 2: VPSLKTHD 
  MPSLKTHD 
  VPSLKAHD 

Figure 2.4  Aligning two groups of sequences. 
  

To apply full dynamic programming, one modification at the traceback step must 

be made in order to align two groups of sequences.  At this step, a group of sequences is 

treated as a whole; if a gap should be added at a certain position, a gap is added at that 

position for all the sequences in the group.  In our example, let “–” denote a gap.  

Assuming that a gap is needed after the first position in group 1, and a gap should be 

added before the last position in group 2, the resulting alignment is shown in Figure 2.5. 

 

 

 

http://www-biology.ucsd.edu/~msaier/transport/software.html
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group 1:  V-SLKTHPD 
M-SLKAHPD 

group 2:  VPSLKTH-D 
MPSLKTH-D 
VPSLKAH-D 

Figure 2.5  Inserting gaps in alignment of two groups of sequences. 
 

Notice that any group of sequences to be aligned in a Feng-Doolittle progressive 

alignment is in fact an alignment of sequences.  Gaps resulted from the initial alignments 

are fixed.  In the later alignments, gaps in these sequences are treated as characters.  

Therefore, the rule “once a gap, always a gap” applies.  All earlier gaps are frozen in the 

alignment.  The order in which the sequences are aligned is therefore essential for the 

quality of the final alignment.  The example in Figure 2.6 illustrates this.  If we first align 

x with y, and z with w, the resulting alignment is shown in the figure.  When we align 

group xy with group zw, y clearly should be changed to  

y: GA-CTT 

However, early mistakes cannot be corrected in the Feng-Doolittle progressive alignment.  

Therefore, the algorithm is by nature greedy for a locally optimal solution and thus does 

not guarantee a global optimal solution (Thompson et al., 1994). 

x: GAAGTT 
y: GAC-TT 

 
z: GAACTG 
w: GTACTG 

Figure 2.6  An example of a progressive alignment. 
 

2)  Programs based on Feng-Doolittle progressive alignment 

The Feng-Doolittle progressive alignment is the most common heuristic technique.  

A variety of programs, such as MULTAL, MULTALIGN, PILEUP and CLUSTALW are 
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developed based on the Feng-Doolittle alignment process (see Figure 2.3).  They differ 

only in how to determine the order in which sequences or sequence groups are aligned.  

All of them share the same major steps:  

1) Calculate the n(n-1)/2 distances between all pairs of n sequences by standard 

pairwise alignment. 

2) Construct a guide tree using a clustering algorithm 

3) Align sequences.  Align the closest sequences first, then, add the more distant 

ones in the order specified by the guide tree. 

Several algorithms have been used in practice to construct guide trees.  MULTAL 

uses a Sequential Branching (SB) method to determine the alignment order (Taylor, 

1988).   The closest pair is aligned first.  The sequence that has the highest pairwise SP 

score to either of the aligned sequences will be added next.  The core grows until all the 

sequences are incorporated.  If all the unaligned sequences have low SP scores with those 

in the core, then a new chain is started by aligning the closest pair among the unaligned 

sequences.  A second pass will be needed to fuse all the chains together. 

MULTALIGN (Barton and Sternberg, 1987) and PILEUP (Wisconsin package 

v.8 from Genetics Computer Group; http://www.gcg.com) use the UPGMA method 

(Sneath and Sokal, 1973) to construct the guide tree.  UPGMA stands for unweighted 

pair-group method using arithmetic averages.  Using this method, we first identify from 

among all the sequences the two sequences that are most similar to each other and align 

them.  These two sequences are then treated as a new sequence.  I will call it a composite 

sequence.  The pairwise distances between this new composite sequence and other 

sequences are recalculated.  The distance between a simple sequence and a composite 
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sequence is the average of the distances between the simple sequence and each simple 

sequence in the composite sequence.  For example, let AB denote a composite sequence 

composed of sequences A and B, let C be another sequence, and let dist(A, C) denote the 

pairwise distance between sequences A and C.  Then the distance between AB and C is 

dist(AB, C) = (dist(A, C) + dist(B, C)) / 2 . 

In this way, all pairwise distances for the new group of sequences can be calculated.  We 

subsequently select the pair with the highest similarity to align.  Then new pairwise 

distances are recalculated, and the whole cycle is repeated until we have only one 

composite sequence as our final alignment.  

CLUSTALW (Thompson et al., 1994) and its other version called CLUSTALX, 

which provides a graphical user interface, use a complicated scheme called the Neighbor-

Joining (NJ) method (Saitou and Nei, 1987) to determine the guide tree.  First, unrooted 

trees where each leaf represent a sequence are derived based on pairwise distances.  

These unrooted NJ trees have branch lengths proportional to the sequence divergence.  

Then, a midpoint root position is calculated and a rooted NJ tree is constructed where 

each branch is associated with a weight.  These weights are used later to derive a weight 

for each sequence.  The rooted NJ tree will serve as the guide tree for the progressive 

alignment.   

CLUSTALW (Thompson et al., 1994) has made important improvements to the 

progressive alignment process.  Two gap penalties, a gap opening penalty and a gap 

extension penalty, are used.  CLUSTALW dynamically calculates the gap penalties to 

customize the values for each set of sequences.  It also automatically changes the scoring 

matrix (within the same matrix series, such as the BLOSUM series) during the course of 
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building the alignment based on the divergence of the sequences.  CLUSTALW assigns a 

weight to each sequence based on the guide tree.  In the dynamic programming table fill 

step, weighted scores are used in the objective function.  Using our previous example of 

two groups of sequences, with each sequence assigned a weight (w1 through w5, as 

indicated in Figure 2.7), then the weighted matching score of the two marked positions is  

(w1w3S(T, V)+w1w4S(T, M)+w1w5S(T, V)+w2w3S(A, V)+w2w4S(A, M)+w2w5S(A, V)) / 6. 

group 1: VSLKTHPD  w1 
  MSLKAHPD  w2 
 
group 2: VPSLKTHD  w3 
  MPSLKTHD  w4 
  VPSLKAHD  w5 

 
Figure 2.7  Aligning two groups of weighted sequences. 

