
1Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

www.nature.com/scientificreports

UniBic: Sequential row-based
biclustering algorithm for analysis
of gene expression data
Zhenjia Wang1,†, Guojun Li1,3,†, Robert W. Robinson2 & Xiuzhen Huang3

Biclustering algorithms, which aim to provide an effective and efficient way to analyze gene expression
data by finding a group of genes with trend-preserving expression patterns under certain conditions,
have been widely developed since Morgan et al. pioneered a work about partitioning a data matrix
into submatrices with approximately constant values. However, the identification of general trend-
preserving biclusters which are the most meaningful substructures hidden in gene expression
data remains a highly challenging problem. We found an elementary method by which biologically
meaningful trend-preserving biclusters can be readily identified from noisy and complex large data.
The basic idea is to apply the longest common subsequence (LCS) framework to selected pairs of rows
in an index matrix derived from an input data matrix to locate a seed for each bicluster to be identified.
We tested it on synthetic and real datasets and compared its performance with currently competitive
biclustering tools. We found that the new algorithm, named UniBic, outperformed all previous
biclustering algorithms in terms of commonly used evaluation scenarios except for BicSPAM on narrow
biclusters. The latter was somewhat better at finding narrow biclusters, the task for which it was
specifically designed.

Gene expression microarray data measures expression levels of transcribed mRNA and is arranged in a matrix in
which genes correspond to rows and experimental conditions (samples) to columns. Each entry (a real number)
represents the expression level of a gene under a specific condition. The need to analyze vast amounts of biological
data, including gene expression data, has been driving the development of new data mining (especially biclus-
tering) methods. At first, algorithms such as hierarchical clustering1 and k-means2 were investigated to identify
sets of functionally related genes or conditions. These traditional clustering methods usually group genes which
exhibit similar expression levels across all conditions by maximizing across-cluster variations or minimizing
within-cluster variations. But genes may not co-express under all conditions. For instance, a cellular process
may only affect a small set of genes under certain conditions, so that a subset of genes may be co-regulated or
co-expressed under only a subset of experimental conditions. Biologically, genes which are co-regulated under a
subset of experimental conditions exhibit expression patterns which are trend-preserving, but which may be quite
different in values under those conditions. Here a gene expression pattern refers to the vector of expression values
of the gene under the specific conditions. Two gene expression patterns are said to be trend-preserving if and
only if their corresponding vectors are either order-preserving or order-reversing. Two vectors x and y are said
to be order-preserving if and only if any two corresponding components have the same rank (with respect to the
numerical value) in their respective vectors, and order-reversing if and only if x and -y (or equivalently -x and y)
are order-preserving. For general purpose applicability, the entries in a row within a trend-preserving bicluster
are allowed to be same. Consider the following example.

Example 1: A trend-preserving bicluster of three genes under seven conditions. The first and second rows
are order-preserving, and the other two possibilities (first and third rows, second and third rows) are both
order-reversing.

1School of Mathematics, Shandong University, Jinan, Shandong 250100, P.R. China. 2Department of Computer
Science, University of Georgia, Athens, GA 30602, USA. 3Department of Computer Science, Arkansas State
University, Jonesboro, AR72467. †These authors contributed equally to this work. Correspondence and requests for
materials should be addressed to G.L. (email: guojunsdu@gmail.com) or X.H. (email: xhuang@astate.edu)

Received: 18 June 2015

accepted: 08 March 2016

Published: 22 March 2016

OPEN

mailto:guojunsdu@gmail.com
mailto:xhuang@astate.edu

www.nature.com/scientificreports/

2Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

genes\conditions c1 c2 c3 c4 c5 c6 c7

g1 5 3 3 − 2 1 − 9 8

g2 8 6 6 − 5 4 − 12 11

g3 − 16 − 10 − 10 7 − 5 28 − 25

We call a bicluster order-preserving if every pair of rows is order-preserving. Obviously, any trend-preserving
bicluster is either order-preserving, or else the disjoint union of two order-preserving biclusters. In example 1
these are {g1, g2} and {g3}.

