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A novel solution to the problem of virtual craniofacial reconstruction using computer vision, graph theory
and geometric constraints is proposed. Virtual craniofacial reconstruction is modeled along the lines of
the well-known problem of rigid surface registration. The Iterative Closest Point (ICP) algorithm is first
employed with the closest set computation performed using the Maximum Cardinality Minimum Weight
(MCMW) bipartite graph matching algorithm. Next, the bounding boxes of the fracture surfaces, treated
as cycle graphs, are employed to generate multiple candidate solutions based on the concept of graph
automorphism. The best candidate solution is selected by exploiting local and global geometric con-
straints. Finally, the initialization of the ICP algorithm with the best candidate solution is shown to
improve surface reconstruction accuracy and speed of convergence. Experimental results on Computed
Tomography (CT) scans of real patients are presented.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In fast-paced modern society, craniofacial fractures, especially
mandibular fractures, are very frequently encountered, most often
due to gunshot wounds, motor vehicle accidents and sports-related
injuries (King et al., 2004). The resulting craniofacial and mandib-
ular fractures exhibit certain distinct patterns. Sometimes, these
patterns imply a single fracture, and, in some other cases, a combi-
nation of single fractures (Ogundare et al., 2003). From a surgical
standpoint, the fractures are fixated one at a time in the operating
room and hence must be so handled in the pre-surgical planning
phase as well. Thus, reconstruction of a single mandibular fracture
assumes paramount importance in almost all cases. The proposed
scheme for computer vision guided virtual craniofacial reconstruc-
tion from a sequence of Computed Tomography (CT) images allows
the surgeon to reconstruct accurately the fractured craniofacial
skeleton in silico before performing the surgery in vivo.

The above reconstruction problem is also one of general interest
from the perspectives of computer vision and pattern recognition.
The input to the problem is a sequence of 2D slices showing a
fractured human mandible with two broken fragments. The goal
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is to register these broken fragments with the transformation, de-
rived from registering their fractured surfaces. Having cast the
problem as one of rigid registration, the well-known Iterative Clos-
est Point (ICP) algorithm (Besl and McKay, 1992) is employed to
match the fracture surfaces by matching the points on them. A
fracture surface can be also considered, in the present scenario,
to have a bounding box. We next match the fracture surfaces by
matching their bounding boxes based on certain geometric con-
straints. We call this the Geometric algorithm. Finally, the combi-
nation of the ICP and the Geometric algorithms, termed as the
Geometric-ICP algorithm, is shown to yield a faster as well as a
more accurate solution. Graph matching and graph automorphism
are respectively used to establish the correspondence and limit the
number of initial states for the ICP algorithm. The remainder of the
paper is organized as follows. In Section 2, we discuss the current
state of the art and highlight our contribution. Section 3 discusses
the underlying theoretical foundations of our work. Section 4 de-
scribes the basic image processing operations. Section 5 discusses
the ICP-based reconstruction algorithm. Sections 6 and 7, respec-
tively explore graph automorphism for generation of multiple ini-
tial states for the ICP algorithm and selection of the best initial
state based on local and global geometric constraints. In Section
8, Geometric and hybrid Geometric-ICP algorithms are proposed
as alternative methods of reconstruction. Section 9 presents the
experimental results and their analysis on CT scans of real patients.
Finally, the paper is concluded in Section 10 with an outline of fu-
ture work.
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2. Literature review and our contribution

While there is recent work in the literature dealing with simu-
lation of mandibular fractures (Nakajima et al., 2001) and simula-
tion of dental implantalogy (Siessegger et al., 2001), there is little
reported by way of automated computer-aided surgical recon-
struction of the craniofacial skeleton in recent years. Patel et al.
(1996) have examined the issues involved in computer-assisted
craniofacial surgical planning and simulation using CT, computer
visualization and graphical simulation techniques. Cevidanes
et al. (2007) have described image processing methods for the
computation of morphometric changes associated with jaw sur-
gery. Enciso et al. (2003) and Mollemans et al. (2005) have exam-
ined issues pertaining to soft tissue modeling and simulation of
jaw motion in the context of craniofacial surgery. The Iterative
Closest Point (ICP) (Besl and McKay, 1992) algorithm is observed
to be a popular computer vision algorithm for surface registration
in the field of medical imaging (Granger et al., 2001). Bhandarkar
et al. (2007a) have proposed a synergistic combination of the Data
Aligned Rigidity Constrained Exhaustive Search (DARCES) and the
ICP algorithms for solving the problem of virtual craniofacial
reconstruction. The focus of the work was on outlier rejection to
give the ICP algorithm a better initial starting solution. No work,
to the best of our knowledge, has thus far been reported on the
exploration of graph automorphism and enforcement of different
types of geometric constraints to improve the performance of the
ICP algorithm.

