
ZHANGYUN CHEN
A Linear Time Algorithm for Testing a Graph for 3-Edge-Connectivity
(Under the Direction of ROBERT W. ROBINSON)

         A graph G = (V, E) is 3-edge-connected if and only if the subgraph (V, E - S) is

connected for every set S of at most 2 edges.  Two versions of an algorithm to test an

arbitrary graph for 3-edge-connectivity due to Nagamochi and Ibaraki were implemented

and tested. This required making some modifications to the algorithm as originally

described and filling in many details. The two versions implemented are called simplified

and accelerated. For a graph with n vertices and m edges the simplified algorithm takes

time O(nm), whereas the accelerated algorithm runs in time O(n + m). The simplified

algorithm is less complex to code, so the implied constant is smaller for it than for the

accelerated algorithm. Testing was done on Feynman diagrams; irreducibility for a

Feynman diagram of order n is exactly 3-edge-connectivity for a contracted graph which

has n vertices and maximum degree at most 4, hence m ≤ 2n. No significant difference in

speed between the two algorithms was found for n ≤ 150. For larger n, the accelerated

algorithm gradually becomes faster than the simplified one, for example being 10 times

faster for n just over 2000.
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CHAPTER 1

INTRODUCTION

1.1    OVERVIEW

Research on connectivity is one of the most important topics in graph theory [3]. In this

paper, connectivity refers to edge-connectivity unless explicitly stated otherwise. In the

literature of graph theory on determining 3-edge-connectivity, several linear algorithms

[9, 12, 17] are available. The current study is based on the work of [12] for computing 3-

edge-connected components in a multigraph. The algorithm used by the current study for

determining the 3-edge-connectivity of a graph can be divided into two stages. The first

stage starts from a depth-first search (DFS), which establishes a spanning tree T (or else

rejects G as not being connected).  The DFS also establishes a rank for each vertex,

sometimes called the DFS discovery time or index.  The algorithm processes the non-tree

edges of G in order of the minimum of the ranks of its end-vertices.  Each non-tree edge

is traced back through T, and each edge in T is assigned a count according to the number

of times it is encountered in these traces. At the end of the tracing, if some edge of T has

a count of 0 or 1, then G is not 3-edge-connected.  A system of pointers is used to skip

over tree edges that already have counts of ≥ 2 so as to achieve linear time. The second

phase performs a contraction. Because some cut-pairs of tree edges cannot be detected by

the first phase, the contraction is used to simplify the graph. G is 3-edge-connected if it
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consists of a single vertex after contraction. Phases 1 and 2 are applied alternately until

3-edge-connectivity is decided one way or the other.

1.2    BASIC DEFINITIONS

A graph G = (V, E) represents an undirected multigraph with a set V of vertices and a set

E of edges. An edge e is denoted by e = (u, v), where u and v are the end vertices of the

edge. If e = (u, v) is an edge of G, we say the vertex u is adjacent to a vertex v, and e is

incident with vertices u and v. We also define ends(e) = {u, v} in order to allow for

multiple edges. For instance it may be that e ≠ f  but ends(e) = ends(f), so that there is a

multiple edge joining u and v. Loops are not allowed, so u ≠ v here. The number of edges

incident with v is called the degree of v. A graph G' = (V', E') with V' ⊆ V and E' ⊆ E is

called a subgraph of G = (V, E). If V' = V, G' is called a spanning subgraph. For any edge

set F, the subgraph (V, E – F) is usually written G – F. An edge set of F with F ⊆ E is

referred to as a cut if it satisfies the following two conditions: (i) G – F has more

connected components than G, and (ii) no proper subset of F satisfies (i). A cut F is

called a k-cut if |F| = k. A graph G = (V, E) is said to be k-edge-connected if G has no

r-cut for r < k. Thus, a 3-edge-connected graph is precisely one that is connected and has

no 1-cut or 2-cut. A 1-cut is called a bridge, and a 2-cut is called a cut-pair. An example

of a 3-edge-connected graph is illustrated in Figure 1.1. In Figure 1.1, {a, b, c} is a 3-cut,

while {a, b, c, f} disconnects the graph but is not a cut since it is not minimal.

   Let Ψ  be the contraction mapping which identifies x and y and leaves all other vertices

fixed. For e ∈ E, the contraction G/e is defined as follows: let Ψ(u) = Ψ(v) = z for some

z ∉ V, and Ψ(a) = a for a ∈ V - {u, v}. Then contraction G/e has vertices
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V' = V - {u, v} ∪ {z}, edges  E' = {f ∈ E : ends(f) ≠ {u, v}} and ends'(f) = Ψ(ends(f)) for

f ∈ E' . For an edge set E' in E, the graph obtained by contracting all edges in E' is

denoted by G/E'. Note that the order of contraction makes no difference. The

local edge-connectivity λ(x, y; G) for x, y ∈V with x ≠ y is defined to be the minumum

number |F| with F ⊆ E so that x and y are disconnected in G – F, and λ(x, x; G) is defined

to be + ∞.

Figure 1.1:  An example of a 3-edge-connected graph

    Let λ(G) denote the edge-connectivity of G, which is defined to be k if the graph G is

k-edge-connected but not (k+1)-edge-connected. If G is the trival graph (just one vertex),

then λ(G) = + ∞. Clearly λ(G) = min{λ(x, y; G) : x, y ∈ V(G)} for any graph G. We note

another fact about local edge connectivity which will be useful later.

