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ABSTRACT

This paper addresses the clinically challenging problem of hairline
mandibular fracture detection from a sequence of Computed Tomog-
raphy (CT) images. A hairline fracture of critical clinical impor-
tance, can be easily missed due to the absence of sharp surface and
contour discontinuities and the presence of intensity inhomogene-
ity in the CT image, if not scrutinized carefully. In this work, the
2D CT image slices displaying a mandible with hairline fractures
are first identified within an input CT image sequence of a fractured
craniofacial skeleton. This is achieved via an intensity-based image
retrieval scheme using Kolmogorov-Smirnov distance as the mea-
sure of similarity and an unbroken mandible as the reference image.
Since a hairline fracture is essentially a discontinuity in the bone
contour, we model it as a minimum cut in an appropriately weighted
flow network. The existing graph cut-based segmentation schemes
are enhanced with a novel construction of the flow network, guided
by the geometry of the human mandible. The Edmonds-Karp re-
finement of the classical Ford-Fulkerson algorithm is employed next
to obtain a minimum cut, which represents the hairline fracture in
the already identified CT image slices. Experimental results demon-
strate the effectiveness of the proposed method.

Index Terms— Hairline mandibular fracture, Max-flow min-
cut, Kolmogorov-Smirnov distance.

1. INTRODUCTION

Mandibular fractures occur frequently due to gunshot wounds, mo-
tor vehicle accidents, sports-related and battlefield-related injuries
[1]. The mandible is usually less protected and hence more vulner-
able than other parts of the human anatomy, even with full-body ar-
mor. The term hairline fracture refers to situations where the broken
bone fragments are not visibly out of alignment and exhibit very lit-
tle relative displacement. Detection of hairline mandibular fractures
is particularly challenging due to the absence of sharp surface or con-
tour discontinuities and the presence of intensity inhomogeneities in
a CT scan. Thus, there is a significant probability that such frac-
tures could escape manual scrutiny even if performed by a trained
radiologist.

Computer-aided fracture detection has gained popularity over
the past decade. Some recent works in this area include use of tex-
ture for the detection of hip fractures by Yap et al. [2], detection of

fractures in femur bones using a combination of classifiers by Lum
et al. [3], use of active contour modeling coupled with shape con-
straints for the detection of fractures in the arm by Jia and Jiang
[4], femur fracture detection via a divide-and-conquer approach in
kernel-space using a Support Vector Machine (SVM) by He et. al.
[5] and the use of the Hough transform and gradient analysis for the
detection of midshaft long-bone fractures by Donnelley et. al. [6].
Although mandibular fractures are encountered frequently, there is
a relative paucity of work in computer-aided detection of such frac-
tures. Detection of well-displaced mandibular fractures, wherein the
broken fragments have suffered noticeable relative displacement (in
sharp contrast to the present scenario), using a Bayesian inference
approach has been reported in previous work by Chowdhury et al.
[7]. A Markov Random Field (MRF)-based approach for detection
of mandibular hairline fractures has been previously presented by
Chowdhury et al. [8]. However, the MRF-based scheme described
in [8] is computationally intensive. Furthermore, the MRF-based
scheme is based on an underlying assumption that the bilateral sym-
metry of a mandible is preserved in the case of a hairline fracture,
which may not necessarily hold in some cases.

In this paper, the 2D CT slices containing a fractured mandible
are first identified within the entire CT image sequence of a fractured
craniofacial skeleton using the Kolmogorov-Smirnov (KS) distance
measure. Within each identified 2D CT slice, a hairline fracture is
modeled as a cut in the flow of image intensities along the bone
contours between two anatomical landmark points on the human
mandible, called condyles. The geometry of the mandibular con-
tours is exploited to build the flow network. In graph theory, this
translates to finding a minimum cut in the flow graph between the
source and the sink vertices. A fracture is detected by determining a
minimum cut using the Edmonds-Karp enhanced version of the clas-
sical max-flow min-cut algorithm of Ford and Fulkerson [9]. Unlike
the MRF-based scheme [8], the proposed method is computationally
fast and does not rely on the assumption of preservation of bilateral
symmetry for mandibles with hairline fractures.