Finding a maximum subset of genes of trend-preserving expression patterns under a maximum subset of
conditions is impossible using traditional clustering methods. Moreover, a single gene may participate in multiple
pathways under different subsets of conditions, resulting in one function pattern under one subset of conditions
and a different one under another, making the problem even more challenging. Biclustering methods have been
proposed with the aim of overcoming these limitations in order to uncover the genetic relationships that are not
apparent. Biclustering algorithms have been widely developed since Morgan et al.3 pioneered a work on partition-
ing a matrix into submatrices with approximately constant values. Cheng and Church4 were the first to apply the
biclustering idea to analyze gene expression data. Since then research on biclustering algorithm development in
bioinformatics has focused on this application. Existing biclustering algorithms can be grouped into five catego-
ries in terms of the techniques on which they are based5:

(1) Iterative row and column clustering combination: row clusters are combined with column clusters and vice
versa, e.g. Interrelated Two-Way Clustering6 and Coupled Two-Way Clustering7;

(2) Divide and conquer: the problem is recursively broken down into checkerboard sub-problems, e.g. BiMax8,
Hartigan9;

(3) Greedy iterative search: locally optimal results are chosen in hopes that they might be globally optimal, e.g.
Cheng and Church4, the Flexible Overlapped biclustering algorithm10, xMOTIFs11;

(4) Exhaustive bicluster enumeration: enumerating all the possible biclusters, e.g. SAMBA12, OP-Cluster13;
(5) Distribution parameter identification: biclusters are assumed to follow a given statistical model and parame-

ters are identified to fit in the best way, e.g. Spectral biclustering methods14, Plaid15 and Sheng et al.16.

Each of these biclustering algorithms is restricted to specific types of biclusters and datasets. In the assessment
of twelve biclustering algorithms on twenty synthetic datasets from six models17, each algorithm performed well
on one or a few datasets, but none performed well on all of them. With the availability of more and more microar-
ray datasets, it has become important to develop a comprehensive biclustering algorithm to analyze gene expres-
sion data. In this article we present an elementary method for biclustering. Our method substantially overcomes
the limitations of all prior biclustering algorithms, and enables discovery of the most biologically meaningful
biclusters in gene expression datasets.

Biologically speaking, trend-preserving biclusters are the most meaningful local structures hidden in a data
matrix. Trend-preserving biclusters are a generalization of all widely studied types of biclusters, including con-
stant, shift, scale, and shift-scale biclusters. The latter two types of biclusters were ever considered computationally
challenging to identify18.

Ben-Dor et al.19 developed an algorithm (OPSM) to discover significant order-preserving biclusters based
on statistical strategies. In their model, the rows of the input matrix are required to be permutations of some m
positive integers, 1, 2, … , m, as well as to be pairwise different. The technique used in OPSM is essentially an
exhaustive approach by iteratively growing each possible submatrix based on statistical evaluations. It has proved
unsatisfactory to apply OPSM to the analysis of gene expression datasets17. Ever since many methods have been
proposed to mine frequent sequential patterns as the extension of the OPSM approach, e.g. OPSM-RM20 collects
results from repeated experiments to cope with noise, GeBOPSM21 proposes a generalized OPSM model by relax-
ing the requirement that each row has to be composed of different integers in OPSM, and POPSM22 captures simi-
lar local correlations in probabilistic matrices with uncertain data. However in these models the optimal solutions
may not be guaranteed as long patterns with few supports might be pruned in early stage and the requirements of
computational resource are explosive. Jiang et al.23 also proposed a parallel partitioning and mining method based
on Butterfly Network to extend and improve OPSM.

The biclustering algorithm QUBIC24 we previously developed attempts to discover trend-preserving biclus-
ters in gene expression data by granulating gene expression values into r ≥ 1 ranks. However, its performance
degrades rapidly as the number of ranks of gene expression values increases. Example 2 shows what is wrong with
QUBIC for an example of a bad case.