    FACT 1.1: For fixed G and k, λ(x, y; G) ≥ k is an equivalence relation on V = V(G).

    This relation is obviously reflexive and symmetric. To see that it is transitive, suppose

a

b

c

d

e

f



4

λ(x, y; G) ≥ k and λ(x, z; G) ≥ k. For r < k, any r-cut F leaves x connected to y in G - F

and y connected to z in G - F, hence x is connected to z in G - F. So, x and z cannot be

disconnected by any r-cut for any r < k, hence λ(x, z; G) ≥ k.

     A path is defined as follows: P = (v0, e1, v1,…, ek, vk) is a path if vi ∈ V for 0 ≤ i ≤ k,

 ei ∈ E for 1 ≤ i ≤ k, and ends(ei) = { vi-1, vi} for 1 ≤ i ≤ k. A path is simple if no vertex

appears twice in it. Two paths are edge-disjoint if their edge sets are disjoint. In general,

the number of vertices of a graph G is denoted by n and the number of edges is

represented by m.

    The input graphs for testing our algorithms are special graphs called Feynman

diagrams.  In a Feynman diagram D, there are two kinds of edges: V-edges (undirected)

and G-edges (directed). Each vertex is incident with exactly 3 edges, viz., one V-edge,

one G-in-edge and one G-out-edge. Figure 1.2 illustrates an example of a Feynman

diagram with order 2. The order of a Feynman diagram is the number of V-edges in the

diagram. The V-edges are shown as wavy lines in the figure.

Figure 1.2:  An example of a Feynman diagram

    Feynman diagrams are used to explore the interacting fermion problem, which is

critical in a number of research fields, including strongly correlated electron physics, the

0

1

3

2
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electronic structure theory of solids, the theory of nuclear matter, and quantum chemistry

[6,10,14]. These diagrams arise from Hubbard modes and the mode Hamiltonian [6,2,19].

Determination of the numbers of all connected diagrams has been studied in both

mathematics [18] and physics [4]. Our motivation for investigating algorithms for 3-

edge-connectivity is the need for a fast algorithm to determine whether a diagram is

irreducible for use in quantum Monte Carlo simulations [16]. A Feynman diagram D is

irreducible if it cannot be disconnected by the removal of fewer than 3 G-edges. If D'

denotes the graph obtained by contracting the V-edges of D and ignoring the orientation

of the G-edges, then clearly D is irreducible if and only if D' is 3-edge-connected. Figure

1.3 is an example of the contraction of Feynman diagram with order 3. Note that if D has

order n then D' has n vertices and maximum degree at most 4, hence m ≤ 2n edges.

Figure 1.3: An example of the contraction of Feynman diagram with order 3

1.3 DEPTH-FIRST SEARCH

Depth-first search (DFS) visits the vertices of a graph according to the following

procedure [1, Section 5.2]. Initially, no vertex has been visited and no edge has been

0 1

3

54

2

contraction

a

b

c
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explored. The vertex to start with, say z, is called the root. First the root vertex z is

visited, and an edge (z, v) incident to z is selected. If v has not been visited, then v is

visited, and a new search starts recursively at vertex v. If v has already been visited, then

another unexplored edge incident to z will be selected. This process of examining

unexplored edges continues until all edges at z have been explored. Since this approach

visits unexplored edges recursively as deeply as possible, it is called depth-first search.

The edges whose exploration by DFS leads to an unvisited vertex are called tree edges,

and the remaining edges are called non-tree edges.

The following is the DFS in outline form:

DFS(G) makes sequential calls to DFS(G, x) for x ∈ V(G) which are unvisited, according

to some linear ordering of V(G). The function DFS(G,  ) calls itself recursively.

DFS(G, x):

1. Mark x “visited”.

2. Record the rank of x (denoted here by r[x], this is the discovery time of x in the DFS,

sometimes called the DFS index).

3. For each edge e (taken in some order) incident to x, if the other end y (say) is

unvisited then e is designated as a tree edge and DFS(G, y) is called.

    The following are standard facts about DFS [1, Section 5.2].

    FACT 1.2: The tree edges form a spanning forest of G consisting of one spanning tree

for each connected component of G. Each tree is considered to be the rooted at the vertex

of minimum rank.

    FACT 1.3: In any sub-tree of a tree in the DFS forest, the ranks of the vertices are

always ≥ the rank of the root of the sub-tree.
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    FACT 1.4: Non-tree edges or back edges always join an (ancestor, descendent) pair.

1.4 OUTLINE OF THE THESIS

The current thesis investigates simplified and accelerated algorithms for determining 3-

edge-connectivity in undirected graphs. Some of the well-known edge-connectivity

algorithms [5, 8, 11] are based on the approach that edge-connectivity can be determined

by solving max-flow problems. The time complexity for determining k-edge-connectivity

is O (m + k2nlog n) for k > 3 based on [7]. It has been shown that 3-edge-connectivity can

be determined in linear time O(m + n) by [9, 12, 13]. The current thesis is motivated by

the work of [12]. Two approaches were explored to determine 3-edge-connectivity in

graphs. The first one is called the simplified algorithm and the second one is termed the

accelerated algorithm. Timing tests were performed on Feynman diagrams. Note that the

V-edge contraction of an order n Feynman diagram D has n vertices and m ≤ 2n edges,

and it is this contraction which must be checked for 3-edge-connectivity. Generally, there

is no significant difference between the two algorithms in timing tests for small orders.