The rest of the paper is organized in the following manner: in
Section 2, we discuss how the relevant CT slices containing a frac-
tured mandible are retrieved using the KS distance. In Section 3, we
describe the process of fracture detection using the max-flow min-
cut algorithm. In Section 4, we present the experimental results.
Finally, the paper is concluded in Section 5 with an outline of future
research directions.
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2. RETRIEVAL OF RELEVANT CT SLICES USING
KOLMOGOROV-SMIRNOV DISTANCE

The input to our problem is a sequence of CT images showing a frac-
tured human craniofacial skeleton. Typically, a fractured mandible
appears only in a few CT slices within the entire sequence. An
intensity-based image retrieval technique is employed using the
Kolmogorov-Smirnov (KS) distance as a measure of (dis)similarity
to identify the fracture-containing 2D CT slices. Various distance
measures have been used for capturing the (dis)similarity in the con-
tent of two images in content-based image retrieval (CBIR) systems
[10]. A 2D CT slice (appearing in the middle of the CT sequence)
of an unbroken craniofacial skeleton containing the intact mandible
is selected as the reference CT slice. Each CT slice appearing in
an input CT sequence of a broken craniofacial skeleton containing
mandibular hairline fractures is treated as a candidate CT slice. The
histograms of the pixel intensities of the reference CT slice and each
candidate CT slice are first computed. The respective histograms are
treated as probability distribution functions (pdfs) from which the
cumulative distribution functions (cdfs) are then obtained. The KS
distance measure is used to quantify the (dis)similarity between the
cdf of the reference CT slice and the cdf of each candidate CT slice.
Let X(x) and Y (x) respectively denote the pdfs of the reference CT
slice and a candidate CT slice. Let Xc(x) and Y c(x) respectively
denote the cdfs corresponding to X(x) and Y (x). The KS distance
between these two cdfs is given by:

KS(Xc(x), Y c(x)) = sup
x

|Xc(x) − Y
c(x)| (1)

The candidate CT slices which yield a smaller KS distance from the
reference slice than a pre-determined threshold are deemed to con-
tain the fractured mandible. An important advantage of using the
KS distance measure is its non-parametric nature, thus no particular
form of distribution is necessary for its computation [11]. Further-
more, the KS distance is also found to be robust to outliers.

3. FRACTURE DETECTION USING MAX-FLOW MIN-CUT

In this section, we first discuss the construction of the flow network
for a 2D CT slice with suitable choices of vertices, edges and ca-
pacity functions to be used as edge weights. We will then justify
our claim that the fracture detection problem can be mathematically
modeled as being equivalent to the identification of a minimum cut
in the constructed flow network.

3.1. Construction of the flow network

In their formulation of a flow network, Boykov and Jolly [12] choose
all the pixels in an image as the vertices and establish edge connec-
tions amongst the 8 pixel neighbors. For the present problem, a flow
network G = (V, E) is constructed differently. It is noticed that
a typical hairline fracture appears along the bone contours. So, we
choose the set of boundary pixels P on the two mandibular con-
tours (i.e. the inner and the outer contour) as the vertices of the
proposed flow network. The two condyles, which are anatomical
landmark points at the two terminals of the jaw, serve as natural
choices for the source vertex s and the sink vertex t. Thus, we can
write: V = P ∪ {s, t}.

We now explain the process of identifying the mandibular con-
tour points and the two condyles in a 2D CT slice for which some do-
main knowledge about the appearance of human mandibles in the CT
scans is used. Specifically, (i) an intensity threshold for a mandibular

Fig. 1. A 2D flow network with a source s, a sink t and representative
tangential (T) and normal (N) edges.

pixel and (ii) a bounding box for a mandible are assumed. Within the
bounding box, we employ a boundary following algorithm [13] on
the pixels which exceed the intensity threshold. Both the threshold
value and the bounding box are kept constant for all the experimen-
tal datasets. The two condyles are two bottom-most points in the
two bilateral halves of the image. Thus, we locate the condyles by
identifying the two points on the mandibular contours with a maxi-
mum value of the y-coordinate (with respect to the image coordinate
system) in the two halves of a 2D CT slice.