Example 2: bad case for QUBIC

g
g

: 2, 2, 4, 4, 4, 7, 8, 7, 8, 6
: 4, 4, 8, 8, 8, 3, 2, 1, 1, 2

1

2

Obviously, expression patterns (2, 2, 4, 4, 4) of g1 and (4, 4, 8, 8, 8) of g2 under conditions 1, 2, 3, 4, 5 are or-
der-preserving. After ranking as in QUBIC (for any r > 0), these two order preserved patterns could no longer
be identified, which leads to an incorrect result. If r = 1 then all ranks are 1, so the whole 2 × 10 array is out-
putted as a bicluster, but it is not meaningful. If r = 2, the pattern becomes

2222211111
1111122222

www.nature.com/scientificreports/

3Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

which contains only the empty bicluster. Similarly, QUBIC recognizes only the empty bicluster in (g1, g2) for any
r > 1. Our observation, which is very natural, leads to a Universal approach for discovering trend-preserving
Biclusters in gene expression data, which is based on an application of the longest common subsequence (LCS)
algorithm25 to a new matrix derived from the input data matrix. We tested and compared UniBic with six other
competitive biclustering algorithms, including OPSM19, QUBIC24, ISA26, FABIA27, CPB28, and BicSPAM29, on
large scale synthetic and real datasets. The comparison results demonstrate that UniBic overwhelmingly outper-
forms all of them with an exception that it is inferior to BicSPAM only when finding extremely narrow biclusters
because BicSPAM was specifically designed for this purpose.

Results
Algorithm Validation. To evaluate the biclustering algorithm UniBic, we compared it with six currently
popular biclustering algorithms, including OPSM19, BicSPAM29, QUBIC24, ISA26, FABIA27 and CPB28, on both
synthetic and real datasets. Biclustering algorithms developed based on different methods tend to perform dif-
ferently on various datasets, while some algorithms may perform better on one kind of datasets, others may tend
to be better on other kinds of datasets. In order to fairly evaluate these algorithms, we tested them on six different
types of synthetic datasets and eight real datasets from GEO database30 with the aid of BiBench framework17.

Validation on synthetic data. As the biclusters to be discovered in synthetic data are supposed to be
known, we compared identified biclusters with the genuine ones. Let b1 and b2 be two biclusters, their similarity
is measured by Jaccard coefficient31:

∩
∪

=s b b
b b
b b

(,) ,
(1)

1 2
1 2

1 2

where |b1 ∩ b2| is the number of genes in their intersection, and |b1 ∪ b2| is the number of their union. For two sets
of biclusters M1 and M2, the similarity score between them is calculated using the formula introduced in8:

∑=
∈ ∈

S M M
M

s b b(,) 1 max (,),
(2)b M b M

1 2
1

1 2
1 1 2 2

which measures the average similarity of biclusters in M1 with the biclusters in M2. Recovery score is defined as
S(G, D), and relevance score as S(D, G), where G and D represent the sets of genuine biclusters and discovered
biclusters, respectively.

Validation on GDS data. Evaluation of results on real data is different from on synthetic data as the genuine
biclusters are not known. We validated biclusters by calculating the Gene Ontology enrichment (a statistically sig-
nificant test which describes the probability of a gene set containing a certain number of particular GO terms) for
genes in the discovered biclusters. This functional analysis was carried out using the GO stats package32. A biclus-
ter here is assumed to be enriched if it has at least one GO term with statistically significant p-value smaller than
0.05, where the p-value is adjusted by multiple test correction using the method from Benjamini and Hochberg33
(a way to control the false discovery rate in large datasets to reduce the number of false positives).

Testing on Synthetic Datasets. We first tested UniBic and the other six tools on synthetic datasets. All the
algorithms were executed with their optimized parameters, respectively. For the test on synthetic datasets, there
was no need to run the preprocessing steps (see Methods for more details) since all of the synthetic data was to
be treated as genuine. To skip over the preprocessing steps, UniBic simply ran with parameters q = 0.5 and r = m.
Here m is the number of columns in the input data matrix.

