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Abstract

In a previous paper the authors showed that at least 98.4% of large
labelled cubic graphs are hamiltonian. In the present paper, this is
improved to 100% in the limit by asymptotic analysis of the variance
of the number of Hamilton cycles with respect to populations of cubic
graphs with fixed numbers of short odd cycles.
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1 Introduction

It was first proved by Read [4] that the number M of labelled cubic graphs
on 2n vertices is asymptotically

(6n)!

M~
e2(3n)!32n25m’

where, throughout this paper, asymptotics are for n — oo, unless otherwise
specified. Turn this set of graphs into a probability space @ = ,, with the
uniform distribution. The authors showed in an earlier paper [5, Theorem
2.4] that the expectation and variance of the number H of Hamilton cycles
of a graph GG € Q) are given asymptotically by

ExpH ~ % (%)n, (1.1)

VarH ~ (g — 1) (ExpH)?. (1.2)

From this, it can be deduced using the standard second moment method that
asymptotically at least 2 — 3e™! of all cubic graphs are hamiltonian. This

bound was improved in [5] to 2 — 3e~'3/12

, using computations in the space
of all triangle-free cubic graphs. The aim of that exercise was to get as close
as possible to showing the following result, whose truth has been suspected

for some time (see also Frieze [3]), and is finally demonstrated in the present
paper.

Theorem. If H is the number of Hamilton cycles in a cubic graph chosen
uniformly at random from all labelled cubic graphs on 2n vertices, then

lim Pr(H >0)=1.

n—o0

For G € Q let X;(G) denote the number of cycles of length ¢ in G. The
following is now well known. It was first proved in [6] and is found in Bollobas

[2] and in [7].

Lemma 1. For any fixed k the variables X;, 3 < < k, are asymptotically
independent Poisson random variables, with

2i—1

ExpX; ~ (1.3)

?



The approach of the present paper is to divide the cubic graphs in {2 into
groups according to the values of the variables X;, then refine the second
moment method for these groups. It turns out that the variable X; for even
¢ has no effect asymptotically in our argument, so the groups studied are
characterized by the sequence cq,...,¢, for fixed b, where ¢; = Xy for
t = 1,...,b. It will be shown that by taking b to be large, the variance
of the group means can be made arbitrarily close (in proportion) to the
total variance VarH, and thus the mean of the group variances can be made
arbitrarily small compared to VarH. As a consequence of this, after showing
that the group means are sufficiently well behaved, it is deduced that Pr(H =
0) is bounded above asymptotically by €(b), where

bh—>r(l;lo e(b) = 0.

An alternative way of bounding the group variances is to compute them
directly using the techniques in [5] combined with those in the proof of
Lemma 2 of the present paper, but this would appear to be rather more
complicated.

Note that since X; plays no role when 2 is even, this gives a broader
perspective to the improvement obtained in [5] by considering triangle-free
graphs. In addition it provides an intuitive basis for the fact also proved in
[5] that VarH = o((FxpH)?) among labelled bipartite cubic graphs, from
which it follows at once that almost all are hamiltonian.

Using techniques related to those of the present paper it can be shown
that almost all k-regular graphs are hamiltonian, for any fixed k£ > 3. This
and similar topics will be pursued in a subsequent publication.

2 Proof of the Theorem

Define ,
42

A= —,

21+ 1

Note that for fixed ¢, Lemma 1 implies Exp Xy, 11 ~ A;.
Define S(y,b) to be the event that X511 < A\; + yA

will show

i =1—47"

2/3
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for 1 <i:<b. We

Pr(S(y,b)) = O(e™¥*) + o(1) (2.1)



where S(y,b) denotes the complement of S(y,b). We will bound the proba-
bility of non-hamiltonicity by way of the obvious inequality

Pr(H =0) < Pr({H =0} A S(y, b)) + Pr(S(y, b)). (2.2)

Throughout the paper, unless y and b are explicitly required to vary with
n, the asymptotics are for y and b fixed as n goes to oo. In (2.1) the constant
implicit in O() is uniform over all b and y, whereas the constant function
implicit in o) may depend on both y and b.

Define the group mean

cp, — EXp(H|X3 = C1y... 7)(2[;4_1 = Cb)7

.....

and the group variance

cp — EXp(H2|X3 = Cl,X5 = C2,... ,X25+1 = Cb) — E2

.....

One of our main steps in the proof is to establish the following.

Lemma 2. For fixed b > 3,

b
ECJ ..... cp ™ EXpH H Mfie/\i(l_ﬂi)‘

=1

The calculations in the proof of Lemma 2 can also be applied for short
cycles of even length, but it is then seen that these have an asymptotically
insignificant effect on the expected number of Hamilton cycles in G.

Lemma 2 will help us to prove the inequality

..... Xaps = (14 0o(1)(ExpH)*Pr({H = 0} A S(y,b))e %W, (2.3)

where the constant implicit in O() is independent of y and b.