 

These efforts have made CLUSTALW one of the most successful alignment 

packages.  It has been shown that CLUSTALW provides the best quality alignments 

compared to other progressive alignment programs (Thompson et al., 1999).  

CLUSTALW has been one of the most commonly used alignment programs since 1994 

(Thompson et al., 1999).  The European Bioinformatics Institute provides online 

CLUSTALW service at http://www.ebi.ac.uk/clustalw/.  CLUSTALW 

packages for different operation systems are freely available at 

ftp://ftp.ebi.ac.uk/pub/software/.   

3)  Partial order alignment (POA) 

In the Feng-Doolittle alignment, a group of aligned sequences is averaged into a 

1-dimensional profile when developing the dynamic programming table.  For each 

column in the alignment, the 1-dimensional profile keeps character and gap frequencies.  

 

http://www.ebi.ac.uk/clustalw/
ftp://ftp.ebi.ac.uk/pub/software/
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This data structure does not keep information as to which sequence a character comes 

from.  The POA method (Lee et al., 2002) tries to correct this by using a partial order 

multiple sequence alignment (PO-MSA) data structure to represent a group of aligned 

sequences as a partial order graph.  In the PO-MSA format, each character is represented 

as a node and directed edges are drawn between consecutive characters in each sequence 

(see Figure 2.8).  Characters that are aligned and identical are fused into one node, while 

characters that are aligned but not identical are represented as separated nodes with a 

record marking that they are aligned to each other (represented by dashed circles in the 

figure).  This data structure makes it possible to trace the path of each individual 

sequence. 

  

E T - - P K M I V R 
E T T H – K M L V R 

 

P I
E T K M V R 

T H L

Figure 2.8  PO-MSA representation of a group of aligned sequences 
(modified from Lee et al., 2002). 

 

 

 A modified version of the Needleman-Wunsch pairwise alignment has been 

developed to extend dynamic programming to the PO-MSA data format (Lee et al., 2002).  

In the dynamic programming scoring table, multiple surfaces arise at the positions 

corresponding to the branches in the PO-MSA, as shown in Figure 2.9.  On a given 

surface, the traditional dynamic programming procedure can be applied, and the value in 
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a cell is derived from one of its three neighbors.  At junctions where multiple surfaces 

fuse, more move directions are needed to allow entry from any of the surfaces.  As 

illustrated in the figure, at the surface junction where two surfaces fuse a cell’s value 

depends on the values in five possible neighbors on the two surfaces.  

 

P

E T KT H

E

T

N

K

Figure 2.9  Dynamic programming table for the PO-MSA data format 
(modified from Lee et al., 2002).   

 

 The program POA implements this algorithm (Lee et al., 2002) and is available at 

http://www.bioinformatics.ucla.edu/poa.  POA is very efficient, and is 

capable of handling large data sets.  It can align 5000 sequences in 4 hours on a  

Pentium II (Lee et al., 2002).    

Iterative Alignment Methods 

Several iterative methods (indicated in Figure 2.3) applying different techniques 

have been developed recently, providing fresh approaches to solve the alignment problem.  

Iterative methods construct a low quality alignment first, and then refine the alignment in 

a series of iterative steps.   
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The program SAGA (Notredame and Higgins, 1996) uses a Genetic Algorithm 

(GA) to create an evolving population of alignments and then select for possible solutions.  

The alignments optimize the objective function COFFEE, which measures the 

consistency between a multiple alignment and a library of pairwise alignments 

(Notredame and Higgins, 1996).     

With a solid statistical base in probability theory, Hidden Markov Models (HMMs) 

have also been introduced into the multiple sequence alignment field (Eddy, 1995).  

HMMs are used to represent the consensus of a protein family.  The program HMMT 

maximizes the possibility that an HMM represents the sequences to be aligned (Eddy, 

1995). 

The PRRP program (Gotoh, 1996) optimizes a progressive alignment by 

iteratively dividing the sequences into two groups.  Subsequently, the groups are 

realigned using a global group-to-group alignment algorithm until an optimal alignment 

is obtained. 

Compared to progressive methods, iterative methods trade off efficiency for 

quality.  Iterative methods in general provide more alignment accuracy, although the 

iteration process may be unstable sometimes (Thompson et al., 1999).  However, iterative 

methods have a big disadvantage in computational time (Thompson et al., 1999; Nicholas 

et al., 2002).  Iterative approaches can sometimes even exceed the multidimensional 

dynamic programming in running time requirements (Nicholas et al., 2002).   
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CHAPTER 3 

ALGORITHM AND IMPLEMENTATION 

Overall Structure 

 Based on an approach proposed by Korostensky and Gonnet (Korostensky and 

Gonnet, 2000), we have developed and implemented a heuristic progressive alignment 

algorithm TspMsa.  The basic idea is to use a traveling salesman tour to determine the 

order in which the sequences are aligned.  Preliminary work (Wang, 2002) indicated that 

this algorithm produces alignments with better SP scores than those using CLUSTALW 

or PILEUP and that the SP score is related to the starting point and the direction of the 

TSP circle.  However, there are several deficiencies in the preliminary work.  First, the 

evaluation method is not appropriate.  The biological importance of a higher SP score is 

unclear.  Further, as CLUSTALW dynamically changes the scoring matrix and the gap 

penalty for each sequence, using a fixed scoring matrix to evaluate the final alignment 

will unfairly penalize CLUSTALW.  Second, the pairwise distance calculation is not 

accurate.  Third, the TSP solver used is slow.  This limits the practical usage of the 

program.  This thesis presents a more thorough study in which we have corrected the 

above deficiencies and also provided several improvements to the algorithm.   