Our contribution in this paper is twofold. From an application
standpoint, a biomedical imaging problem of critical importance
to practicing surgeons is successfully explored. From computer vi-
sion and pattern recognition perspectives, we show how (a) bipar-
tite graph matching can be used to compute the closest set in the
ICP algorithm, (b) automorphisms of cycle graphs can be employed
as a meaningful alternative to generate multiple initial states for
the ICP algorithm, and (c) local and global geometric constraints
can be utilised to select the best initial state and eventually im-
prove the accuracy and speed of convergence of the ICP algorithm.
A preliminary version of the paper was presented in (Bhandarkar
et al., 2007b).

3. Theoretical foundations

In this section, we present some basic definitions and concepts
pertaining to types of graphs, graph matchings and graph automor-
phisms, which will be exploited later in the paper. For further de-
tails, the interested reader is referred to standard textbooks on
graph theory such as (Papadimitriou and Steiglitz, 1982; Christo-
fides, 1975 and Valiente, 2002):
Fig. 1. A real patient CT image sequence of a fractured mandible. The ima
Definition 1. A graph G is an ordered pair of disjoint sets ðV ; EÞ
such that E is a subset of the set V ð2Þ of unordered pairs of V. The set
V is the set of vertices and E is the set of edges.

Definition 2. The order of G is the number of vertices in G and the
size of G is the number of edges in G.

Definition 3. A graph G V1 [ V2; Eð Þ is bipartite if the two vertex
sets V1 and V2 are disjoint and every edge in the edge set E joins
a vertex of V1 to a vertex of V2.

Definition 4. A walk W in a graph G consists of an alternating
sequence of vertices and edges, say (v0; e1; v2; e2; . . . ; vn; en), where
ei ¼ fvi�1vig;0 < i 6 n. W is termed a v0 � vn walk and is denoted
by v0v1 . . . vn; the length of W is n.

Definition 5. A graph Cn constitutes a cycle of order n if its vertices
vi;0 < i � n, are distinct from each other, n P 3, v0 ¼ vn, and there
exists a walk v0v1; . . . ; vn which contains all the edges of Cn.

Definition 6. A cycle graph is a graph that consists of a single cycle.

Definition 7. A matching M of a graph G ¼ ðV ; EÞ is a subset of the
edges with the property that no two edges of M share a common vertex.

Definition 8. If edge weights are given by a function w : E! Rþ

the weight of a matching is defined as wðMÞ ¼
P

e2MwðeÞ. The Max-
imum Weight Matching problem is to determine a matching M in G
that has maximum weight.

Definition 9. When the cardinality of a matching is jV j=2 in a
graph with jV j nodes, we say the matching is complete or perfect.
In order to have a perfect matching, the order of the graph has to
be even.

Definition 10. If the edge weights of a graph are all unity, the
matching problem essentially becomes a Cardinality Matching
problem. A Maximum Cardinality Matching is a matching with the
maximum possible number of edges.

Definition 11. Two graphs G1 ¼ V1; E1ð Þ and G2 ¼ V2; E2ð Þ are iso-
morphic, denoted by G1 ffi G2, if there exists a bijection
M # V1 � V2 such that, for every pair of vertices vi; vj 2 V1 and
wi;wj 2 V2 with vi;wið Þ 2 M and vj;wj

� �
2 M; vi; vj

� �
2 E1 if and only

if wi;wj
� �

2 E2. In such a case M is a graph isomorphism from G1 to G2.

Definition 12. An automorphism of a graph G is a graph isomor-
phism between G and itself.
ges in (a), (b) and (c) are three consecutive slices in the CT sequence.
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Definition 13. The set of all automorphs of a graph forms a group
under the operation of composition. This group is termed the auto-
morphism group of the graph.