We have

VarH = EXPVX3 ~~~~~ Xopt1 —I—VarEXS ----- Xopt1

= EXpVXS ~~~~~ X2b-|—1 —I_ EXPE?{g,Xg) ..... X2b+1 - (EXpH)27
and we will show that
3 _ p
EXPngg XsyoonXopp1 = g(l —O(e b) + 0(1))(EXPH)2 (2.4)



where the constant implicit in O() is uniform over all & > 1. Hence (1.2)
implies that
ExpVi, .. Xapps = (0(e7") + o(1))(ExpH)?, (2.5)

where the constant implicit in O() is uniform over all b > 1.
From (2.1) — (2.3) it follows that for y > 1 and b > 1,

Pr(H =0) = O(e_y/4) + €O(y)EXpVX3 ..... X,zbJrl/(EXpH)2 + o(1)

where the implied constants in each O() are independent of y and b. Hence
by (2.5),
Pr(H =0) = O(e_y/4 + eo(y)_b) + o(1),

where each O() is independent of y and b but o(1) is not. On choosing, say,
b = y%, we obtain

limsup Pr(H = 0) = O(e_y/4).

Since y can be chosen arbitrarily large, the theorem follows. Another way to
argue this last step is to let y — oo sufficiently slowly with n, so that the
O(e¥%/*) term dominates the o(1) term. This can be done with y fixed in all
parts of the proof except for this last step.

To complete the proof, it is required to establish Lemma 2 as well as
(2.1), (2.3) and (2.4).
Proof of Lemma 2. We first show that

Exp(HX,,) ~ v, ExpH (2.6)

where

277 /m if mis even
Vm = A fhi if mis odd, m = 2i + 1.

This requires only some modifications of the derivation of (1.1) as given
in [5]. For that, we counted the cubic graphs which possess a prescribed
Hamilton cycle (the number is asymptotic to (2n)!/(n!2%¢) by the result of
Bender and Canfield [1, Theorem 1] or by an elementary argument using
inclusion-exclusion), multiplied by the number of possible Hamilton cycles
((2n)!/4n), and divided by M. The present aim is to count cubic graphs G
with a given Hamilton cycle D once for every m-cycle C' that they contain,
and again divide by M. It is clear that there must be s edges of €' which are
not contained in D for some s in the range 1 < s < m/2, since these edges
must be mutually non-adjacent and not all edges of C' can lie in D.
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We claim that the number of choices for €, given s, is asymptotic to
(4n)®/2m. This claim is most easily established by regarding C' to be cycli-
cally oriented and to have a special vertex distinguished, called the initial
vertex. This has the effect of multiplying the numbers in the enumeration
by 2m, and induces a labelling 1,2,...,m of the edges of C' around C' in
the direction of orientation, beginning with the initial vertex. We classify
C" according to labels of the edges of C' which are not contained in D. By
Lemma 2.1 of [5], there are exactly

m m—s—1
s s—1

possible choices of s non-adjacent edges from an m-cycle, and hence this is the
number of choices for the labels of the edges of C' not in D. So suppose that
these labels have been chosen. We now choose the cycle C' by choosing the
vertices vq,...,v, on D which are in C one by one around ', beginning with
the initial vertex of . Firstly, assume that the edge immediately following
the initial vertex is in ). Then the number of choices for the vertex v; will
be either

(a) at most 2n, if ¢ = 1, or if v; is a vertex immediately following an edge of
C not in D except for the last such edge; in total this happens s times,
or

(b) at most 2, if v; immediately follows any of the vertices in (a); so this
happens s times also, or

(c) at most 1, otherwise, since v; is then the next vertex around D in a
predetermined direction.

In case (a) there are always at least 2n—m?/2 choices which place v; so that its
distance from vy, ...,v;_1 is at least m —¢+4 1. This guarantees exactly 2 and
1 choices in the cases (b) and (¢), respectively, for the following vertices being
determined until the next occurrence of case (a) or the final (forced) move
back to the initial vertex of C'. Thus the number of choices for vy, ..., v, is
bounded below by (4n —m?)* and above by (4n)*, which are asymptotically
equal for fixed m. On the other hand, if the edge immediately following
the initial vertex is not in D, the same asymptotic result is obtained. This
finishes the proof of the claim.



When C' has been chosen, the number of ways of filling in the rest of GG,
avoiding edges already present, is asymptotic to (2n — 2s)!/((n — s)!2"%¢),
for the same reasons as the factor (2n)!/(n!2"¢) in the calculation of ExpH.
Comparing with the calculation for ExpH and summing over all possible
s-sets of excluded edges of the m-cycle and all possible values of s, we have
(with square brackets denoting the extraction of coefficients)

Exp(HX,,) > 251 ( m—s—1 )

EXpH 1<s<m/2 S s—1
Exp(HX,,) 3 27 m — s
Qm_lEXpH 1<s<m /2 m—s s
_ _2—m+ Z 25—m (m—s)
m 0<s<m /2 m—=s s
2-m . 1 (1 +z)\""
T T m + 2" Z m—s ( 2 )
0<s<m /2
9-m = 1 (z(1+2))’
- ey < (1)
m ; J 2
9—m

= - 4 [;pm]<— In(l —z) —In(1 + 73/2)>

m
27" 4 14 (=1)m2~™

m

This gives (2.6).