The basic algorithm consists of three main stages. 

1. For each pair of the sequences, a pairwise alignment is calculated in order to 

provide an SP score.  All pairwise SP scores are converted to distances and a 

distance matrix is generated. 
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2. A Traveling Salesman Problem (TSP) solver is applied to the pairwise distance 

matrix to determine a circular tour that has minimum total distance. 

3. The Feng-Doolittle progressive alignment algorithm is applied to the sequences in 

an order which follows the TSP tour. 

A flowchart of the procedure and the output at each step are illustrated in Figure 3.1 

using a set of five cold shock protein sequences.  Each step will be described in more 

detail below. 
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input 
sequences

 
46

24

51

67 01415

58 1401

61 1510

csp7_strc1  2 

1csp        0 

1mef        1

1 20 3 4 

 

calculate 
pairwise 
distances
 

38 0462451

38 0 675861

grp2_nicsy  3

cbfx_mouse  4 

1 2

0

determine
the TSP 
tour 
43

cbfx_mouse   ....VLGTVK WFNVRNGYGF INRNDTKEDV FVHQTAIKKN
grp2_nicsy   .....KGTVK WFSDQKGFGF ITPDDGGEDL FVHQSGIRSE
1mef         MSGKMTGIVK WFNADKGFGF ITPDDGSKDV FVHFSAIQND
1csp         ...MLEGKVK WFNSEKGFGF IEV.EGQDDV FVHFSAIQGE
csp7_strcl   ...MATGTVK WFNAEKGFGF IAQDGGGPDV FVHYSAINAT
 
cbfx_mouse   NPRKYLRSVG DGETVEFDVV EGEKG.AEAA NVTGP.   
grp2_nicsy   G....FRSLA EGETVEFEVE SGGDGRTKAV DVTGP.   
1mef     G....YKSLD EGQKVSFTIE SGAKG.PAAG NVTSL.   n 
alig
Fig

1csp 
csp7_
>1csp 
MLEGKVKWFNSEKGFGFIEVEGQDDVFVHFSAIQGEGFKTLEEG
QAVSFEIVEGNRGPQAANVTKEA 
>1mef 
MSGKMTGIVKWFNADKGFGFITPDDGSKDVFVHFSAIQNDGYKS
LDEGQKVSFTIESGAKGPAAGNVTSL 
>csp7_strcl 
MATGTVKWFNAEKGFGFIAQDGGGPDVFVHYSAINATGFRSLEE
NQVVNFDVTHGEGPQAENVSPA 
>grp2_nicsy 
KGTVKWFSDQKGFGFITPDDGGEDLFVHQSGIRSEGFRSLAEGE
TVEFEVESGGDGRTKAVDVTGP 
>cbfx_mouse 
VLGTVKWFNVRNGYGFINRNDTKEDVFVHQTAIKKNNPRKYLRS
VGDGETVEFDVVEGEKGAEAANVTGP 
ure 3.1  The basic alignment procedure of TspMsa. 

    G....FKTLE EGQAVSFEIV EGNRG.PQAA NVTKEA   
strcl   G....FRSLE ENQVVNFDVT HG.EG.PQAE NVSPA.  
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Input/Output Files  

 The input sequence file format is the FASTA format used by the National Center 

for Biotechnology Information (NCBI).  This format is accepted for many multiple 

sequence alignment programs.  A description for the FASTA format can be found on 

http://www.ncbi.nlm.nih.gov/BLAST/fasta.html.   

Sequences in FASTA formatted files are listed one sequence right after another.  

Each sequence is preceded by a single-line description (see Figure 3.2).  The description 

line is distinguished from the sequence data by starting with a “>” symbol.  The first 

word on this line is the name of the sequence.  The rest of the line is an optional 

description of the sequence.  Following the description line are lines of sequence data.  

Blank lines in a FASTA file are ignored, and so are spaces or other illegal or undefined 

symbols in a sequence.   

> seq1 This is the description of my first sequence. 
AGTACGTAGTAGCTGCTGCTACGTGCGCTAGCTAGTACGTCA 
CGACGTAGATGCTAGCTGACTCGATGC 
> seq2 This is the description of my second sequence. 
AGTACGTAGTAGCTGCTGCTACGTGCGCTAGCTAGTACGTCA 
CGACGTAGATGCTAGCTGACTCGATGC 
> seq3 This is the description of my third sequence. 
AGTACGTAGTAGCTGCTGCTACGTGCGCTAGCTAGTACGTCA 
CGACGTAGATGCTAGCTGACTCGATGC 

Figure 3.2  A hypothetical FASTA file illustrating the file format. 

 

The output multiple sequence alignment file format is the MSF format defined by 

the Genetics Computer Group (GCG).  The MSF format was originally used by programs 

of the GCG suite such as PILEUP.  Presently, it is widely supported by other software 

such as CLUSTALW.  MSF ignores blank lines.  Some of the hallmarks of an MSF 

 

http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
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formatted file are listed below.  The format is illustrated in Figure 3.3.  In my program, 

all optional descriptions are skipped in the output. 

 
PileUp 
 
   MSF:   61  Type: P    Check:  6540   ..  
 