Definition 14. The order of a group denotes the number of ele-
ments of that group.
4. Image processing operations

The input to the computer vision guided virtual craniofacial
reconstruction system is a sequence of 2D grayscale images of a
fractured human mandible, generated using CT. Fig. 1 is a CT image
sequence obtained from a real (human) patient where the images
shown in Fig. 1a–c represent three consecutive CT slices. A series
of image processing tasks is undertaken before using the surface
matching algorithms to register the two fractured bone fragments
(Bhandarkar et al., 2007a). The result of the image processing oper-
ations on the real (human) patient CT slice in Fig. 1a is shown in
Fig. 2. A brief description of the image processing operations is pro-
vided in the following subsections.

4.1. Thresholding

The selection of the appropriate threshold is not obvious since the
CT images typically contain objects or artifacts of different intensities
(i.e. varying Hounsfield unit values). For example, a fractured man-
dibular fragment could contain cavities, dental fillings, crowns and
other dental prostheses. In such cases, entropy-based thresholding
(Sahoo et al., 1988) was found to perform better than simple thres-
holding. In the case of entropy-based thresholding, the threshold va-
lue (represented by the variable T in equation (1)) is determined via
maximization of the inter-class entropy computed from the gray-
scale histogram of the CT image. The entropy, in general, is a proba-
bilistic measure of the uncertainty of an event. For an image, the
entropy Sc for each grayscale class c (consisting of several grayscale
values) can be computed using the grayscale histogram as follows:

Sc ¼
X
k2Gc

pðkÞlog2ðpðkÞÞ ð1Þ

where pðkÞ is the probability of a pixel having a grayscale value k
and Gc is the set of grayscale values for class c. In the context of
binarization, the grayscale threshold T is chosen such that the total
entropy S ¼

P2
c¼1Sc is maximized.

4.2. Connected component labeling

Binarization of the CT image by itself cannot extract reliably the
two fracture fragments, as is evident from Fig. 2b. This is simply
Fig. 2. (a) A typical 2D CT slice (from a real patient CT sequence). (b) The CT slice after E
Filtering. In (c), the two broken mandibular fragments are represented by two different
because one still needs to filter out the undesired artifacts so that
only the fractured mandibular fragments are used for the purpose
of surface matching. A 2D Connected Component Labeling (CCL)
procedure in conjunction with a component area filter was used
to remove the undesired artifacts (which are typically small in
size). Connected components with area less than a threshold value
(chosen as 1000 pixels) are deleted. The result of these operations
is illustrated in Fig. 2c. The results of the 2D CCL procedure are
propagated across the CT image slices, resulting in a 3D CCL algo-
rithm. A 3D component (a fractured jaw bone in this case) is iden-
tified by computing the area of overlap of the corresponding 2D
components in successive CT image slices.

4.3. Contour data extraction

After performing the thresholding, CCL and size filtering oper-
ations on all the CT image slices, the task of interactive contour
detection is performed on the resulting binary image slices. The
user can click on potentially interesting points on a fracture con-
tour (typically points of high curvature). The intervening fracture
contour points are generated automatically by a contour follow-
ing algorithm. A 3D surface point dataset is generated for each
fracture surface by collating the individual fracture contour data
points.
5. ICP-based reconstruction

In this section, we describe the process of virtual craniofacial
reconstruction procedure using the ICP algorithm (Bhandarkar
et al., 2007a). The task of the ICP algorithm (Besl and McKay,
1992) is twofold. The first part is to establish a correspondence
between the two surface point sets to be matched. The second
part is to compute a 3D transformation that brings the two sets
into registration. In the present problem, the cardinalities of the
two data sets to be matched are different. We term the fragment
(dataset) to be matched the sample fragment (dataset) and the
fragment (dataset) to which the sample fragment (dataset) is to
be matched the model fragment (dataset). Let the sample and
model fragments be denoted by frg1 and frg2, respectively. By
the term matching, in this context, we actually mean registration
of the two fragments. It is important to note that each of the two
broken fragments has a fractured surface (the sample fragment
has sample fracture surface and the model fragment has a model
fracture surface). We actually predict the 3D rigid body transfor-
mation needed to bring the sample fracture surface into registra-
tion with the model fracture surface. We then apply that 3D rigid
body transformation to the entire sample fragment to register it
with the model fragment.
ntropy Thresholding. (c) The CT slice after Connected Component Labeling and Size
intensity values.
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5.1. The basic ICP algorithm

The basic ICP algorithm consists of the following steps:

1. The matching points in the model dataset corresponding to
points in the sample dataset are determined. This new set of
matching points in the model dataset, which represents a sub-
set of the original model dataset, is termed the closest set.