Since the boundary pixels for a mandible lie essentially on an
arc, we construct tangential (T ) and normal (N) edges in the pro-
posed flow network representation. For each boundary pixel on a
specific mandibular contour, we create edge links with the imme-
diately forward and backward neighboring pixels. These constitute
the T edges. On the other hand, the N edges are established be-
tween any two normal (or near-normal) boundary points across the
two contours q and r. In addition the first boundary pixel of both the
contours (qf , rf ) are attached to the source (s) and the last bound-
ary pixel of both the contours (ql, rl) are attached to the sink (t).
Therefore,

E = T ∪ N ∪ {(qf , s), (rf , s), (ql, t), (rl, t)}
The rationale of having tangential and normal neighbors is guided
by the geometry of the mandible as well as by the fracture pat-
tern. A typical hairline fracture appears along and also across the
two mandibular contours (for example see Figures (3) - (4)). The
tangential edges are appropriate for capturing a fracture along the
contour and the normal edges are suitable for identifying a fracture
across the contour. So a fracture is appropriately modeled by using
both types of edges. Let j and k be any two consecutive points along
a mandibular contour with coordinates (xj , yj) and (xk, yk) respec-
tively. Then the equation of the line that is normal to the contour at
point j is given by:

(xk −xj)x+(yk − yj)y +(xj(xj −xk)+ yj(yj − yk)) = 0 (2)

In order to be a normal neighbor to the point j, a point on the other
contour should ideally satisfy equation (2). However, it is not al-
ways possible to find the exact normal neighbor (primarily due to
sampling error). So, we compute the distance djm of a set of com-
peting candidate points m having coordinates (mx, my) and choose
the one which yields the minimum value of djm. From basic coor-
dinate geometry, we obtain:

djm =
Amx + Bmy + C√

A2 + B2
(3)
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where A = (xk − xj), B = (yk − yj) and C = (xj(xj − xk) +
yj(yj − yk)). We choose a simple capacity function, with intensity
and distance as its two parameters, as an edge weight between a pair
of pixels. Let Ip and Iq be the intensities of two pixels j and k and
let djk be the Euclidean distance between them. Then the capacity
function cjk is given by:

cjk =
IjIk

djk

(4)

Since a typical fracture is characterized by the loss of bone mate-
rial, the fracture site has a lower intensity value than the surrounding
bone in a CT scan. Additionally, the distance between two boundary
pixels would be relatively higher if it encompasses a fracture site.
This justifies the choice of the capacity function, (given by equation
(4)) since both tangential and normal edges exhibit lower capacity
values at fracture sites. Very high capacity values are assigned to
the edges which connect qf and rf to the source s and those which
connect the sink t to ql and rl. By construction, all edges in the pro-
posed flow network have a capacity value > 0. A schematic diagram
of a 2D flow network with source and sink vertices, and tangential
and normal edges is shown in Figure(1).

3.2. Correctness of the Modeling

We provide an intuitive justification for the correctness of the pro-
posed modeling of fracture detection as a graph cut. We follow the
framework of Boykov and Jolly [12]. From the discussion in the
previous section, it is evident that every cut C in the flow network G

satisfies following two properties:

1. C groups the vertices of G into two disjoint sets.

2. One set will contain the source vertex s and the other set will
contain the sink vertex t.

The following theorem is essential to justify the correctness of
the proposed network flow model. We state this theorem without
proof. The interested reader can refer to [9] for a detailed proof.
Theorem. For any graph the maximum flow value from source ver-
tex s to sink vertex t is equal to the minimal cut capacity of all cuts
separating s and t. This is known as the Max-flow Min-Cut theorem.

Claim: A minimum cut C∗ correctly identifies a fracture in the
proposed 2D flow network G.

Justification: The justification is based on the above theorem and
the construction of the flow network with the capacity function
given by equation (4). We seek to determine the maximum flow
between s and t. Using the above theorem, we obtain the minimum
cut C∗. The minimum cut will consist of the cut edges in our flow
network G. Basically, the cut edges are edges with comparatively
low capacity values. From equation (4), it is evident that the low
capacity edges are edges with relatively lower pixel intensity values
and relatively higher distance values. These are exactly the char-
acteristics of an edge in the vicinity of a fracture site. Note that
since the broken fragments in a hairline fracture are not visibly out
of alignment, a non-zero flow exists between them albeit with a
lower value. The drop in the flow value is due to the presence of the
fracture, which is a flow bottleneck in the constructed flow network.
Thus, identification of a minimum cut C∗ corresponds to detection
of a fracture in the 2D flow network G.