Define the uniform probability space ® = @, of all labelled cubic graphs
on 2n vertices with a distinguished Hamilton cycle. Note that the num-
ber of elements of ® is MExpH. We use the subscript ® on Pr and Exp
to distinguish references to this space from those to {2, which remain un-
subscripted. Extend the definition of X, in the obvious way to ®. Since
Expg Xm = Exp(HX,,)/ExpH, it follows from (2.6) that

ExpeXm ~ V. (2.7)

Next, repeat the above method of calculation for the joint factorial mo-



ment to show that

2b+1
Expg ([Xalis -+ [Xop41)iggsn) H v (2.8)

where [z]; denotes x(x — 1)--- (2 — ¢ + 1). For this, one needs to count
cubic graphs G with a given Hamilton cycle D once for every ordered set
of i3 3-cycles, ..., 41 (2b 4+ 1)-cycles that they contain, and divide by
M. Classity the j’'th cycle in the ordered set according to the number s; of
edges of D which it does not contain. The resulting asymptotic expression
for Exp(H[Xsl, - - - [Xopg1]ise,, )/ ExpH factorises into summations over the
separate variables s;, yielding (2.8) as a result.

From (2.8) by inclusion-exclusion, we deduce that X3, ..., X341 are asymp-
totically independent Poisson random variables in ® with expectations given
by (2.7). (See Bollobas [2, p.23] for a statement of the appropriate principle.)
Thus, if we now restrict our attention to odd cycle lengths,

b
Pro(Xs = c1y. ooy Xoppr = &) ~ [ (aps) e /el

=1
Note that
Eh hPI’(H = h,Xg =C1y... ;X26+1 = Cb)

Pr@(Xg =C1,... 7X25+1 = Cb) =

ExpH ’
E _ EthI(H:h,XgZCh...,XQ[H_l:Cb)
Clo PI’(X3 = C1y... ,X25+1 = Cb) ’
and, from Lemma 1,
b
Pr(Xs =c1,..., Xopy1 = &) ~ H e_)”)\fi/ci!. (2.9)

=1
The last four relations combine to give Lemma 2. 1

To show that Pr(S(x,b)) tends to 1 as x increases, and that certain other
events occur almost surely, we use the following loose bound.

Lemma 3. Let 51,72,... be given. Suppose that n; > 0 and that for some
¢> 1, niy1/n: > ¢ for all ¢ > 1. Then uniformly over x > 1,

f s
Z Z t'en’: = O(e )

=1 ¢= i 1+yz) '
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where y; = :cm-_l/s and ¢y = miﬂ{ﬁi/sa 77%/3}/4'

Proof. Apply Stirling’s formula to the first term in the summation over t,
giving (n:(1 + y;)) "1/ 2emlvi=(143:)108(143:)) " and bound the rest by a geometric
series with common ratio 1/(1 + y;). This yields

Al@) = 0(1) 3 YIF ¥ttt ost1 )
=1 yz\/a

It is readily verified that (1 + y;)log(1 + v;)) — y; > min{y;,y?}/4 for all
y; > 0. Hence

R(;c) = 0(1) iI_I/QT];I/G@—Imin{ng/g’,nf/g’}/zl‘

=1
The bound on the term for : = 1 dominates, which gives the lemma. 1
Proof of (2.1). This follows immediately from Lemma 1 and Lemma 3
withm, =X, z=y. 1

Proof of (2.4). For any real  and non-negative integer b we have

EXpE§(37X5 ..... X25+1 = ES —I_ Pr(g(l.? b))EXp(ngg ..... X2b+1 |S($7 b))
> ks
where
ES = Z Ec21 ..... chr(XS = Cl7X5 = C27"'7)(2()4—1 = Cb)

by (2.9) and Lemma 2, with

00 )\t 2t
i
Z; = : .
z Z " tle/\,;u?
t:/\i—}—x/\i

Since Z; is strictly smaller than the summation over ¢ in Lemma 3 with
n; = Ap?, that lemma gives



As 35047 /(21 4+ 1) = log 3, one also has

b

L0 = 20— 0@ n).

=1
Thus, taking @ > 5b, we obtain (2.4). 1

Proof of (2.3). Let Indg denote the indicator function for an event S. Let
S denote S(y,b), and note that for G € 5,

b b

H M?zz+1€A1(1—m) > H 61/(22—}—1)(1 _ 4—2),\24_1,,\? 3
=1 =1
> ¢ O

by routine calculations using log p; > —27% — 274,
The expected group variance can be written as

{35000y Xopy1

= Exp (Exp

.....

b
~ (ExpH)*Exp (Exp <Ind{H:0}/\5 H ,u?X”“ e2hill—m) X3, ... 7X26+1)>
1=1

Y

(ExpH)*Exp <Exp <Ind{H:0},\56_O(y) | X3, ... 7X2b+1>)
> (ExpH)*Pr({H =0} A §)e™ W,
where the third-last step uses Lemma 2, and the second-last uses the bound
derived above. 1
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