2. The 3D rigid body transformation (3D translation and 3D rota-
tion) that brings the two surfaces into registration is using the
Theory of Quaternions (Hamilton, 1847).

3. The computed transformation is applied to the original sample
dataset and the mean squared error (MSE) between the trans-
formed sample data points and the corresponding points in
the closest set is calculated. The MSE ð�2Þ is given by:

�2 ¼ ð1=nÞ
Xn

i¼1

ci � Rsi þ Tð Þð Þ2
� �

ð2Þ

where R denotes the rotation matrix, T denotes the translation vec-
tor, si denotes a point in the sample data set, ci represents the cor-
responding point in the closest set and n is the total number of
sample points.

Steps 1–3 are repeated with an updated sample dataset that is
generated by applying R and T obtained in the current iteration
to the current sample dataset. The algorithm is deemed to have
converged when the difference in MSE between two successive
iterations drops below a pre-specified threshold (0.01 mm2 in
our case).

5.2. Closest set computation

Graph theoretic matching has been used extensively in several
computer vision problems (Kim and Kak, 1991). In the computation
of the closest set, which is the most crucial step in the ICP algorithm,
the matching point pairs are determined using the Maximum Car-
dinality Minimum Weight (MCMW) bipartite graph matching algo-
rithm based on the Hungarian method proposed by Kuhn (1955).
We construct a bipartite graph G V1 [ V2; Eð Þ where the 3D sample
and model datasets correspond to the two disjoint vertex sets
V1 and V2, respectively. The weight wij of an edge eij 2 E between
two vertices vi ¼ xi; yi; zið Þ and vj ¼ xj; yj; zj

� �
where vi 2 V1 and

vj 2 V2 is given by the Euclidean distance between vi and vj:

wij ¼ ððxi � xjÞ2 þ ðyi � yjÞ
2 þ ðzi � zjÞ2Þ1=2 ð3Þ

Theorem 1. The worst-case time-complexity of the Maximum Car-
dinality Minimum Weight (MCMW) algorithm for a bipartite graph
G ¼ V1 [ V2; Eð Þ with jV1j ¼ jV2j ¼ n is Oðn3Þ.

For a complete proof of the above theorem the interested reader
is referred to (Papadimitriou and Steiglitz, 1982 and Christofides,
1975).

Theorem 2. Given that in typical cases of craniofacial injury, the
rotational or translational displacements are not very large, the
Maximum Cardinality Minimum Weight (MCMW) algorithm for a
bipartite graph correctly establishes the correspondence between two
fracture surfaces at every stage of the Iterative Closest Point (ICP)
algorithm in polynomial time.

Proof. Our proof is based on Theorem 1. Each fracture surface,
consisting of several 3D data points, is modeled as a vertex set of
a weighted bipartite graph G ¼ V1 [ V2; Eð Þ. The bipartite graph is
complete, i.e., there exists an edge eij 2 E between each vertex pair
vi; vj
� �

where vi 2 V1 and vj 2 V2. The weight wij of edge eij is
chosen to be the Euclidean distance between the corresponding
vertices vi 2 V1 and vj 2 V2 where i ¼ 1;2; . . . n1; n1 ¼ jV1j and
j ¼ 1;2; . . . n2; n2 ¼ jV2j. Without the loss of generality, the vertex
set with lower cardinality is called the sample set and the one with
the higher cardinality is called the model set. The goal is to compute
the closest set; i.e., a maximal subset of the model set wherein each
point corresponds to a unique point in the sample set such that all
points in the sample set are exhausted (in compliance with the
principle of maximum cardinality) and simultaneously, the sum
of the edge weights between all pairs of corresponding points
(i.e.,

