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ABSTRACT

A novel procedure for in-silico (virtual) craniofacial reconstruction 

of human mandibles with multiple fractures from a sequence of 

Computed Tomography (CT) images is presented. The problem is 

formulated as one of combinatorial pattern matching and solved in 

two stages. First, the opposable fracture surfaces are identified 

using a maximum weight graph matching algorithm where the 

fracture surfaces are modeled as the vertices of a weighted graph. 

The edge weights between pairs of vertices are treated as elements 

of a score matrix, whose values are a linear combination of (a) the 

Hausdorff distance, and (b) a score function based on fracture 

surface characteristics. Second, the pairs of opposable fracture 

surfaces identified in the first stage are actually registered using 

the Iterative Closest Point (ICP) algorithm enhanced with a graph 

theoretic improvisation. The correctness of the registration in the 

second stage is constantly monitored by volumetric matching of 

the reconstructed mandible with an intact mandible. Experimental 

results on simulated CT image sequences of broken human 

mandibles are presented.     

Keywords: Biomedical image processing, Image registration, 

Graph theory, Pattern matching.

1. INTRODUCTION 

Craniofacial fractures are very frequently encountered in modern 

society with the major causes being vehicle accidents, sports-

related injuries and gunshot wounds [1]. The issue of virtual

surgical reconstruction is critical even in a single-fracture instance 

as the surgeon needs to precisely, and in an expeditious manner, 

register the two bone fragments, thereby preventing any possible 

misalignment between them. The problem is far more complex in 

case of multiple fractures [2] and the cost of surgery becomes 

prohibitive with the increased operative time necessary to identify 

accurately the opposable fracture surfaces and thereby ensure an 

overall accurate reconstruction [3]. The reconstruction problem is 

essentially combinatorial in nature and hence is a topic of general 

interest in other problems such as jigsaw puzzle solving [4-5] and 

broken earthenware assembly [6]. The present paper provides a 

novel two step solution to the virtual multi-fracture reconstruction 

problem, which can be easily extended to similar problems in other 

domains. In the first step, the opposable fracture surfaces are 

identified using the maximum weight graph matching algorithm 

for a weighted graph, and a pre-computed score matrix. In the 

second step, the opposable fracture surface pairs identified in the 

first step are registered using an improvised ICP algorithm, where 

the closest set is determined using the maximum cardinality 

minimum weight bipartite graph matching algorithm. The 

reconstruction process in the second step is constantly monitored 

using two simple but useful constraints based on the Tanimoto 

coefficient and concepts of volumetric matching.

2. FORMULATION OF THE SCORE MATRIX  

The input to the reconstruction procedure is a sequence of CT 

images of the fractured human mandible. A score matrix is 

constructed based on the appearance of various mandible 

fragments in the input CT image sequence. The mandible 

fragments are classified as terminal or non-terminal, based on the 

presence or absence of condyles (a craniofacial body part that 

exhibits pronounced sphericity) respectively. For simplicity, we 

currently assume that a terminal fragment can have a singe fracture 

surface whereas a non-terminal fragment can have two fracture 

surfaces. However, our scheme is flexible enough to handle any 

number of fracture surfaces for a given fragment. Each fracture 

surface is represented by a collection of 3D data points obtained by 

extracting and collating the corresponding fracture contour points 

in the 2D CT image slices. In the case of 2D problems, the score 

matrix formulation is typically based on curve matching [4], where 

the matrix elements denote matches between potentially opposable 

edge points [7]. In our case, we need to estimate the matching 

score between the 3D fracture surfaces extracted from the CT 

image slices. A high matching score is assigned to a pair of 

fracture surfaces if (a) they are determined to be spatially 

proximal, and (b) they are determined to exhibit complementary 

(opposable) fracture surface characteristics. We have used both of 

these factors in determining the matching score.