However, the accelerated algorithm becomes faster than the simplified starting around

n = 150. The difference between the two algorithms gradually increases as n increases,

with the ratio becoming almost a factor of 10 by n = 2000. This bears out the asymptotic

time complexity analysis, which shows that for Feynman diagrams of order n the

simplified algorithm takes time O(n2) whereas the accelerated algorithm runs in O(n)

time.

    The thesis is organized as follows.

    Chapter 2 describes a simplified algorithm to detect certain cut-pairs. The algorithm
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applies DFS to build a set E1 of tree edges. The set of non-tree edges is called E2, and the

cut-pairs to be detected will be those having one edge in E1 and one edge in E2. These

will be called type 1 cut-pairs. Then the algorithm randomly selects a non-tree edge and

starts from its initial vertex (the higher rank vertex) to traverse the tree edges until its

terminal vertex (the lower rank vertex) is encountered. A count field is associated with

each tree edge and is used to record the number of times that each tree edge is visited in

these path traversals. When all non-tree edges have been processed, we can check if any

count for a tree edge is 1 or 0 to determine if there is a cut-pair (of type 1) or a bridge,

respectively.

    In Chapter 3, we show how to improve the time complexity of the simplified algorithm

to linear time by using a pointer for each vertex. The accelerated algorithm selects the

non-tree edges from the lowest terminal vertex rank. Each tree edge will be visited at

most twice, so the time complexity is linear.

    The fourth chapter introduces an algorithm to contract a graph G in a way that

preserves all 3-components of G. Then the same procedure for finding a cut-pair is

applied recursively to the contracted graph.

    The last chapter compares the performance of the two algorithms for determining

3-edge-connected graphs when applied to Feynman diagrams of various orders. Some

conclusions are drawn and possible future work is discussed.
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CHAPTER 2

SIMPLIFIED SEARCH AND TRACE ALGORITHM

2.1 FIND A BRIDGE OR A TYPE 1 CUT-PAIR

When DFS is first applied to G the number k of connected components is noted. If k > 1

then G is not 3-edge-connected. For Chapters 2 and 3 it will be assumed that G is

connected. For a connected graph G = (V, E), we apply depth-first search to G starting

from some vertex that we designate as root. Then let E1 be the set of edges in the DFS

spanning tree of G and E2 be the set of non-tree edges, E – E1. In order to find a cut-pair

with one edge in E1 and one edge in E2, we assign a count for each edge in E1. Let i(e)

denote the initial vertex of an edge e (i.e., the edge with higher DFS rank); let t(e)

represent the terminal vertex of an edge e (i.e., the edge with lower DFS rank), and let ev

represent the edge in E1 with initial vertex v (for v ≠ root). Note that

E1 = { ev : v ∈ V - {root}}. Also, let Pi(e)t(e) denote to the unique path in E1 starting

from the initial vertex i(e) and ending at terminal vertex t(e). Initially, count(e) is set to 0.

Each time, we trace a path Pi(e')t(e') in E1, for e' ∈ E2, count(e) will be increased by 1 if

e lies on Pi(e')t(e'). Next, we will show that after all tracing is complete, for any e ∈ E1

count(e) will be 0 if and only if e is a bridge and 1 if and only if e is contained in a cut-

pair {e, e'} for some e' ∈ E2.

      FACT 2.1: e is a bridge in G if and only if e ∈ E1 and count(e) = 0.   
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    Figure 2.1 illustrates this case. Note that for all figures in this thesis, edges in E1 are

shown as solid lines and edges in E2 are represented by dotted lines. In this case, the

count(e) is 0 since e is the only edge that connectes the component G1 and G2, and

Figure 2.1: e is a bridge in E1

G – e is disconnected. However, if we assume there is an edge f connecting G1 and G2,

as Figure 2.1 illustrates, then the graph G – e is still connected, which contradicts our

assumption e is a bridge. Thus, count(e) is 0 if e is a bridge. Conversely, e is a bridge if

we have e ∈ E1 and count(e) = 0. For if there is an edge f connecting G1 and G2 as

Figure 2.1 illustrates, then count(e) will be at least 1, which contradicts our assumption.

      FACT 2.2: for e ∈ E1, count(e) = 1 if and only if there is an edge e' ∈ E2 such that

{e, e'} is a cut-pair for G.

      Assume {e, e'} is a cut-pair with e ∈ E1 and e' ∈ E2 as Figure 2.2 illustrates. In this

case, the count(e) will be 1. This is because G – e – e' is disconnected into G1 and G2.

However, G – e is connected since e' joins G1 and G2. When we trace the path Pi(e')t(e')

in E1, e' is the only edge of  G – e for which the path goes through e, i.e., count(e) = 1.

Conversely, some {e, e'} is a cut-pair for G if we have e ∈ E1 and count(e) = 1.  For if e

is a bridge rather than a cut-pair with e', then count(e) will be 0, which contradicts our

f

e
G1 G2
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assumption count(e) = 1. On the other hand, if e' is the edge which contributed to the

count of 1 to e then e' ∈ E2 and G - e' contains e as a bridge by Fact 2.1, so G – {e, e'} is

disconnected. No edge in E2 can be a bridge, so {e, e'} is a cut-pair for G.