P
wij) is minimized (in compliance with the principle of min-

imum weight). This procedure is carried out within each iteration
of the ICP algorithm. In the case the of small or moderate transla-
tional or rotational displacements, this graph theoretic optimiza-
tion procedure, with an objective function formulated as the sum
of the Euclidean distances between all the pairs of matched points,
correctly matches a sample point with a model point without dis-
torting the shape of the fracture surfaces. A greedy approach (Cor-
men et al., 2001), based on the minimum Euclidean distance
between individual pairs of points considered one at a time, on
the other hand, would map more than one sample point to a single
model point and distort the fracture surface shape. Our problem
formulation maps to the following well-known Maximum Cardi-
nality Minimum Weight (MCMW) Bipartite Graph Matching Prob-
lem in graph theory, i.e., given a weighted complete bipartite graph
G ¼ V1 [ V2; Eð Þ with edge-weights wij P 0; determine a pairing of
the vertices from two vertex sets V1 and V2 such that the vertex set
with smaller cardinality is completely exhausted and the total cost
of the pairings is a minimum. By virtue of its construction the pro-
posed bipartite graph is complete with E ¼ V1 � V2. Here
jV1j 6 jV2j; so the MCMW matching gives a 1:1 mapping of
V1 into V2. From Theorem 1 , the MCMW algorithm runs in Oðn3Þ
time for a bipartite graph with two vertex sets of equal cardinality
n. So, in our case it runs in time Oðn3

2Þ since n1 � n2. Thus, the pro-
posed solution clearly runs in polynomial time. h
6. Graph automorphs as initial ICP states

Besl and McKay (1992) have proposed multiple value initiali-
zation as a means to attain a global minimum in their version
of the ICP algorithm. For two 3D datasets, they have suggested
comparing the shape-based principal moments and sampling
the quaternion states based on rotation groups of regular polyhe-
dra to produce multiple initial starting states. In the present prob-
lem, the two 3D datasets, i.e., the two fracture surfaces, have
well-defined geometric boundaries. Thus, we model each fracture
surface bounding box as a cycle graph of order 4 and generate
multiple solutions based on the automorphism group. The bound-
ing box for the individual fracture surfaces is constructed by sim-
ply using two pairs of extreme points of a fracture contour that
appear in the first and last image slice of the CT image sequence.
Let us denote the cycle graph of the fracture surface of frg1 by B1

and that of frg2 by B2. Since the two fracture surfaces behave as
two rigid objects, their matching should guarantee the matching
of their bounding boxes and vice-versa. It is a well-known fact
that the graph isomorphism problem 2 NP, but it can be solved
in polynomial time for many special graphs (Valiente, 2002).
Now, we state and prove a result on graph automorphism for cy-
cle graphs.

Theorem 3. The automorphisms of a cycle graph Cn on n P 3 vertices
form a group of order 2n (Valiente, 2002).

Proof. A cycle graph Cn on n P 3 vertices is left fixed exactly by n
rotations and exactly by n reflections. Thus, the resulting automor-
phism group has order 2n. h
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From Theorem 3, it is clear that the generation of automorphs
for a cycle graph of order n has time-complexity OðnÞ. Since the
automorphism group of, say, B2 consists of 4 rotation members
and 4 reflection members, there can be only 8 possible competing
orientations of B2 to match with B1. We denote the lth automorph
of B2 by AB2;l where l ¼ 1; . . . ;8. Thus, in the case of the present
problem, the number of initial ICP states is shown to be limited
by the above result from graph automorphisms.

7. Best initial state selection

After the total number of initial solutions is determined, we ap-
ply local and global geometric constraints to select the best initial
solution. Note that the MCMW bipartite graph matching algorithm
essentially establishes the correspondence between the points on
the two opposable fracture surfaces and that no geometric con-
straints have been applied so far. We use two local geometric con-
straints, namely, (a) the lengths of the sides, and (b) angles
between pairs of sides of the bounding boxes of the fracture sur-
faces. By the term global geometric constraint, we refer to the over-
all shape of the mandible.

7.1. Local geometric constraints

Kim and Kak (1991) have shown how local geometric con-
straints can be exploited to improve the correspondence obtained
via bipartite graph matching in the context of object recognition.
We introduce a dissimilarity function based on two geometric con-
straints which are invariant under rigid body transformation. In or-
der for B1 and AB2;l to be well matched:

1. The lengths of corresponding pairs of sides of B1 and AB2;l

should be well matched. Let us denote the lengths of the ith
sides of B1 and AB2;l by d1

i and d2;l
i , respectively.