2.1. Mathematical Formulation of Spatial Proximity 

Since the various fracture surfaces possess a varying number of 

data points, the notion of a distance (as a measure of spatial 

separation) between any surface pair requires the establishment of 

correspondence between the data points, which is computationally 

very expensive. We therefore use the Hausdorff distance, since it 

does not need a prior correspondence between the two data point 

sets to give a measure of spatial separation between them. The 

Hausdorff distance H(A, B) between two data sets A and B is given 

by [8]:       
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where h(A, B) denotes the directed Hausdorff distance between the 

two data sets A and B defined by 

baBAh
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Here ||a - b|| represents the Euclidean distance between the points 

a and b. Each such a, b in our case is a 3D data point in the 

fracture surface data set A and B respectively. The computation of 

the Hausdorff distance can be done in O(mn) time where m and n

denote the cardinalities of the two fracture surface data sets. 

2.2. Mathematical Formulation of Surface Characteristics 

Each fracture surface is essentially a collection of several fracture 

contours. For each surface, we maintain an ordering of the contour 

curvature extracted from the various CT image slices constituting 

the fracture surface. The choice of contour curvature as a measure 

of surface irregularity is guided by the fact that it enjoys rotational 

and translational invariance. The contour curvature for a point (x, 

y) in a given CT image slice (for a specific value of z) is given by 

[9]: 
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A score function FS(A, B) for a pair of fracture surfaces A and B is

the sum of the score fs(a, b) for each possible point pair, one from 

each surface. If the two points under consideration have the same 

signs for their curvatures, then they cause the overall score for the 

surface to increase; otherwise they cause it to decrease. The score 

function is formally given by: 
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The score fs(a,b) between a pair of points a and b is high if

(a) the slice-wise locations of two points are spatially proximal, 

and (b) the relative positions/enumeration values of the two points 

in respective slices (estimated using the end-points of the slices as 

the reference points) are close and (c) the curvature values of the 

two points are close. The score will be low if any of the above 

criteria are not satisfied. Mathematically fs(a, b) is the product of 

the above three factors and a sign factor, as follows: 
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Here S(a, b), E(a, b) and C(a, b) respectively denote the slice-wise, 

enumeration value-wise and curvature value-wise scores of the two 

points a and b and sa (sb), ea (eb), ca (cb) respectively denote the 

slice value (i.e. z-value), enumeration value of the point in the slice 

and contour curvature value (given by eqn. (3)) of the point a (b).

Also, sg(x) is the sign function, such that sg(x)=1 if x > 0, sg(x)=0

if x = 0, and sg(x)=-1 if x < 0. Each of the functions in eqns. (6), 

(7) and (8) is designed to capture the prominent variations of the 

corresponding component terms. Each term has an absolute value 

in the interval [0, 1], and thus constitutes a fuzzy function, except 

for the sign. 

2.3. Score Matrix Elements 

The score SC(A, B) between two surfaces A and B is a linear 

combination of the inverse of the Hausdorff distance (from eqn. 

(1)) and the surface matching score (from eqn. (4)): 
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The smaller the Hausdorff distance (i.e., the greater the inverse 

value), the greater the possibility of the surfaces being opposable. 

Similarly, the greater the surface matching score value, the greater 

the possibility of the surfaces being opposable. The coefficients of 

linear combination are determined using following equations: 
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In eqn. (11), (H-1(A, B)) and (FS(A, B)) respectively denote the 

standard deviation of H-1(A, B) and FS(A, B) for all possible 

fracture surface pairs A and B.  With the incorporation of the 

Euclidean distance in eqn. (2), the Hausdorff distance in eqn. (1) 

can correctly represent the spatial proximity of two fracture 

surfaces that have undergone rigid body motion [8].  Furthermore, 

the use of contour curvature, a rigid body motion invariant feature 

[9], allows the score matrix to correctly handle relative rotation 

and translation amongst the various fracture surfaces.  

3. COMBINATORIAL PATTERN MATCHING 

In this section, we first show that our multi-fracture reconstruction 

problem results in a combinatorial explosion in terms of number of 

possible reconstruction options. The maximum weight graph 

matching algorithm is presented next as a novel solution to this 

problem.