The computation of the augmenting path is done using a
breadth-first search, as outlined in the Edmonds-Karp enhance-
ment [14] of the classical Ford-Fulkerson algorithm which has a

worst-case time complexity O(|V ||E|2), where |V | denotes the
cardinality of the vertex set V and |E| denotes the cardinality of the
edge set E in the flow network G.

4. EXPERIMENTAL RESULTS

The threshold value for the KS distance is experimentally chosen to
be 0.25. Thus, only those CT slices which yield a value of KS dis-
tance lower than that of the threshold, are retrieved. Some results of
KS distance-based image retrieval are shown in Figure (2). In this
figure, the two fracture-containing CT slices out of a total of four are
the ones which are similar in appearance to the reference CT slice
and are hence retrieved. Note that the max-flow min-cut algorithm
is applied exclusively to those CT slices which are retrieved. We
now show both qualitatively and quantitatively the performance of
the fracture detection procedure using the 2D max-flow min-cut al-
gorithm. This algorithm was applied to 43 slices, retrieved from 10
data sets. Two different mandibles with the fracture sites identified
are shown in Figures (3) and (4). In each of these figures, the centers
of the crosses mark the source vertex (in the left half of the image)
and the sink vertex (in the right half of the image) and the fractures
are indicated by dark squares. Upon execution of the max-flow min-
cut algorithm, we obtain the edges in the cut set. Each such edge
joins a vertex on the source-side with another vertex on the sink-side
of the flow network. For proper visualization, each such vertex is
represented by a black square. It is evident from the figures that the
fractures are identified accurately in both cases. The ground-truth is
obtained via manual detection by trained radiologists. We achieve
a sensitivity of 79% and a specificity of 59% after comparing our
results with the ground-truth. The above values of sensitivity and
specificity can be ascribed to i) use of a simple capacity function
during the min-cut and ii) use of only the intensity feature in the im-
age retrieval procedure. The execution time for the above 2D max-
flow min-cut algorithm is only few seconds on a 1.73 GHz Intel c©

Pentium c©M Processor.

5. CONCLUSIONS AND FUTURE WORK

Mandibular hairline fractures are difficult to detect (in the CT scans)
due to the absence of sharp surface and contour discontinuities. In
this paper, we model a hairline fracture as a minimum cut in an ap-
propriately weighted flow network. The flow network is constructed
based on the geometry of the human mandible and some prior knowl-
edge of the fracture pattern. A simple capacity function is used
to compute the edge weights. The Edmonds-Karp enhanced Ford-
Fulkerson algorithm is employed on the 2D flow network to obtain
a minimum cut. We have so far achieved a sensitivity of 79% and
a specificity of 59%. To the best of our knowledge, this is the first
detailed study of computer-aided detection of mandibular hairline
fractures. The present work serves as an important tool for the ra-
diologists and the craniofacial surgeons. From the computer vision
perspective, the work represents an elegant blend of nonparametric
statistics, geometry and graph theory.

In future, we plan to make the capacity function more robust by
incorporating anatomical knowledge. For example, we can use the
information that tissue swelling and specific low intensity regions
called emphysema [15] typically appear in the vicinity of a mandibu-
lar fracture. The fracture detection results can be also improved by
incorporating shape features in the KS distance-based retrieval pro-
cess. Another direction of future research would be to detect a hair-
line fracture in 3D by applying the max-flow min-cut algorithm on
all the retrieved CT slices (in a given dataset) taken together.
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Fig. 2. Results from KS distance-based image retrieval for four
slices from one CT image sequence. The unbroken reference
mandible is shown in the first row. The right CT slice in the sec-
ond row and the left slice in the third row are the ones retrieved.

Fig. 3. 2D slice of a fractured mandible in the left. Fracture detection
(black squares) with source and sink identification (black crosses) in
the right.
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