 Name: 1idy oo  Len:   61  Check:  9109  Weight:  10.0 
 Name: 1hstA oo  Len:   61  Check:  6853  Weight:  10.0 
 Name: 1tc3C oo  Len:   61  Check:  9591  Weight:  10.0 
 
// 
 
1idy       MEVKKTSWTE EEDRILYQAH KRLG.NRWAE IAKLLP.... ..GRTDNAIK  
1hstA      ...SHPTYSE MIAAAIRAEK SRGG.SSRQS IQKYIKSHYK VGHNADLQIK  
1tc3C      ....RGSALS DTERAQLDVM KLLN.VSLHE MSRKIS.... ...RSRHCIR  
 
1idy       NHWNSTMRRK V 
1hstA      LSIRRLLAAG V 
1tc3C      VYLKDPVSYG T 

Figure 3.3  An example of an MSF file illustrating the file format. 

 

• First is an optional line describing the program that produced the alignment.  

• Next is an optional description line having the following keywords: “MSF”, 

followed by a number specifying the alignment length; “Type”, followed by either 

the letter P for protein sequences or N for nucleotide sequences; “Check”, 

followed by a number which is the checksum made up of the ASCII values of the 

sequence characters.  This line ends with two periods. After the periods the data 

starts, and anything preceding the data may be omitted. 

• Next, and preceding the alignment, there is an alignment description.  A line in 

this part starts with the sequence name following the keyword “Name”. The 

names have to be unique.  No blank is accepted within a name.  Following the 

name are the optional fields “Len”, “Check”, and “Weight”.   
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• A line with “//” is added as the terminator for the header list.  After this, the 

alignment begins. 

• In the alignment part, sequences are aligned with each other.  Each line starts with 

a sequence name listed in the header.  Each period denotes a gap.  Blank spaces 

are ignored. 

Pairwise Distances  

Pairwise alignments are performed using the Needleman-Wunsch dynamic 

programming alignment.  Three scoring matrices, PAM250, BLOSUM62, and GONNET, 

are offered for user selection.  Once a scoring matrix is selected, it is used throughout the 

program for all the sequences.  Similarly, a fixed gap penalty associated with the scoring 

matrix is used throughout the alignment.  Once the table fill step of the dynamic 

programming is completed, the final SP score is extracted.   

Since SP scores are matching scores, we have to convert them to distances in 

order to use the TSP solver.  After SP scores have been calculated for each pair of 

sequences, the maximum score among all pairs is recorded as SPmax.  All SP scores are 

then converted to distances by using the following function:  

distancei, j  = SPmax – SPi, j + 1, 

where distancei, j denotes the distance for sequence i and sequence j, and SPi, j denotes the 

SP score for sequences i and j. 

TSP  

The Traveling Salesman Problem is the following: given a set of n nodes and 

distances for each pair of nodes, find a round trip of minimal total length visiting each 
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node exactly once.  In the symmetric traveling salesman problem, the distance from node 

i to node j is the same as from node j to node i.   

Although TSP is NP-hard, it has been studied extensively.  Using a branch and 

bound algorithm (reviewed by Kreher and Stinson, 1999), optimal solutions can be 

solved within a few hours for up to 100 nodes and in a few seconds for up to 30 nodes.  

Many heuristic approaches have been developed.  Among them is the Lin-Kernighan 

algorithm (reviewed by Rego and Glover, 2002), which can give a near optimal solution 

within 200 seconds for up to 10,000 nodes (Johnson and McGeoch, 2002).  

In my program, each sequence is considered a node.  If there are fewer than 10 

nodes, TSP3, an exact TSP solver using the branch and bound algorithm, is applied.  

TSP3 is freely available from http://www.math.mtu.edu/~kreher/cages.html.  

If there are more than 10 nodes, the Lin-Kernighan heuristic is applied.  The 

implementation used is LINKERN, which is part of the CONCORDE suite.  The code 

can be downloaded from 

http://www.math.princeton.edu/tsp/concorde.html. 

 The input format for TSP3 is the number of nodes followed by a distance matrix, 

as shown in Figure 3.4A.  The input for LINKERN must be in TSPLIB format, which is 

illustrated in Figure 3.4B.  TSPLIB is a library of sample instances for the TSP and 

related problems of various types.  Examples can be found from 

http://www.informatik.uni-heidelberg.de/ 

groups/comopt/software/TSPLIB95/index.html.   

The TSPLIB formatted matrix file begins with several lines of descriptions followed by 

the distance matrix and ends with EOF.  In the description lines, the fields NAME, 

COMMENT and TYPE, which specify the name of the data set, any comments and the 

 

http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html
http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html
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type of the TSP problem (TSP or TSP related problems), respectively, are optional lines 

for LINKERN.  In the DIMENSION description line the number of nodes is specified.  

The distance data are listed after the keyword EDGE_WEIGHT_SECTION.  After all the 

pairwise sequence distances are calculated, the distance matrix is written into a file in 

proper format according to the number of sequences.  This file then serves as the input 

for the TSP solver.  

 
 A) 
 
 
 
5 
 0 1 15 51 61 
 1 0 14 24 58 
 15 14 0 46 67 
 51 24 46 0 38 
 61 58 67 38 0 

B)   NAME: csp_ref1 
     COMMENT: code shock proteins 
     TYPE: TSP 
     DIMENSION: 5 
     EDGE_WEIGHT_TYPE: EXPLICIT 
     EDGE_WEIGHT_FORMAT: FULL_MATRIX
     EDGE_WEIGHT_SECTION 
      0 1 15 51 61 
      1 0 14 24 58 
      15 14 0 46 67 
      51 24 46 0 38 
      61 58 67 38 0 
     EOF 

Figure 3.4  A distance matrix TSP3 format and in TSPLIB format. 
 