3.1. Combinatorial Nature of the Reconstruction Problem

Theorem: Given that a non-terminal fragment has two fracture 

surfaces and a terminal fragment has one fracture surface, the 

number of possible reconstruction options rcn where n is the total 

number of fragments is: 
22)!2( n

n nrc         (12) 

Proof: With n total fragments, the 2n non-terminal fragments 

can be encountered in any of ( 2n )! possible orderings. Further, 

each non-terminal fragment can be oriented such that either of the 

fracture surfaces is the first in the sequence. This accounts for the 

factor 2n - 2 in counting the possibilities. It is clear from eqn. (12) 

that the problem leads to a combinatorial explosion [10].  

3.2. Solution to the Combinatorial Reconstruction Problem 

The combinatorial reconstruction problem is usually formulated as 

a Traveling Salesman Problem (TSP) [4]. However, the TSP by 

itself is an NP-hard problem [10], i.e., determining the optimal 

solution to the TSP entails a factorial-time algorithm in the worst 

case. Instead, we model the reconstruction problem as a Maximum 

Weight Graph Matching (MWGM) problem for a weighted graph 

[11], where the fracture surfaces are modeled as the vertices of a 

weighted graph G and the entries of the score matrix are assigned 

the edge weights between the corresponding vertices. The MWGM 

algorithm for a non-bipartite graph has a polynomial time 

complexity of O(n4), where n is the number of vertices [11]. We 

obtain the k best solutions, where 2k  and the solutions are 

indexed by j (j = 1…k). Each solution is a set of unordered 

opposable fracture surface pairs. Let Wj denote the sum of the 

edge-weights for the current best solution and Wj+1 denote the sum 

of the edge-weights for the next best solution. Successive solutions 

are generated until the following condition is violated:

jjj pWWW 1 .                                   (13) 

where p is an appropriately chosen positive fraction. 
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4.  FRACTURE SURFACE REGISTRATION 

The fracture surface pairs are accurately registered using an 

improvised Iterative Closest Point (ICP) algorithm [12] in the 

second step of the overall reconstruction problem. The main steps 

in the improvised ICP algorithm are described below [13]:   

(a) The matching points in one fracture surface data set, called the 

model data set, corresponding to points in the other fracture 

surface data set, called the sample data set, are determined and 

termed the closest set. The matching point pairs are determined 

using the Maximum Cardinality Minimum Weight (MCMW) 

matching algorithm for a bipartite graph [11, 14].  The use of the 

MCMW graph matching algorithm obviates the need for any prior 

alignment of the two fracture surface data sets. The sample and 

model data sets correspond to the two disjoint vertex sets V1 and V2

(with potentially different cardinalities) respectively in the 

bipartite graph GB(V1 U V2, E). The edge-weight (Wij  E) 

between any two nodes i and j (such that i V1 and j V2) is 

deemed to be the Euclidean distance between them. Note that the 

Euclidean distance is invariant under a 3D rigid body 

transformation. Thus, the edge weights are given by: 

2
1
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(b) The computed transformation is applied to the original sample 

data set and the Mean Squared Error (MSE) between the 

transformed sample data points and the corresponding closest   

points is computed. The MSE ( 2) is given by: 
N

i
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where R denotes the rotation matrix, T the translation vector, si a

point of the sample data set and ci the corresponding point in the 

closest set. Steps (a)-(b) are repeated with an updated sample set 

(generated by applying R and T obtained at the current iteration to 

the current sample set) until a pre-specified error convergence 

criterion (0.001 in our case) is reached. 

5. GLOBAL SHAPE MONITORING

As mentioned in Section 3, the k best possible solution sets are 

obtained from the MWGM algorithm. The actual registration of 

the fracture surface pairs is done with the best solution set (using 

the ICP algorithm). After each pair of fracture surfaces are 

registered, the global shape of the partially reconstructed mandible 

is monitored using a measure of volumetric overlap with the 

unbroken reference mandible. In the context of volumetric 

matching, the Tanimoto coefficient TCf,g between two volumetric 

shapes f and g is defined as [15]: 
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Here )ˆ,ˆ,ˆ( zyx = ),,( RCRCRC zzyyxx , where ),,( RCRCRC zyx

is the centroid of the reference mandible R. Similarly, 

)~,~,~( zyx = ),,( SCSCSC zzyyxx , where ),,( SCSCSC zyx is

the centroid of the reconstructed mandible S. Then, we have: 

otherwise
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Now, we introduce two volumetric matching-based shape 

constraints for the purpose of monitoring the global correctness of 

the reconstruction:

i) With the registration of each fracture surface pair, the value of 

the TCf, g should be monotonically non-decreasing. 