2. The angles between the corresponding pairs of sides of B1 and
AB2;l should also be well matched. Let us denote the angle
bounded by sides i and j of B1 and AB2;l by h1

i;j and h2;l
i;j ,

respectively.

Let the 4 vertices of B1 and AB2;l be denoted by v1
1; . . . ; v1

4

� �
and

v2;l
1 ; . . . ; v2;l

4

� �
. Each vertex can be considered a point in 3D space

e.g. v1
1 has coordinates xv1

1; yv1
1; zv1

1 etc. Then dk
i (where k ¼ 1; ð2; lÞ

and i ¼ 1; . . . ;4) is given by:

dk
i ¼ xvk

i � xvk
ððimod4Þþ1Þ

� �2
þ yvk

i � yvk
ððimod4Þþ1Þ

� �2
�

þ zvk
i � zvk

ððimod4Þþ1Þ

� �2
�1=2

ð4Þ

Likewise, hk
i;j (where k ¼ 1; ð2; lÞ, i ¼ 1; . . . ;4 and j ¼ 1; . . . ;4) can be

written as:

hk
i;j ¼ arccos ~dk

i �~dk
j

� �.
j~dk

i jj~dk
j j

� �� �
ð5Þ

The dissimilarity function CðB1;AB2;lÞ between B1 and the lth
member of AB2 can now be defined as a linear combination of
the above factors:

C B1;AB2;l
� �

¼ k1C1 B1;AB2;l
� �

þ k2C2 B1;AB2;l
� �

; where

C1 B1;AB2;l
� �

¼
X4

i¼1

jd1
i � d2;l

i j
� �

; and

C2 B1;AB2;l
� �

¼
X4

i¼1

jh1
i;ððimod4Þþ1Þ � h2;l

i;ððimod4Þþ1Þj
� � ð6Þ

The values of k1 and k2 are determined from the variations of the
terms C1 B1;AB2;l

� �
and C2 B1;AB2;l

� �
for 8 possible values of l and

from the normalization constraint k1 þ k2 ¼ 1. The dissimilarity
function is computed between B1 and each of the automorphs of
AB2. The lower the value of the dissimilarity function CðB1;AB2;lÞ,
the better is the match between B1 and AB2;l. The 8 automorphs
are ranked in ascending order of their C B1;AB2;l

� �
values and the

top 50% i.e. first 4 automorphs are chosen as the more suitable can-
didates for being opposable to B1.

7.2. Global geometric constraints

Wang et al. (2000) have used geodesics and knowledge of local
geometry to improve surface correspondence. We apply the
knowledge of the global geometric constraint, i.e. the shape of
the mandible, to determine the best initial solution for the ICP
algorithm. The transformation between B1 and each of the 4 eligi-
ble automorphs of B2 (as determined in Section 7.1) is estimated.
The two broken fragments frg1 and frg2 are registered in 4 different
ways using these transformations. Although the registration prob-
lem at hand is essentially a 3D one, we chose the central 2D slice of
the coarsely registered mandible (from all 4 cases) and compared
its shape with an unbroken reference mandible appearing in cen-
tral 2D CT image slice. We could have also compared the 3D shape
of the intact reference mandible with each of these four recon-
structed mandibles. To simplify the matter without incurring any
error, we decided to compare the central 2D CT slices, which faith-
fully capture the shapes of the intact reference mandible and the
coarsely registered mandibles. The contours Co1; . . . ;Co4 of each
of the reconstructed mandibles and contour Coref of the intact ref-
erence mandible are extracted using simple edge detection. Con-
tour-based shape similarity measures have been well explored in
the computer vision literature (e.g., see Veltkamp and Latecki,
2006). We have chosen Hausdorff distance as the measure for
the contour-based shape similarity for the present problem be-
cause its relatively fast OðmnÞ time complexity (where m and n de-
notes numbers of points on the two contours under consideration),
and because it circumvents the need to establish a prior correspon-
dence between the pixels on the two contours under consideration.
The bounding box for each of the five contours is determined. The
contours are appropriately scaled so that their corresponding
bounding boxes match each-other. The Contour Hausdorff Distance
(CHD) between two scaled contour data sets Cos

i (where
i ¼ 1; . . . ;4) and Cos

ref is given by (Huttenlocher et al., 1993):