Six different types of synthetic datasets were generated. The background matrices of synthetic datasets are
of given large size with entries randomly chosen from Gaussian distribution N(0, 1), then given smaller sized
submatrices were chosen with entries modified in according to the rules presented for Types I–VI, which are
type I: trend-preserving biclusters; type II: column-constant biclusters; type III: row-constant biclusters; type IV:
shift-scale biclusters; type V: shift biclusters; type VI: scale biclusters. Type I is biologically the most meaning-
ful type and is a generalization of the others. It is generated by randomly selecting a base row within a selected
submatrix and then rearranging the entries in other rows of the submatrix so that the rearranged submatrix is
trend-preserving. Type II is generated by randomly selecting a row within a selected submatrix, and copying it to
other rows in this submatrix. Type III is generated by randomly selecting a column within a selected submatrix,
and copying it to other columns in this submatrix. Type IV is generated by randomly selecting a row within a
selected submatrix as a base row, and replacing the other rows of the submatrix by both shifting and scaling of the
base row. Type V is generated as in the type IV but with scaling parameter 1. Type VI is generated as in the type
IV but with shifting parameter 0.

Comparison on six types of biclusters. To begin with, we generated at random three kinds of
non-overlapping test matrices: a) matrices of size 150 × 100 with three implanted biclusters of size 15 × 15; b)
matrices of size 200 × 150 with four implanted biclusters of size 20 × 20; c) matrices of size 300 × 200 with five
implanted biclusters of size 25 × 25. Five rows were selected as order-reversing rows versus the base row for type
I biclusters, and for all the six types of biclusters, five datasets were generated for each kind of test matrix through
repetition. The average relevance and recovery scores among all test matrices are shown in Fig. 1 for each tool.

On type I test matrices with trend-preserving biclusters implanted, UniBic overwhelmingly outperformed all
other competitive algorithms with an average relevance score of 0.65 compared to the second highest relevance
score of 0.33 for BicSPAM, and with an average recovery score of 0.69 versus the second highest recovery score

www.nature.com/scientificreports/

4Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

of 0.39 for OPSM. The results show that UniBic discovers trend-preserving biclusters in data array much better
than any of the other six tools. The data shows even greater advantages for UniBic with type II and type III test
matrices. On the other test matrices, the advantage of UniBic was comparatively less significant, but it still out-
performed all the other algorithms. Taken together, the comparisons indicate that UniBic is more stable than any
of the other six algorithms, as well as performing better.

OPSM performed best on type I and type II test matrices, in which the values are strict order-preserving with
relatively large value gaps between bigger and smaller values in each row of implanted biclusters. On the type III
test matrices, where the entries in each row of implanted biclusters are consist with a constant value, its perfor-
mance became rather poor. BicSPAM performed slightly better than OPSM on almost all types of test matrices,
and as it allows equal values in matrices, it performed well on type III test matrices. QUBIC performed well on
type IV and V test matrices with large q values because it is suitable for datasets with biclusters which can be gran-
ulated to be separated from the background data. ISA and FABIA both showed their best performances on type V
test matrices, as they were designed to perform well on datasets generated from data distribution with large var-
iances, and their performances on type IV and type VI test matrices were also better than on other test matrices.
CPB showed the least stable performance in repetitive experiments compared with other tools as it starts with a
randomly selected set of columns, leading to significant fluctuations in its output.

The comparison results shown in Fig.1 demonstrate that UniBic does overwhelmingly outperform all the
compared tools on the datasets with implanted biclusters of nearly square shape. Our original intention in devel-
opment of biclustering algorithms is to seek those biclusters of (nearly) square shape just like most computational
scientists did. However, the narrow biclusters, with huge number of rows but only a few columns, are usually
more important to biologists. Simultaneously with the development of the UniBic, we noticed BicSPAM29, which
was designed specifically for extremely narrow biclusters, e.g. of rows more than 200 and columns less than 8. In
this extremely situation, BicSPAM performs somewhat better than UniBic as it was mentioned in BicSPAM29 that
biclustering algorithms which are designed on the adoption of maximal sequential patterns may to some extent
overlook narrow biclusters.