ii) In the present reconstruction scenario, since S is a subset of R,

ideally, the overlapped volume Of, g at each stage should be exactly 

twice the volume of the partially reconstructed mandible Ig. This 

can be seen from eqns. (17) – (19) with the fact that the volume of 

the reference mandible If always remains constant. We then define 

the correctness criterion as  

)2()2( , ggfg qIOI                             (22) 

where q is an appropriately chosen positive fraction. At any point 

in the reconstruction stage if either of the two constraints is 

violated, we abandon the current solution and restart the 

registration with the next best solution of the MWGM algorithm. 

6. EXPERIMENTAL RESULTS 

Experimental results are restricted to a single (multi-fracture) case 

to conserve space. The input CT image sequence has six broken 

human mandible fragments with a total of ten fracture surfaces. 

The two fracture surfaces belonging to the terminal fragments are 

numbered 1 and 10 and the remaining eight fracture surfaces of the 

non-terminal fragments are numbered from 2 to 9.   

TABLE 1. Extreme Score Parameter values 

Score Parameter Extremes Value Fracture Surface 

Pair 

Min. Hausdorff distance 29.83 (5, 6) 

Max. Hausdorff distance 185.12 (1, 9) 

Min. Surface Match -413.39               (4, 9) 

Max. Surface Match 955.55 (1, 4) 

Min. Overall Score 1 (4, 9) 

Max. Overall Score 1362 (1, 4) 

TABLE 1 shows the extreme values of the Hausdorff distance, the 

surface match function and the overall score amongst all possible 

fracture surface pairs. The surface match values are normalized so 

that the minimum value is 1.0 before using them in eqn. (9) to 

ensure all positive weights for the graph. The overall score 

elements are also rounded to their nearest integer values for the 

graph matching algorithm. For the present CT image sequence, the 

surface match clearly dominates the overall score. However, for a 

different CT image sequence with fairly similar fracture surface 

characteristics, the spatial proximity of the fracture surfaces could 

easily be more decisive. This justifies the inclusion of the 

Hausdorff distance term in the overall score. 

TABLE 2. Results from the Graph Matching Algorithm 

Solution Set (j) Wj

{(1,4),  (2, 5), (3, 6), (7, 8),  (9, 10)} 4987 

{(1,3),  (2, 9), (4, 6), (5, 7),  (8, 10)} 3123 

TABLE 2 shows the solution set obtained from the MWGM 

algorithm along with the sum of the edge weights for each solution 

set. We chose p = 0.1, which in this case led to termination after 

obtaining two best solution sets based on eqn. (13). 
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Fig. 1. Different Stages of Mandibular Reconstruction 

Fig. 1 describes the various stages of the reconstruction with the 

best solution set (obtained from row 1 of Table 2) using the 

improvised ICP algorithm described in Section 4. The first row 

shows three successive images in the original CT sequence with 

six broken fragments or components (denoted by bright intensity 

values), obtained after preprocessing the original CT image 

sequence. Each of the later five rows shows the same three images 

with a new pair of fracture surfaces registered at each stage.  

TABLE 3. Results of Shape Monitoring (A = (2I g - Of,g)/ 2 Ig)

Various Stages of Reconstruction TCf,g A

(1, 4) registered 1.08 0 

{(1, 4), (2, 5)} registered 1.47 0 

{(1, 4), (2, 5), (3, 6)} registered 1.57 0 

{(1,4), (2,5), (3,6), (7, 8)} registered 1.69 0 

All 5 fracture surface pairs registered 21.71 0.0003 

TABLE 3 describes the results of the step-by-step shape 

monitoring of the partially reconstructed mandible at various 

stages of reconstruction. At each stage, both shape constraints 

(defined in Section 5) are satisfied with a choice of q = 0.01. Thus, 

we proceed with the best solution of the MWGM algorithm to 

complete the registration of all five fracture surface pairs.   