Progressive Alignment 

After the alignment order is extracted from the TSP tour, sequences are aligned 

using the basic Feng-Doolittle progressive alignment (Feng and Doolittle, 1996).  Unlike 

CLUSTALW, my program uses only a simple scoring scheme.  Sequences are not 

weighted.  The gap penalty and the scoring matrix are constant. The same gap penalty 

and scoring matrix values are used for the progressive alignment and for the prior 

pairwise alignments.  
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Aligned sequences are represented as an array of strings.  However, this is not 

computationally efficient for large data sets.  Consider the process of aligning two groups 

of sequences, Seq1 and Seq2, with n1 sequences in Seq1 and n2 sequences in Seq2.  The 

matching score between column i in Seq1 and column j in Seq2 is given by 

(  Σ   S(Ci, m, C'j, n) )/ (n1n2) 
         m, n 

where Ci, m denotes the ith character of sequence m in the sequence group Seq1, C'j, n 

denotes the jth character of sequence n in Seq2, and S(c1, c2) is the matching score for 

characters c1 and c2.  Since we need to add up the matching scores for every pair of letters 

from the two columns, this calculation will take O(n1n2) time as there are n1n2 pairs of 

characters.  This is not efficient when n1 or n2 is large. 

For large data sets, a vector associated with each column was used to ensure that 

progressive alignment would run in linear time.  The improvement takes advantage of the 

fact that the alphabet for all the sequences has no more than 20 characters.  When a group 

of sequences has more than 20 individual sequences, a profile is constructed for each 

column of the group.  The profile records the frequency for each of character in the 

column.  For example, for column i of Seq1, we have profile P(i ) = [fA, fB, …, fY], where 

fA represents the frequency of the letter A in column i, and so on for the other characters.  

Similarly, the profile for column j in Seq2 has the form P'(j) = [fA', fB', …, fY'].  Then the 

matching score between the two columns is  

(  Σ Σ  fa fb' S(a, b) )/ (n1n2), 
             a   b 

where a and b range independently over the alphabet.  Since there are at most 20 

characters in the alphabet, there are at most 20 × 20 = 400 possible (a, b) pairs.  
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Therefore, the calculation runs in constant time.  After the two groups are aligned, if 

column i is aligned with column j, then the profile for the new column is  

[fA+fA', fB+fB', …, fY+fY'].  This profile approach makes the running time for the 

progressive alignment step O(mL) where m is the number of sequences and L is the 

maximum sequence length. 

Implementation 

The package TspMsa is written in Java.  In this section, the major classes 

implemented are briefly introduced. 

The class TspMsa serves as the control module.  TspMsa takes the input from 

the user to determine the input file name.  The user can also specify parameters such as 

output file name, scoring matrix, and running mode (quick/slow).  TspMsa uses other 

modules to perform individual tasks.   

The class Sequences serves as an input/output module.  It extracts sequences 

from a text file and stores them as an array of strings.  The class Sequences is also 

maintained as a data structure.  The actual sequence data, including profiles for the group 

of sequences, are associated with the class.   

The DistCalculator class performs dynamic programming alignment on two 

groups of sequences to compute the final SP score.  A single sequence is considered a 

group that has only one sequence.  DistCalculator has a field that specifies which 

scoring matrix will be used. 

The TspCircle class implements a circular linked list.  It is the data structure 

used to represent the sequences as a TSP tour.  Each node contains sequence data.  Nodes 
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are assembled in the order of the TSP tour.  In the progressive alignment step, the 

sequences in one node can only be aligned with the sequences in one of its two neighbors. 

The Align class aligns two groups of sequences using the Feng-Doolittle 

progressive alignment. 

A summary of the major classes and their functions is presented in Table 3.1. 

 

Class Method Function 
TspMsa main Control the entire alignment process.   

constructor Read a FASTA file, convert sequence data to an 
array of strings. 

buildProf Construct the profiles for each column when 
there are more than 20 sequences in the group. Sequences 

write Write the aligned sequences into a MSF 
formatted file. 

calculate 
Calculate the maximum SP score for two groups 
of sequences using full dynamic programming 
alignment. DistCalculator 

pairDist Calculate the SP score for a pair of sequences 
using a fast approximate method (see Chapter 4). 

insert Insert a node into the TspCircle. 

TspCircle 
merge 

Align the sequence in a node with the sequence 
in one of its neighbors.  Merge the two nodes into 
one that carries the newly aligned sequences. 

Align align Construct the alignment for two groups of 
sequences. 

Table 3.1 Major classes and their principle methods in the TspMsa package. 
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CHAPTER 4 

RESULTS 

Test Data and Quality Evaluation Method  

For evaluation and comparison of alignment algorithms, a standard set of 

reference alignments is needed.  Currently, BAliBASE (Thompson et al., 1999) is the 

only available benchmark for sequence alignments.  BAliBASE stands for benchmark 

alignment database.  It is a database of manually-refined multiple sequence alignments 

specifically designed for comprehensive studies of multiple sequence alignment 

programs.  The alignments have been verified and corrected by superimposition of all 

known three-dimensional protein structures.  BAliBASE is available at 

http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE2/. 

BAliBASE 2.0 consists of 220 alignments, containing more than 1000 sequences.  

All sequences in BAliBASE are real protein sequences.  The alignments are categorized 

into eight reference sets by sequence length, similarity, and presence of insertions and 

N/C- terminal extensions.  The reference sets represent some of the most common 

multiple sequence alignment problems encountered in practice.  Reference 1 contains 

equidistant sequences with various levels of similarity among sequences.   The percent 

identity between two sequences is within a specified range.  All the sequences are of 

similar length, with no large insertions or extensions.  Reference 2 aligns families of at 

least 15 closely related sequences with up to three highly divergent "orphan" sequences 

(less than 25% identical).  Reference 3 consists of up to 4 sub-groups, with less than 25% 
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residue identity between sequences from different groups.  Reference 4 and reference 5 

contain alignments of up to 20 sequences including N/C-terminal extensions (up to 400 

residues), and insertions (up to 100 residues).  Reference 6 contains alignments of 

sequences with repeated fragments.  It is recommended that an alignment be performed 

with the repeat domains only.  Reference 7 consists of transmembrane protein sequences.  