To evaluate the capability of finding narrow biclusters of UniBic, we further tested it on the datasets with
narrow biclusters implanted compared with six other algorithms. Comparison results from Supplementary
Fig. S1 show that UniBic overwhelmingly outperforms all the competitive ones, including BicSPAM, unless the
to-be-identified biclusters are very narrow, and its performance is almost independent of the number of rows.

0

0.2

0.4

0.6

0.8

1
I. Trend-preserving

0

0.2

0.4

0.6

0.8

1
IV. Shift-scale

0

0.2

0.4

0.6

0.8

1
II. Col-const

UniBic QUBIC ISA FABIA CPB OPSM BicSPAM
0

0.2

0.4

0.6

0.8

1
V. Shift

0

0.2

0.4

0.6

0.8

1
III. Row-const

UniBic QUBIC ISA FABIA CPB OPSM BicSPAM
0

0.2

0.4

0.6

0.8

1
VI. Scale

Relevance
Recovery

Figure 1. Relevance and recovery scores of the seven algorithms on six types of biclusters, with error bars.

www.nature.com/scientificreports/

5Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

When the implanted biclusters become very narrow, e.g. with less than 8 columns but with more than hundreds
of rows, the algorithm BicSPAM is more capable of returning accurate results as it is specially designed to iden-
tify this kind of narrow biclusters. However, BicSPAM’s performance rapidly degrades as the columns of the
to-be-identified biclusters increase in number. It is worthy stressing that the version of BicSPAM we compared
with in this article is in the absence of enhancements to foster the scalability of the underlying pattern mining
searches and to deal with large scale datasets. The improved version34 of BicSPAM has been developed for further
integration of network information into its biclustering procedure.

Comparison on overlapping biclusters. Then we tested the seven tools on synthetic datasets with
overlapping biclusters. The overlapping biclusters were generated by replacing the selected biclusters with
trend-preserving biclusters. Four kinds of synthetic matrices were generated with three implanted biclusters over-
lapped of size 0 × 0, 3 × 3, 6 × 6 and 9 × 9 respectively, where the background matrices are of size 200 × 150 and
biclusters are of size 20 × 20. Values in each of the three selected biclusters were shifted with 2, 4 and 6 to ensure
that they were still trend-preserved while overlapped. Repeating the procedure five times, we obtained five syn-
thetic matrices for each overlapping size.

The relevance and recovery scores of seven algorithms on each kind of the test matrices with overlapping
biclusters are shown in Fig. 2. The results showed that for most algorithms, their performances went down as the
degree of overlap increased. OPSM’s scores did not change much as its initial scores were low. ISA and FABIA
showed robust performances with high scores. Our UniBic found nearly all the implanted biclusters when the
biclusters were not overlapped. Although our performance was affected when the biclusters were overlapped,
it still found most of the implanted biclusters, and the result did not change much when the overlapping size
increased. This indicates that UniBic is more capable of finding overlapping biclusters than other compared tools.

Testing on Real Datasets. We further tested the seven tools on the eight gene expression datasets GDS181,
GDS589, GDS1406, GDS1451, GDS1490, GDS2520, GDS3715, GDS3716 from the GEO database30. The detailed
description of these datasets is summarized in Table 1.