7. CONCLUSIONS AND FUTURE RESEARCH 

The paper addresses an extremely challenging biomedical imaging 

problem, i.e., that of multi-fracture craniofacial reconstruction. The 

problem is cast as one of combinatorial optimization for which a 

novel, general and efficient solution is proposed. The proposed 

solution has the potential to considerably reduce the operative 

time, operative costs and patient trauma during actual craniofacial 

surgery and also ensure accurate reconstructive surgery. Future 

research will focus on the use of deformable models, instead of 

pure volumetric matching, for global shape monitoring [16].  

8. REFERENCES 

[1] R.E. King, J.M. Scianna and G.J. Petruzzelli, Mandible 

fracture patterns: a suburban trauma center experience, Amer.

J. Otolaryngology, 25(5), pp. 301-307, 2004. 

[2] B.O. Ogundare, A. Bonnick and N. Bayley, Pattern of 

mandibular fractures in an urban major trauma center, J. Oral 

Maxillofacial Surg. 61(6), pp. 713-718, 2003. 

[3] C. Zahl, D. Muller, S. Felder and K.L. Gerlach, Cost of 

miniplate osteosynthesis for treatment of mandibular 

fractures: a prospective evaluation, Gesundheitswesen,

65(10), pp. 561-565, 2003.

[4] H. Wolfson, E. Schonberg, A. Kalvin and Y. Lamdan, 

Solving Jigsaw Puzzles by Computer, Ann. Oper. Res., 12. 

pp. 51-64. 1988. 

[5] D. Goldberg, C. Malon and M. Bern, A Global Approach to 

Automatic Solution of Jigsaw Puzzles, Computational

Geometry – Theory and Appl. 28(3), pp. 165-174. 2004.

[6] A. Willis and D. Cooper, Bayesian Assembly of 3D Axially 

Symmetric Shapes from Fragments, Proc. IEEE Conf. CVPR, 

Washington D.C., USA, pp. 82 – 89, 2004. 

[7] J.T. Schwartz and M. Sharir, Identification of partially 

obscured objects in two dimensions by matching of noisy 

characteristic curves, Intl. J. Robotics Res. 6(2), pp. 29 – 44, 

1987.

[8] D.P. Huttenlocher, G.A. Klanderman and W.J. Rucklidge, 

Comparing Images Using the Hausdorff Distance,  IEEE

Trans. PAMI, 15(9), 850 – 863, 1993. 

[9] L.F. Costa and R.M. Cesar Jr., Shape Analysis and 

Classification, Theory and Practice, CRC Press, 2000. 

[10] C.H. Papadimitriou and K. Steiglitz, Combinatorial

Optimization, Algorithms and Complexity, Dover

Publications, 1998.

[11] N. Christofides, Graph Theory: An Algorithmic Approach.

Academic Press, 1975. 

[12] P.J. Besl and N.D. McKay, A Method for Registration of 3-D 

Shapes, IEEE Trans. PAMI, Vol. 14(2), pp. 239 – 256, 1992.

[13] S.M. Bhandarkar, A.S. Chowdhury, Y. Tang, J. Yu and E.W. 

Tollner, Surface Matching Algorithms for Computer Aided 

Reconstructive Plastic Surgery: Proc. IEEE ISBI, pp. 740 – 

743, Arlington, VA, USA, 2004. 

[14] H.W. Kuhn, “The Hungarian method for the assignment 

problem,” Nav. Res. Log. Quart. 2, 1955.  

[15] E.J. Mills and P.M. Dean, Three-dimensional hydrogen-bond 

geometry and probability information from a crystal survey, 

Jour. Comput-Aided Mol. Des., 10(6), pp. 607 -622, 1996.

[16] T. McInerney and D. Terzopoulos, Deformable Models in 

Medical Image Analysis: A Survey, Medical Image Analysis,

1(2), pp. 91 – 108, 1996. 

1176