Reference 8 consists of proteins with circular permutations.  For each family in reference 

8, an independent alignment of each permuted domain is recommended.  Proper 

alignments of the reference sets 6 and 8 require a preprocessing step for all the sequences, 

so the test data in these two reference sets are not used in this study. 

In order to accurately measure the performance of an alignment program, a 

quantitative evaluation method is needed to measure the consistency between the test 

alignment and the reference alignment.  A standard evaluation has been developed 

(Thompson et. al, 1999).  Let n be the number of sequences in the alignment, and suppose 

the alignment consists of m columns.  Let Ai1, Ai2, Ai3,…,Ain denote the characters in the 

ith column in the alignment.  For each pair of characters Aij and Aik, we define Pijk such 

that Pijk = 1 if letters Aij and Aik are aligned with each other in the reference alignment, 

and Pijk = 0 if not.  Then the column score for the ith column, SCi, is  

SCi   = ∑ n   ∑ n         Pijk   . 
          j=1      k=1, k≠j 

The total score for the alignment, S, is computed as 

S   = ∑ m   SCi         ∑ m'   SCi' 
     i=1      i=1 
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where m' is the column number in the reference alignment and Si' is the column score for 

the ith column in the reference alignment.  The score lies between 0 and 1, with 1 being 

the best and 0 the worst. 

To evaluate the program TspMsa, CLUSTALW and POA were used in this study 

for performance comparisons.  Comparable parameters were set for all programs in the 

alignments using the BAliBASE data as test cases.  The scoring matrix BLOSUM 62 was 

used for TspMsa and POA, while the BLOSUM series was set for CLUSTALW.  

CLUSTAL was set to run in the slow and accurate mode unless indicated otherwise 

below. 

Starting Point and Direction of TSP 

The TSP tour provides a circular order for the alignment.  In a circle, there is no 

canonical starting node or direction.  However, the progressive alignment is heuristic.  It 

is sensitive to alignment order.  To test the effect of assembly order, alignment scores 

starting from different nodes in the TSP circle and following different directions of the 

circle were tested.  Given a starting node and a direction, the sequence in the starting 

node is first aligned with the sequence in the next node on the TSP circle in the given 

direction.  Then the sequence in the third node is aligned with the group.  This step is 

repeated, adding one sequence at a time, until they have all been aligned.  It was found 

that different starting points and different directions gave different qualities of alignment.  

This is illustrated in Figure 4.1 using the representative example kinase_ref3, a reference 

set of 23 sequences in BAliBASE.  The two numbers linked to each node by two arrows 

are the scores for alignments starting from this node, while the arrows indicate the 

directions of the tour taken.  In Figure 4.1, the number inside a node is the sequence ID of 
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the sequence associated with the node (see Table 4.1).  The number outside the circle on 

an edge between two nodes is the distance between the two nodes.  The number inside on 

the edge is the rank of the distance.  The shortest distance between two nodes is ranked 0, 

while the longest is ranked 22.  The lengths of the edges are not drawn to scale. 

 

 

0.7030.747
0.770 0.703

4980.737 0.674290337 9 13 1 814
18

129508 10
14 40.749 8 6240.665375 0.7020.653
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0.603 0.6816 3 0.736
632 17 0.654 93220
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0.73119 170.6690.733 7 00.712 1 0.686251 0.739
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Figure 4.1  Different alignment scores for kinase_ref3. 
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0 1 2 3 4 5 
1cdkA dc1 kcc1_yeast kcc2_yeast psk-h1 Bark 

      

6 7 8 9 10 11 
ks62_human pkc-beta kpc1_yeast ypk2_yeast krac_dicdi 1csn 

      

12 13 14 15 16 17 
rag8_klula ck13_yeast kc1e_human hr25_yeast hhp2_schpo kc1a_drome

      

18 19 20 21 22 
kc1b_bovin dckii cka1 cka2 erk1 

Table 4.1  The sequence IDs (used in the TSP tour) and corresponding names for  
the sequences in kinase_ref3. 

 

As shown in Figure 4.1, starting from different nodes and following different 

directions can vary the alignment score for kinase_ref3 from 0.603 to 0.772.  The average 

of all the alignment scores is 0.701.  As a control, CLUSTALW gives an alignment score 

of 0.747 and POA has the score 0.71.  

The TspMsa program was modified to avoid the irregularities resulting from the 

choice of starting point and direction, and to possibly improve the alignment quality.  

First the two nodes with the shortest distance are aligned.  Once aligned, the two nodes 

are merged into one node in the TSP circle and the edge between them is deleted.  In our 

example of kinase_ref3, sequences 14 and 17 are aligned first.  The distance data for 

edges will not be changed.  In the example, the distance between the new node and node 

18 remains 84, while the distance between the new node and node 15 is 14.  The step of 

aligning the shortest edge is then repeated.  In our example, it will be nodes 2 and 3.  This 

process continues until there is only one node left.  In the implementation, the edge 

lengths are sorted in ascending order once the TSP tour has been determined.  The sorted 

list guides the order in which sequences along the TSP tour are aligned.  The score for the 
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resulting alignment is increased to 0.836.  Since this modified TspMsa program gives 

better performance, it is the default version of TspMsa for the remainder of the thesis. 

Since two nodes are merged at each step, the alignment process can be mapped to 

a binary tree in which a leaf node represents an original sequence and an internal node 

represents an alignment resulting from merging two nodes (see Figure 4.2).  From this 

point of view, the modified TspMsa program follows the traditional progressive 

alignment pattern of generating a guide tree to determine the order of alignment.  