              Figure 2.2: e is 

    Now we are ready to present a simpli

E1. Note that any cut-pair must contain

2.2 ALGORITHM DESCRIPTION

The simplified search and trace algorith

straightforward way. By Fact 2.1 and 2.

be deleted. The simplified algorithm is 

outline form:

Simplified_Search_Trace(G, n):

1. Apply DFS to G and get a partit

determinted by DFS and E2 are 

rank r[v]. If a vertex with degree

connected”.

G1

u

e'
in a cut-pair in E1

fied algorithm to find cut-pairs with one edge in

 at least one edge from E1 since G is connected.

m computes the counts for edges in E1 in a

2, any bridge or cut-pair with an edge in E2 will

based on the work of [12] and is presented in

ion of E1 and E2, where E1 is the set of tree edges

non-tree edges. Each vertex v ∈ V is assigned a

 1 or 2 exists, then return  “not 3-edge-

e
G2

v
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2. Initialize count(e) to 0 for all e in E1.

3. Choose an edge e' from E2 and mark it as explored.

4. Trace the path Pi(e')t(e') in E1. Start from v = i(e').

     While r[v] > r[t(e')], then increase each count(ev) in path Pi(e')t(e') by 1 and

     update v to t(ev), i.e., v = t(ev).

5. Repeat 3-4 until all edges of E2 have been explored.

6. Check each count(ev) with ev ∈ E1. If a count(ev) = 0 or 1 is found, return  “not

           3-edge-connected”. Otherwise, return “may be 3-edge-connected”.

2.3 ANALYSIS OF TIME COMPLEXITY

The correctness of algorithm Simplified_Search_Trace is supported by Section 2.1. The

time complexity of step 1 to 5 is O(|E2||E1|) as we trace a path Pi(e')t(e') in E1 for each

e' ∈ E2. Clearly, the time complexity for step 6 is O(|V| + |E|). Thus, the overall time

complexity for this algorithm is O(|E2||E1|). For a connected graph with n vertices and m

edges, |E1| = n -1 = O(n) and |E2| = m - n + 1 = O(m). Therefore, the overall time is

O(nm).



13

CHAPTER 3

ACCELERATED SEARCH AND TRACE ALGORITHM

3.1 ALGORITHM DESCRIPTION

In order to make the time complexity linear, we need to make some changes to steps 4

and 5 of Simplified_Search_Trace(G, n). The objective of the modification is to ensure

that if count(e) ≥ 2 is true for an edge e ∈ E1, e will never be visited again. Let E* denote

the set of edges e in E1 with count(e) ≥ 2. We maintain a pointer ptr(v) for each vertex v.

Initially each ptr(v) points to itself. It will be the case that ptr(v) = v if and only if v is the

root or count(ev) < 2. Otherwise, ptr(v) = ptr(t(ev)). (These facts will be proved in Lemma

3.1.) When we trace the path Pi(e')t(e') for a given edge e' in E2, the pointers will enable

us to skip all edges in E*. Figure 3.1 is an example illustrating how these edges are

skipped. Assume e1,e2, and e3 have already had count(e) = 2 with ptr(u) = v. When we

trace up the path Puz, ptr(u) enables us to skip the edges e1, e2 and e3. However,

updating pointers must be done with care. When a count(e) with e ∈ E1 becomes 2, all

pointers with ptr(v) = i(e) should be assigned as ptr(v) = ptr(t(ev)). Assume that in Figure

3.1, count(e4) is 1 at the current time. When we trace up the path Puz, and count(e4)

changes to 2, then pointers such as ptr(e1),  ptr(e2), and ptr(e3) should point to ptr(t(e4)),

i.e., to v'. This means that the subpath in E* ending at i(e) must merge with the path

beginning with t(e). The total time for this operation would be  O(mn) if carried out

explicitly. But we will show that this merge will be unnecessary if the edges e' in E2
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                     Figure  3.1: An example of skipping edges e with count(e) ≥ 2

are explored in nondecreasing order of r[t(e')]. This order is based on the ranks

established by DFS, which helps us avoid explict merging and develop a linear time

algorithm.

LEMMA 3.1   Let edges e' ∈ E2 in step 2 of Simplified_Search_Trace(G, n) be

selected in nondecreasing order of r[t(e')]. Then, when a new edge e ∈ E1 is assigned

count(e) = 2, ptr(v ) = i(e) if and only if v = i(e). This also requires that pointers be

updated from lower ranks to higher ranks along the path in E1.

Proof. Assume there is a ptr(v) = i(e) for some v ≠ i(e) with e ∈ E1, and count(e)

will be increased to count(e) ≥ 2 by tracing path Pi(e')t(e') for e' ∈ E2. Since ptr(v) = i(e)

means that Pvi(e) is in E* and e' is selected in nondecreasing order of r[t(e')], we thus can

conclude that count(e) was already 2 before starting to trace the path Pi(e')t(e'). This is a

contraction, which proves the lemma.

               e1

e2

        e3

e'

v

u

z

e4

        e5

v '
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    Figure 3.2 is an illustration for Lemma 3.1. Pointers are indicated by bold solid

directed edges in the figure.