H Cos
i ; Cos

ref

� �
¼ max h Cos

i ;Cos
ref

� �
;h Cos

ref ;Cos
i

� �� �
ð7Þ

where h Cos
i ;Cos

ref

� �
is the directed Hausdorff distance between the

two data sets Cos
i and Cos

ref and is defined as:

h Cos
i ;Cos

ref

� �
¼ max

a2Cos
i

min
b2Cos

ref

ka� bk ð8Þ

Here ka� bk represents the Euclidean distance between the
points a and b. The contour that yields the minimum value of CHD
is deemed to be the best matching contour. In this manner, the best
automorph of AB2 and the best coarse transformation that registers
two fracture surfaces using their bounding boxes are obtained.

8. Geometric and Geometric-ICP algorithms

We refer to the algorithm which registers the two fracture sur-
faces based on their bounding boxes as the Geometric algorithm.
The term ‘‘Geometric” is justified since the algorithm satisfies the
relevant local and global geometric constraints. Next, we propose
a hybrid Geometric-ICP algorithm by exploiting the synergy be-
tween the Geometric algorithm and the ICP algorithm. Let the
transformations determined by the Geometric, ICP and Geomet-
ric-ICP algorithms be denoted by /G;/ICP and /GICP , respectively
so that:



Table 1
Dissimilarity function values for the competing best 4 automorphs.

Rank of the automorph Value of the dissimilarity function

1 52.20
2 57.30
3 61.37
4 66.51

Table 2
CHD values for competing contours.

Contour from Fig. 3 Rank Value of the Contour Hausdorff Distance (CHD)

Column 1, Row 2 3 111.22
Column 2, Row 2 1 2.24
Column 3, Row 2 2 52.43
Column 4, Row 2 4 149.97

936 A.S. Chowdhury et al. / Pattern Recognition Letters 30 (2009) 931–938
½/GICP� ¼ ½/G�½/ICP� ð9Þ

The ICP algorithm can yield an accurate 3D rigid-body transfor-
mation. However, it is sensitive to the initial starting point. In the
context of the present rigid-body registration problem, the two
fracture surfaces have definite geometric boundaries. The ICP algo-
rithm can register the two fracture surfaces but lacks the direct
enforcement of geometric constraints. The Geometric algorithm,
on the other hand, enforces the necessary local and global geomet-
ric constraints, but the matching is based exclusively on the verti-
ces of the bounding boxes of the two fracture surfaces. Hence, the
Geometric algorithm lacks the iterative refinement capability of
the ICP algorithm. However, it is important to note that the trans-
formation resulting from the Geometric algorithm can provide an
excellent starting point for the ICP algorithm. Since the proposed
Geometric-ICP algorithm (where the output of the Geometric algo-
rithm is used to initialize the ICP algorithm) is initialized with a
geometrically correct initial starting point, it is expected to result
in a higher registration accuracy along with a faster rate of
convergence.
9. Experimental results and analysis

We have chosen five CT image sequences, obtained from the
Department of Radiology at the Medical College of Georgia, for
the purpose of experimentation. As our main emphasis is to illus-
trate the reduction in the registration error, we show the MSE for
all 3 algorithms, for all 5 datasets in Table 3. For other details, such
as the image processing tasks, selection of the best automorph etc.,
we show the results for dataset 1. The CT image sequence, shown
in Fig. 1, is representative of a class of fracture of its kind. The re-
sults of the image processing tasks are displayed in Fig. 2. Let the
vertices of the bounding box B1 be denoted by M—N—O—P and
Fig. 3. Reference contour in the first row and 4 coarsely
those of B2 by P—Q—R—S. Then the members of the automorphism
group of B2 are given by:

1. P—Q—R—S, S—P—Q—R, R—S—P—Q , Q—R—S—P (4 rotational
automorphs).

2. Q—P—S—R, P—S—R—Q , S—R—Q—P, R—Q—P—S (4 reflectional
automorphs).

The top 50%, i.e., 4 out of 8, automorphs are selected based on
the value of the dissimilarity function C B1;AB2;l

� �
(Eq. (6)). The val-

ues of the dissimilarity function for the best 4 automorphs are
shown in Table 1.