However unlike other progressive alignment programs, the guide tree for TspMsa is 

restricted by a TSP tour. 

 

 

5 6 7 8 10 9 0 1 4 2 3 18 17 14 19202122 1312 111615

Figure 4.2  Aligning order of TspMsa, illustrated for kinase_ref3. 
 
 

Quality Analysis 

 A comprehensive evaluation of the quality of TspMsa alignments was performed 

using BAliBASE benchmarks.  CLUSTALW and POA were used for comparison.  The 

results are shown in Figure 4.3 and listed in Table 4.2.  In Figure 4.3, parts A – C display 

alignment scores for reference 1, with test sequences in part A having less than 25% 
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identity, sequences in part B having 20-40% identity, and sequences in part C having 

more than 35% identity.  Figure 4.3D and E display alignment scores for reference 2 and 

3 respectively.  Figure 4.3F displays alignment scores for reference sets 4, 5 and 7.  In 

Table 4.2, for TspMsa and POA, the number in the second line indicates the percentage 

of cases that the program gave a better alignment than CLUSTALW.   

 

A) 

 
B) 
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C) 

D) 

 
E) 
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F) 

 
Figure 4.3  Alignment scores for TspMsa, CLUSTALW and POA for all test cases in  

BAliBASE. 
 

 

 Reference 1 
 < 25% identity 20-40% identity >35% identity 
 short medium long short medium long short medium long 

clustalw 0.603 0.441 0.492 0.820 0.832 0.846 0.934 0.952 0.929

0.525 0.469 0.465 0.777 0.824 0.826 0.935 0.932 0.933TspMsa 33% 63% 14% 40% 33% 42% 60% 20% 50% 

0.230 0.218 0.137 0.637 0.711 0.660 0.908 0.884 0.919POA 0 0 0 0 11% 8% 20% 0 50% 
          

 Reference 2 Reference 3 
 short medium long short medium long 

Ref. 
4 

Ref.  
5 

Ref. 
7 

clustalw 0.844 0.787 0.820 0.620 0.641 0.671 0.636 0.758 0.868

0.795 0.769 0.819 0.689 0.711 0.710 0.557 0.749 0.752TspMsa 22% 29% 43% 75% 100% 60% 20% 33% 0 

0.727 0.714 0.740 0.415 0.516 0.612 0.319 0.550 0.721POA 0 14% 14% 0 0 20% 30% 0 0 

Table 4.2  Average alignment scores from TspMsa, CLUSTALW and POA for different  
 data groups.   
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From the data, it is seen at once that CLUSTALW and TspMsa give better quality 

alignments than POA in all reference sets.  A detailed analysis is needed to compare 

CLUSTALW with TspMsa.  For reference 1 sequences with less than 25% identity, 

TspMsa gives alignments with quality comparable to that of CLUSTALW in the groups 

of medium and long sequences, while CLUSTSALW is slightly better for short 

sequences (see Figure 4.3A).  The average scores for CLUSTALW and TspMsa have less 

than 0.03 in difference in both long and medium length groups, as shown in Table 4.2.  

The same pattern can be found in Figure 4.3B for sequences with 20-40% identity.  For 

sequences with more than 35% identity, the two programs show similar average scores in 

all groups, with less than 0.02 in difference (see Figure 4.3C and Table 4.2).  Similarly, 

for reference 2 CLUSTALW and TspMsa are comparable for medium and long 

sequences, with less than 0.02 in difference in average scores, while CLUSTALW gives 

higher quality alignments for short sequences (see Figure 4.3D and Table 4.2).   

While comparable average scores can be found for reference 5, with less than 

0.01 in difference, TspMsa is significantly better than CLUTSALW in all three groups in 

reference 3 as seen in Figure 4.3 parts E and F, and in Table 4.2.  In contrast, 

CLUSTALW is superior to TspMsa for reference 4 and reference 7 (see Figure 4.3F and 

Table 4.2).     

Execution Time Analysis 

 Most data sets in BAliBASE have fewer than 50 sequences.  All three programs 

can complete the alignments within seconds.  When computing an alignment for a large 

number of sequences, the most time-consuming step for TspMsa is the calculation of 

pairwise distances.  When computing more than 500 sequences, this step can take hours, 
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while the TSP tour can be computed in seconds and the progressive alignment can be 

completed in minutes.  The similar problem is solved in CLUSTALW by using a fast 

approximate matching method instead of full progressive programming for pairwise 

distance computations.  CLUSTALW allows the user to determine whether to run in this 

fast approximate mode or the slow accurate mode.  

A similar approach is taken by TspMsa.  In the fast mode of TspMsa, an 

approximation method is used to evaluate the similarity of two sequences.  To 

approximate the matching score of two sequences Seq1 and Seq2, assuming that n is the 

length of the shorter sequence, the score is 

             n 

Σ   S(Ci, C'i) *100 / n . 
           i = 1 

Here Ci denotes the ith character of Seq1, C'i denotes the ith character of Seq2, and S(c1, c2) 

is the matching score for characters c1 and c2 in the scoring matrix.   

To assess the impact of this fast method on alignment quality, TspMsa and 

CLUSTALW were both tested in fast mode using the same BAliBASE benchmark (see 

Table 4.3).  Note that the percentage in Table 4.3 indicates the proportion of cases for 

which TspMsa (fast mode) gave a better alignment than CLUSTALW (fast mode).  As 

seen in Tables 4.3 and 4.2, the alignments using fast mode TspMsa and fast mode 

CLUSTALW have lower quality than those using slow modes, but they are still better 

than the alignments provided by POA.  In fast mode TspMsa provides better alignments 

than fast mode CLUTSALW for data sets in reference 1 that have sequences with less 

than 25% identity.  The two programs have comparable performance for the remaining 

test data sets in reference 1, the data sets in reference 2, the data sets composed of 
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medium length sequences in reference 3, and the data sets in reference 5.  In fast mode 

CLUSTALW is better for short sequences in reference 3, while fast mode TspMsa is 

better for long sequences in reference 3.  Finally, CLUSTALW performs better for sets in 

references 4 and 7.   