Figure 3.2: Diagram to illustrate Lemma 3.1

    Now the accelerated algorithm for determining 3-edge-connected graph can be

presented. The accelerated algorithm is based on the work of [12]. However, in that paper

the updating of pointers starts from the highest ranked vertex and proceeds to the lowest

ranked vertex. In general this does not skip all edges with count(e) ≥ 2. We solved this

problem by using a path stack. The pointers are updated in reverse order, following the

path Pt(e')i(e') from the lowest ranked vertex to the highest ranked vertex. Also, we use

the cut_count variable to record the number of cut-pairs and the bridge_count variable to

record the number of edges with count 0 during the trace phase and thus do not need to

go through all values of count(e) again at the end. The following is the accelerated

algorithm in outline form:

Accelerated_Search_Trace(G, n):

1. edges. Each vertex v ∈ V is assigned its DFS discovery time as its rank, denoted

r[v]. If there is a vertex with degree of 1 or 2, then return  “not

3-edge-connected”.

v

 e

  e'
i(e )



16

2. Initialize count(e) to 0 for all e ∈ E1, cut_count to 0 and bridge_count to n -1.

Also set ptr(v) = v for all vertices v and designate all edges in E2 as unexplored.

3. Initialize an empty path stack.

4. Choose an unexplored edge e' from E2 with the smallest r[t(e')].

5. Trace the path Pi(e')t(e') in E1. Start from v = ptr(i(e')). While r[v] > r[t(e')],

increment count(ev) and cut_count and decrement bridge_count if count(ev) is

equal to 0; otherwise, if count(ev) was already 1, then push v onto the path stack

and set v = ptr(t(ev)).

6. After tracing the path Pi(e')t(e') in E1, while the path stack is non-empty:

(i) pop the top vertex v and update ptr(v), i.e., ptr(v) = ptr(t(ev));

(ii) update count(ev) to 2, and decrease cut_count;

7. Repeate 3-6 until all edges of E2 have been explored.

8. If bridge_count = 0 and cut_count = 0, return “may be 3-edge-connected”.

Otherwise, return “not 3-edge-connected”.

    To demonstrate how to update the pointers, we use Figure 3.3 as an example. Assume

r[t(e')] is the lowest rank associated with an unexplored edge e', i(e') = u, t(e') = v', and at

this point count(e1), count(e2) and count(e3) are 1. When we start from u to trace the

path Puv', u is pushed onto the stack since count(e1) is already 1,. Similarly we push u'

and then v onto the stack. After tracing the path Puv', it is time to update the pointers.

Since the path stack is non-empty, we pop the top vertex in the stack and update its

pointer. First, v is popped and ptr(v) is updated as ptr(v) = v'. Then u' is popped and

ptr(u') is assigned the ptr(v), i.e., ptr(u') = v'. Last, u is popped and assigned ptr(u'), which
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is ptr(u) = v'. Now ptr(u), ptr(u') and ptr(v) all point to the vertex v' as Figure 3.3

illustrates. Pointers are indicated by bold solid directed edges in the figure.

Figure 3.3: An example of updating pointers

3.2 ANALYSIS OF TIME COMPLEXITY

The correctness of Algorithm Accelerated_Search_Trace is clearly supported by Lemma

3.1. In the lemma, it is shown that either count(ev) < 2 or pointer(v) = z for a path Pvz in

E1 which contains e. This implies that each edge in E1 is traced no more than three times

during the Accelerated_Search_Trace execution. The total time for steps 4 and 5 is

O(|E| + |E1|) = O(m + n). Selecting edges e' in nondecreasing order of r[t(e')] from E2 is

also realized in time O(m + n) by applying the depth-first search rank recorded during the

process of partitationing E into E1 and E2. The other computations are minor.

u

 ≥ 1        e1

e2      ≥ 1

v'

z

e3 ≥ 1
v

e'
u'
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    Note that Search_Trace (either algorithm) can detect only those cut-pairs with one

edge in E1 and the other in E2. Cut-pairs having both edges in E1 (type 2 cut-pairs) will

not be identified by a Search_Trace algorithm. In order to find such cut-pairs, we need to

contract G into a smaller graph and then employ Search_Trace and contraction

alternately. In the next section, a contraction operation is presented and proved to preseve

all 3-components of a graph.
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CHAPTER 4

GRAPH CONTRACTION

4.1 CONTRACTION

Recall that contraction was defined in 1.2. The contraction phase of our algorithm will

always follow an application of Search_Trace, and will replace G by G/E2. We assume

throughout Chapter 4 that Search_Trace(G, n) returned “may be 3-edge-connected”.

Thus, G is connected, and contains no bridges and no cut-pairs with an edge in E2. The

next two lemmas will show that G is 3-edge-connected if and only if G/E2 is 3-edge-

connected.

LEMMA 4.1 If e = (x, y) ∈ E2, then λ(x, y; G) ≥ 3.

Proof. If not, then {e, e'} is a cut-pair for some e' ∈ E1, contrary to the

hypothesis.

LEMMA 4.2 If e ∈ E2, then G/e is 3-edge-connected if and only if G is 3-edge-

connected.

Proof. Let Ψ  be the contraction mapping that identifies x and y and leaves all

other vertices fixed. Since λ(x, y; G) ≥ 3 by Lemma 4.1 and  λ(u, v; G) ≥ 3 is an

equivalence relation on the vertices of G as noted in Section 1.2, it follows that for all u

and v, λ(u, v; G) ≥ 3 if and only if λ(Ψ(u), Ψ(v); G/e) ≥ 3.  Hence G is 3-edge-connected

if and only if G/e is 3-edge-connected.
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    Now let G' = G/E2. After contraction, G/E2 is still 3-edge-connected if and only if G is

3-edge-connected by Lemma 4.2. Moreover, all edges remaining in G' are from E1. The

next section describes the algorithm. First G is contracted to G', and then a Search_Trace

algorithm is applied to G'. Contraction and Search_Trace are called alternately until it is

decided whether or not G is 3-edge-connected.