The dissimilarity function values of the best 4 automorphs are
observed to be very close (Table 1). This justifies the imposition
of global constraint to finally select the best candidate automorph.
Contours of the reference mandible and those of the 4 coarsely reg-
istered mandibles are shown in Fig. 3. The values of the CHD, used
as a measure of global shape matching are shown in Table 2.

Fig. 3 and Table 2 indicate clearly that there is a single promi-
nent winner among the 4 competing automorphs. Visually speak-
ing, only one of the coarsely registered contours resembles the
reference contour. From a quantitative standpoint, the CHD value
of one of the contours is observed to be extremely low compared
to the CHD values of the other three. Note that the fact that the ref-
erence intact mandible used for shape comparison need not con-
form strictly to the dimensions of the broken mandible under
consideration, indicates the generality of our method.

Fig. 4 and Table 3 compare the performance of the ICP, Geomet-
ric and Geometric-ICP algorithms. In Fig. 4 (where the results of
registration are shown for dataset 1), it is observed that the the
ICP and Geometric-ICP algorithms perform better than the Geo-
metric algorithm. Table 3 shows a detailed quantitative compari-
son of the performance of these algorithms for five different
registered competing contours in the second row.



Fig. 4. Slice-wise reconstruction using the ICP, Geometric and Geometric-ICP algorithms displayed in first, second and third rows, respectively.

Table 3
A performance comparison of the three different reconstruction algorithms.

Dataset Algorithm MSE (mm2) No. of iterations for convergence

1 ICP 2.07 8
1 Geometric 4.57 2
1 Geometric-ICP 1.96 3

2 ICP 2.09 8
2 Geometric 4.51 2
2 Geometric-ICP 1.95 4

3 ICP 3.49 10
3 Geometric 4.55 2
3 Geometric-ICP 1.91 4

4 ICP 3.56 10
4 Geometric 4.53 2
4 Geometric-ICP 2.03 3

5 ICP 3.53 14
5 Geometric 4.60 2
5 Geometric-ICP 2.23 4
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datasets. The Geometric algorithm performs only a coarse registra-
tion based on a few pairs of points. So, the resulting MSE from this
algorithm is higher compared to that resulting from both the ICP
and the Geometric-ICP algorithms. The Geometric-ICP algorithm
outperforms the ICP algorithm because of a better initialization.
The actual registration in each of the algorithms is performed be-
tween two fracture surfaces, which are essentially 3D datasets.
For the purpose of illustration, we display the results of the recon-
struction in consecutive 2D CT image slices (Fig. 4). Our results also
illustrate that the proposed Geometric-ICP algorithm not only
yields a lower MSE value compared to the original ICP algorithm,
but also converges in fewer iterations compared to the ICP algo-
rithm. The mean and standard deviation of MSE for ICP, Geometric
and Geometric-ICP algorithms, calculated in mm. from the five
datasets, are found to be: 2:95� 0:79, 4:56� 0:03 and 2:02�0:13,
respectively. The reduction in the MSE between the ICP and the
Geometric-ICP algorithms, on average, is quite critical from the
viewpoint of surgical reconstruction. This is because a very small
error in the fracture surface registration can result in an unaccept-
ably large error in the overall alignment of the two bone fragments.

10. Conclusions and future work

The problem of virtual craniofacial reconstruction is modeled as
one of rigid surface registration. We have presented significant
enhancements to the conventional ICP-based registration proce-
dure based on the incorporation of graph theory and geometric
constraints. MCMW matching for a bipartite graph is used to
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establish the necessary correspondence in the ICP algorithm, thus
obviating the need for any prior alignment between the fracture
surfaces. After treating the bounding box of each fracture surface
as a cycle graph, the rotational and reflectional automorphs (of
one of the cycle graphs) are constructed to generate possible initial
states for the ICP algorithm. Rigid transformation-invariant local
geometric constraints and shape-based global geometric con-
straints are applied successively to yield the best initial state for
the ICP algorithm. Initialization of the conventional ICP algorithm
with a geometrically accurate transformation results in improved
accuracy and faster convergence.

As a part of future research, we plan to replace the bounding
box of the fracture surface with the convex hull. This could poten-
tially allow the enforcement of stronger geometric constraints,
resulting in more accurate registration in more complex scenarios
such as multiple fractures. Another direction for future research is
to apply the proposed method to other forms of reconstructive sur-
gery such as orthopedic surgery.
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