 Reference 1 
 < 25% identity 20-40% identity >35% identity 
 short medium long short medium long short medium long 

clustalw 0.445 0.378 0.408 0.784 0.821 0.821 0.923 0.934 0.910

0.507 0.446 0.461 0.791 0.800 0.829 0.927 0.923 0.925TspMsa 
67% 75% 57% 60% 33% 45% 44% 40% 75% 

          

 Reference 2 Reference 3 
 short medium long short medium long 

Ref. 
4 

Ref.  
5 

Ref. 
7 

clustalw 0.782 0.748 0.785 0.542 0.641 0.641 0.620 0.726 0.853

0.790 0.750 0.795 0.517 0.647 0.686 0.521 0.706 0.780TspMsa 
67% 57% 86% 50% 33% 100% 20% 33% 0 

Table 4.3  Average alignment scores of TspMsa and CLUSTALW running in fast mode. 
 

 

To test the scalability of TspMsa, 1000 tubulin sequences downloaded from 

http://pfam.wustl.edu/cgi-bin/getdesc?name=tubulin were used as large 

scale test data for execution time analysis.  All programs are tested on a Linux i686 

computer.  Both CLUSTALW and TspMsa were run in fast mode for these execution 

time comparisons.  TspMsa was executed with Java version 1.4.0 with JIT (Just-In-Time) 

compiler enabled.  The results are shown in Figure 4.4.  For up to 200 sequences, the 

three programs have similar execution time.  For more than 500 sequences, CLUSTALW 

takes significantly longer than either TspMsa or POA.  Even in fast mode it took 

CLUSTALW a good 186 minutes to align 1000 sequences, while POA only needed 32 

minutes and TspMsa (in fast mode) completed the alignment within 25 minutes.  
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Figure 4.4  Execution time comparison.  
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CHAPTER 5 

DISCUSSION  

Over the relatively long period of time that the multiple sequence alignment 

problem has been studied, CLUSTALW has been found to be the progressive alignment 

program that provides the best quality alignments (Thompson et al., 1999), while POA 

has been used in practice to provide fast alignments on large scale data sets (Lee et al., 

2002).  In this thesis, an alternative heuristic method using the traveling salesman 

problem to restrict the guide tree for progressive alignment has been comprehensively 

tested and evaluated.  The program, TspMsa, offers alignments with quality comparable 

to that of CLUSTALW at a running speed comparable to that of POA. 

TspMsa produces alignments which are similar or better than those from 

CLUSTALW in most BAliBASE benchmark test cases except for sequences with N/C-

terminal extensions in reference 4 and the two transmembrane data sets in reference 7 

(see Tables 4.2 and 4.3).  Both programs give alignments which are significantly better 

than those from POA, as seen in Table 4.2 and Figure 4.3.  For alignments of large scale 

data sets, TspMsa and POA require considerably shorter execution times than 

CLUSTALW (see Figure 4.4). 

CLUSTALW dynamically changes scoring matrices and gap penalties based on 

pairwise sequence similarities during the alignment process.  In TspMsa, a much simpler 

progressive alignment method with a constant matrix and a constant gap penalty is used 

throughout the alignment process.  It would be interesting to explore whether changing 
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the scoring matrix and gap penalty for each sequence when building the alignment would 

improve the quality of TspMsa alignments.  Within the existing framework of TspMsa, 

this could be achieved by re-implementing the Align class to adopt the CLUSTALW 

approach.   

A preprocess for extracting protein domains would allow TspMsa to be better 

suited to certain types of data, such as BAliBASE reference 6 sequences with repeated 

domains.  It would also help to increase the accuracy of the fast method used to calculate 

pairwise distances, because a quick match of a conserved protein domain provides a 

better estimate of the divergence and similarity of the two sequences than does matching 

two unrelated domains.    

In summary, the research in this thesis has provided a promising method that 

constructs high quality multiple sequence alignments quickly.  This was implemented as 

the TspMsa package and tested extensively.  The research has also laid the ground work 

for future improvements to TspMsa.  
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APPENDEX 

TSPMSA USER MANUAL 

 To use the TspMsa program, simply type a command with several arguments as in 

the following example:  

java TspMsa tubulin.fasta tubulin.msf –B –fast. 

The general format of the command line is 

java TspMsa [input] [output] –[matrix] –[mode]. 

Here, [input] specifies the input file name.  If the file is in the same folder as 

TspMsa, then simply type the file name, for example, tubulin.fasta.  If the file is under 

another folder, then a path is needed, for example /home/sarrac/weiwei/data/tubulin.fasta.  

Among all of the command line options, input is the only necessary argument and the 

others are optional.   

Users can specify the desired output file name with the [output] argument.  As in 

the case of the [input] argument, a path is needed if the desired output destination is not 

in the TspMsa folder.  If the [output] argument is missing, a default output file name will 

be used.  The default output file name is the input file name (without its file extension 

name) plus a postfix “.msf”.  For example, the command  

java TspMsa tubulin.fasta 

will produce an output file named tubulin.msf in folder TspMsa. 
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The [matrix] argument specifies the scoring matrix with “B” for BLOSUM62, “P” 

for PAM250, and “G” for GONNET.  If the user does not specify this option, the default 

value is BLOSUM62.  

 The [mode] option specifies the running node of the program with “fast” for the 

fast heuristic mode and “slow” for the slow accurate mode.  If the argument is missing in 

the user command, the slow mode will be used. 