4.2 ALGORITHM DESCRIPTION

The algorithm presented here combines the contraction and Search_Trace algorithms to

decide 3-edge-connectivity. The following is the algorithm in outline form:

Determination (G, n):

1. Return “3-edge-connected” if G contains just one vertex;

2. Apply either the Simplified_Search_Trace or the Accelerated_Search_Trace

algorithm to G. If “not 3-edge-connected” is returned, this is passed on as the

output of Determination (G, n) and the algorithm ends. Otherwise, go to step 3.

3. Apply contraction to obtain a new graph G' = G/E2, then replace G by G' and

return to step 1.

     In [12], the idea of preserving the 3-components of G by contraction is presented, but

how to implement contraction so that the entire algorithm is linear is not presented.

Actually, this is a very important step in the overall algorithm. If this step is not linear,

then the entire algorithm will not be linear. In order to make contraction linear, the

approach we used is based on applying depth-first search to G - E1. Following the outline

of DFS given in Section 1.3, DFS(G - E1) makes sequential calls to DFS(G - E1, x) and

all vertices discovered during the ith such call are assigned the component index i - 1. At
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the end, a single pass through G suffices for the contraction of G' using these component

labels for G - E1.

4.3 ANALYSIS OF TIME COMPLEXITY

The correctness of the algorithm is supported by the discussion in Section 4.1. Now we

consider its time complexity. Clearly, labeling the new vertices in the contraction step is

done in time O(|E2|) and going through edges in E1 and E2 is done in

O(|E1| + |E2|) = O(|E| + |V|) if the time for recursive calls of Determination (G, n) does

not count. The running time of Accelerated_Search_Trace is O(|E| + |V|). Thus, the

overall time complexity for a single pass through steps 1, 2 and 3 of Determination (G, n)

when using Accelerated_Search_Trace is still completed in time O(|E| + |V|) = O(n + m).

     Let G1, G2, G3, … be the orginal graph, its contraction, etc. If the contraction of Gi to

Gi+1 is actually performed, then the minmum degree of every vertex in Gi is at least 3.

Thus, if Gi has ni vertices and mi edges we have 2 mi  ≥ 3 ni, while mi+1 ≤ ni -1, so

mi+1 ≤ (2/3) mi . Since m1 = m, the total number of edges considered in the iterations of

Search_Trace and contraction is at most m + (2/3) m + (2/3)2 m + … = 3 m.

      From this we see that the total number of vertices considered in the entire course of

the algorithm is at most n + 2m, since n1 = n and ni  ≤ (2/3) mi if Gi is actually contracted

to Gi+1. Finally, the number of iterations performed by Determination (G, n) is O(log m)

since no contraction can occur if mi = 1. Thus the entire process takes time O(n + m) for

the accelerated algorithm. The analysis for the simplified algorithm is similar, replacing

O(n + m) by O(nm) in the trace step. This leads to O(nm) time for the simplified

algorithm.
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      It is easier to see that the space required by either the simplified or the accelerated

algorithm is O(n + m). For there is no need to retain Gi once Gi+1 has been calculated.
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CHAPTER 5

IMPLEMENTATION AND TESTING RESULTS

5.1 IMPLEMENTATION

Simplified_Search_Trace and Accelerated_Search_Trace were implemented separately

so that their efficiencies could be compared. For testing purposes, the lower order

Feynman diagrams are created by using an existing program irrn.cc by Robinson [15].

The higher order Feynman diagrams were produced by using a random Feynman diagram

generator program. Even if we start with a Feynman diagram, the contractions produce a

series of graphs that must be treated as arbitrary multigraphs. In our implementation, in

order to represent an arbitrary multigraph we dynamically allocate memory space for

each vertex based on the information obtained by the DFS in the first execution of step 3

of Determination (G, n). Every new graph is presented as an array of adjacency lists

rather than an n × n matrix because an n × n array would need to allocate contiguous

space in main memory for n × n elements, which is Θ (n2) space. In our tests, this led to

memory allocation failures for n around 5000. However, with the array of adjacency lists,

the space allocation is Θ (n+m), which is Θ (n) for Feynman diagrams. In our tests, this

works for high order (e.g, n = 37000) before running out of memory space. To illustrate,

a possible multigraph obtained by contraction is shown in Figure 5.1, and its

representation as an array of adjacency lists is illustrated in Figure 5.2. Note that our
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representation is symmetric, in that an edge {u, v} will be indicated by an occurrence of v

in u's adjacency list and vice versa.

Figure 5.1:  A new multiple graph after contraction

Figure 5.2: A presentation of G in adjacency list structure
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2 0 0 0
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5.2 COMPARISON OF THE TWO ALGORITHMS

The difference between the simplified algorithm and the accelerated algorithm is that the

first approach continues to increase each count(e) for e in E1 and potentially increments

count(e) once for every edge in E2 to determine if the graph is 3-edge-connected graph;

however, the second approach visits each edge e in E1 at most twice by using the pointer

ptr(e). Once an edge in E1 has been visited twice, it will never be visited again. There is

some extra overhead (e.g., pointers and pointer updates) for the accelerated algorithm

compared to the simplified algorithm. Thus for lower order n the accelerated algorithm

may not show benefits or run faster than the simplified algorithm. We expect to find a

threshold value for n, beyond which the accelerated algorithm will show advantages and

run faster compared to the simplified algorithm.

    To test this hypothesis, two series of Feynman diagrams were created using different

programs. The first timing tests were conducted by using lower order Feynman diagrams.

Our program created all the different connected Feynman diagrams with given order up

to 8, testing each with the simplified algorithm or the accelerated algorithm. The data in

Table 5.1 show the average testing time for one graph by using the two algorithms with

orders ranging from 2 to 8. For the average testing time, the data in Table 5.1 indicate

that the simplified algorithm is close to the accelerated algorithm except at order 4. This

supports our hypothesis that the accelerated algorithm may not show any advantages

compared to simplified algorithm when testing graphs with lower order. To find a

possible threshold, we performed a series of timing experiments with random Feynman

diagrams. The results of these timing experiments (Table 5.2) indicated that there was no
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significant difference between the two algorithms when the order n was less than 150.

When the order was gradually increased for n > 150, the difference in the times gradually

increased as well. As the order n reached 2000, the accelerated algorithm was almost 10

times faster than the simplified algorithm.

Table 5.1: The average testing times in seconds per diagram for the simplified and the

accelerated algorithms

order number of
diagrams

creation time average time for
accelerated

average time for
simplified

2 2 3.50E-06 1.74E-05 1.80E-05

3 10 2.70E-05 2.48E-05 2.53E-05

4 98 2.36E-04 3.00E-05 1.62E-06

5 1138 2.58E-03 3.52E-05 3.62E-05

6 15338 3.80E-02 4.35E-05 4.21E-05

7 236122 2.40E-01 2.53E-05 2.48E-05

8 4093058 3.98 3.05E-05 2.95E-05

    For high order n, the total number of diagrams would be hundreds of billions, and we

could not test all of them with a general workstation. Thus, we wrote another program

that creates high order random Feynman diagrams for the timing tests. Table 5.3 shows

the data for average testing time for both accelerated and simplified algorithms. The data

show that the average testing time for the accelerated algorithm increases gradually as the

order increases. However, the simplified algorithm is totally different. The average
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Table 5.2: The average time and ratio of two algorithms with orders between 10 and 950

order Average testing time
for accelerated

Accelerated ratio* Average testing time
for simplified

Simplified ratio*

10 9.80E-06 9.80E-07 1.02E-05 1.02E-06

20 1.34E-05 6.70E-07 1.56E-05 7.80E-07

30 3.41E-05 1.14E-06 3.60E-05 1.20E-06

40 4.76E-05 1.19E-06 5.23E-05 1.31E-06

50 5.36E-05 1.07E-06 6.29E-05 1.26E-06

60 6.76E-05 1.13E-06 8.20E-05 1.37E-06

70 7.92E-05 1.13E-06 1.01E-04 1.44E-06

80 9.76E-05 1.22E-06 1.24E-04 1.55E-06

90 1.08E-04 1.20E-06 1.44E-04 1.60E-06

100 1.16E-04 1.16E-06 1.59E-04 1.59E-06

150 1.79E-04 1.19E-06 2.76E-04 1.84E-06

200 2.61E-04 1.31E-06 4.49E-04 2.25E-06

250 3.15E-04 1.26E-06 5.83E-04 2.33E-06

300 3.87E-04 1.29E-06 7.30E-04 2.43E-06

350 4.36E-04 1.25E-06 9.88E-04 2.82E-06

400 4.71E-04 1.18E-06 1.19E-03 2.97E-06

450 6.27E-04 1.39E-06 1.58E-03 3.51E-06

500 6.58E-04 1.32E-06 1.76E-03 3.51E-06

550 7.75E-04 1.41E-06 2.41E-03 4.38E-06

600 8.57E-04 1.43E-06 3.08E-03 5.13E-06

650 9.50E-04 1.46E-06 3.79E-03 5.83E-06

700 9.24E-04 1.32E-06 4.31E-03 6.16E-06

750 1.04E-03 1.38E-06 5.15E-03 6.86E-06

800 1.28E-03 1.60E-06 6.36E-03 7.95E-06

850 1.50E-03 1.76E-06 7.38E-03 8.68E-06

900 1.35E-03 1.50E-06 6.97E-03 7.74E-06

950 1.24E-03 1.31E-06 7.56E-03 7.96E-06

* Note: ratio = (actual testing time / # of graphs) / order.
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Table 5.3:  The average testing time and the ratio of two algorithms for different orders

Order Average testing
time for

accelerated

Accelerated ratio* Average testing
time for simplified

Simplified ratio*

1000 1.42E-03 1.42E-06 8.47E-03 8.47E-06

2000 2.93E-03 1.46E-06 3.81E-02 1.90E-05

3000 5.08E-03 1.69E-06 9.80E-02 3.27E-05

4000 6.50E-03 1.62E-06 1.55E-01 3.87E-05

5000 1.84E-2 3.68E-06 2.38E-01 4.77E-05

6000 1.36E-2 2.27E-06 2.05E-01 3.42E-05

7000 2.16E-2 3.08E-06 4.08E-01 5.83E-05

8000 1.82E-2 2.27E-06 4.55E-01 5.69E-05

9000 1.92E-2 2.13E-06 8.28E-01 9.20E-05

10000 3.23E-2 3.23 E-06 1.75 1.75 E-04

11000 3.43E-2 3.12E-06 1.98 1.81 E-04

12000 2.45E-2 2.04E-06 1.59 1.32 E-04

13000 2.75E-2 2.11E-06 1.99 1.53 E-04

14000 3.54E-2 2.53E-06 2.71 1.94 E-04

15000 5.06E-2 3.37E-06 4.02 2.68 E-04

16000 4.14E-2 2.58E-06 3.70 2.31 E-04

17000 5.18E-2 3.04E-06 5.01 2.94 E-04

* Note: ratio = (actual testing time / # of graphs) / order.

testing time starts from 8.47E-03 sec with order 1000 and dramatically increases as the

order increases.

    By comparing the ratio of the two algorithms in Figure 5.1, a clear trend was observed.

The ratio for the accelerated algorithm stays essentially constant when the order

increases. In contrast to the accelerated algorithm, the ratio for the simplified algorithm

keeps increasing when the order increases. Figure 5.3 perfectly demonstrates the
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advantage of the accelerated algorithm compared to the simplified algorithm when high

order graphs are used. Thus, our asymptotic analysis of the two algorithms is clearly

supported by the timing test results. Note that in the figure the number shown on the

horizontal scale represents the number of vertices in units of one thousand.

5.3 CONCLUSIONS

In this thesis, two algorithms were explored to determine if a graph is 3-edge-connected.

The simplified algorithm is simpler and easier to implement compared to the

accelerated algorithm. Both algorithms give correct results. When the order of the graph

is lower, the simplified algorithm works almost as well as the accelerated algorithm and

even slightly faster sometimes because there is some extra overhead for the accelerated

algorithm. The experimental timing results clearly demonstrate that there is a threshold at

which the accelerated algorithm starts showing its advantage. The data from timing tests

with high order graphs indicate that the accelerated algorithm is much faster than the

simplified algorithm when the order is 2000 or more.

    One direction for future work would be to look for a way to avoid contractions of the

graph while still retaining the linear time performance of the accelerated algorithm.



30

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Order of graphs   (in thousands)

ra
tio

 o
f a

ve
ra

ge
 ti

m
e 

(in
 s

ec
on

ds
) t

o 
or

de
r 

simplified ratio *

accelerated ratio *

  Figure 5.3:  The comparison of ratio for both accelerated and simplified algorithms

  * Note: ratio = (actual testing time / # of graphs) / order.



31

REFERENCES

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer

      Algorithms, Addison-Wesley, Redwood City, CA, 1974.

 [2] P.W. Anderson, Resonating valence bond state in La2CuO4 and superconductivity,

       Science 235 (1987), 1196-1198.

[3] C. Berge, Graphs, 2nd revised ed., North-Holland, New York, 1985.

[4] P. Cvitanovic, B. Lautrup and R.B. Pearson, Number of weights of Feynman

       diagrams, Phys. Rev. D 18 (1978), 1939-1949.

[5] A.H. Esfahanian and S.L. Hakimi, On computing the connectivities of graphs and

     digraphs, Networks 14 (1984), 355-366.

[6] P. Fulde, Electron Correlations in Molecules and Solids, 3rd ed., Spring Ser.

       Solid-State Sci., Springer, Berlin, 1995.

[7] H.N. Gabow, A matroid approach to finding edge connectivity and packing

     arborescences, Proc. 23rd ACM Symp. On Theory of Computing (1991), 112-122.

[8] Z, Galil, Finding the vertex connectivity of a graph, SIAM J. Comput. 9 (1980), 197-

      199.

[9] Z. Galil and G.F. Italiano, Reducing edge connectivity to vertex connectivity,

      SIGACT News, 22 (1991), 57-61.

[10] G.D. Mahan, Many-Particle Physics, 2nd ed., Plenum Press, New York, 1990.

[11] D.W.Matula, Determining edge connectivity in O(nm), Proc. 28th IEEE Symp.

      Found. Compt. Sci. (1987), 249-251.

 [12] H. Nagamochi and T. Ibaraki, A linear time algorithm for computing



32

      3-edge-connected components in a multigraph, Japan J. Indust. Appl. Math. 9 (1992),

      163-180,

[13] H. Nagamochi and T.Ibaraki, A linear-time algorithm for finding a sparse k-

     connected spanning subgraph of a k-connected graph, Algorithmica (1992), 583-596.

[14] J.W. Negele and H. Orland, Quantum Many-Particle Systems, Addison-

       Wesley, Redwood City, CA, 1988.

[15] R.W. Robinson, Program for generating connected Feynman diagrams,

       http://www.uga.edu/~rwr/ITR_PROJ/rwr_timing/irrn.cc

[16] H.B. Schüttler, J.N. Corcoran, D.K. Lowenthal and R.W. Robinson. Stochastic

       summation of high-order Feynman graph expansions. NSF Proposal Number:

       0081789 (2000).

[17] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J.Comput. 1

      (1972), 146-160.

[18] J. Touchard, Sur un problème de configurations et sur les fractions continues,

       Canad. J. Math. 4 (1952), 2-25.

[19] F.-C. Zhang and T.M. Rice, Effective Hamiltonian for the superconducting Cu

       oxides, Phys. Rev. B 37 (1988), 3759-3761.


	ATHENS, GEORGIA
	
	
	
	
	
	
	
	Committee:Thiab Taha






	LIST OF TABLES
	LIST OF FIGURES

	INTRODUCTION
	1.1    OVERVIEW