Considering the inactive entries and noise interference, we first preprocessed all the datasets (see Methods for
more details). Up- and down-regulated values were separated from the background data with parameter q to be

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
0×0 overlap

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
6×6 overlap

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
3×3 overlap

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
9×9 overlap

Relevance

R
ec

ov
er

y

UniBic QUBIC ISA FABIA CPB OPSM BicSPAM

Figure 2. Relevance and recovery scores of the seven algorithms on synthetic matrices with overlapping
biclusters, including error bars.

www.nature.com/scientificreports/

6Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

15/m and r to be 15. For other algorithms that are required to be run on array data without missing values, the
PCA imputation35 was carried on the expression datasets, and all the algorithms were run with their parameters
optimized. The GO enrichment was evaluated for each bicluster discovered by each tool, with significant p-value
0.05. Since different algorithms are based on different theoretic models, and their best performances with respec-
tively optimized parameters may lead to different number of output biclusters, we assessed their performances
by the proportion of GO enriched biclusters. All the statistics are shown in Table 2. UniBic outputted 62 enriched
biclusters from 151 discovered ones, and reached the highest average enrichment level of 41.1% of these eight
datasets. FABIA showed 22 enriched biclusters from 80 discovered ones, reached the lowest average enrichment
level. ISA discovered the most biclusters of 217, but with a comparative lower average enrichment level of 32.7%.
OPSM found the second most biclusters, but still with a comparative lower average enrichment level of 29.5%.
QUBIC and CPB both had relatively higher average enrichment levels. We ran BicSPAM on the same real data-
sets, but we did not get final results because it was always out of memory.

Utilization of Computing Resources. Biclustering has been well known to be computationally intracta-
ble, and therefore it is highly challenging to develop an effective and efficient heuristic algorithm in order to meet
the needs of analyzing large data matrices. Taking the total number of CPU operations required as the measure
of time, we see that UniBic takes O(nmlogm) times to create the index matrix, O(q2n2m2/k) to locate seeds of
to-be-identified biclusters, and O(q2m2n2) to extend biclusters. Thus the overall running time of UniBic is up
bounded by O(q2m2n2), from which we see that the running time of UniBic is independent of size of the biclusters
to be identified, and even almost independent of columns of input matrix because qm approaches a constant
value.

To compare the computing resource usage for different algorithms, we ran the seven tools on the test matrices
with fixed number of 50 columns, and calculated the individual running time distributions of the seven algo-
rithms with their respective default parameters versus the number of rows. The algorithms were tested on these
large test sets on a desktop computer (2.66 GHz Inter Core, 2 Duo CPU, and 4 GB memory). Figure 3 displays the
comparison results among the seven individual running time distributions versus the number of rows.

Discussion
Since the first biclustering strategy was pioneered by Morgan et al.3 in 1963, researchers have attempted to develop
an effective and efficient algorithm capable of discovering trend-preserving biclusters. Various biclustering algo-
rithms have been playing important roles in the analysis of gene expression data, but the identification of gen-
eral trend-preserving biclusters remains a challenging problem. Intuitively, as is also mentioned in19, the key to
discovering biclusters in a data matrix lies in predicting a seed for each significant (trend-preserving) bicluster
hidden in the data matrix to be analyzed. It has been considered to be rather challenging19 even in the special case
where input matrix consists of n distinct permutations of (1, 2, … , m). The UniBic captures the essence of how
to locate a seed of each to-be-identified bicluster hidden in a background matrix by finding a longest common
subsequence between two rows of the index matrix derived from the input matrix. This provides a transforma-
tion from the problem of discovering trend-preserving biclusters in a background matrix to a simple problem of
finding the longest common subsequence between two rows of the index matrix derived from the background
matrix. This transformation may seem to be routine, but it does improve the traditional biclustering approaches.
Methodologically, UniBic takes an essential step towards the identification of the most general and meaningful

Dataset Genes Samples Description

GDS181 12626 84 Large-scale analysis of the human Transcriptome

GDS589 8799 122 Multiple normal tissue gene expression across strains

GDS1406 12488 87 Brain regions of various inbred strains

GDS1451 8799 94 Toxicants effect on liver: pooled and individual sample comparison

GDS1490 12488 150 Neural tissue profiling

GDS2520 12625 44 Head and neck squamous cell carcinoma

GDS3715 12626 110 Insulin effect on skeletal muscle

GDS3716 22283 42 Breast cancer: histologically normal breast epithelium

Table 1. Description of GDS datasets.

Algorithm Found Enriched

UniBic 151 62(41.1%)

OPSM 163 48(29.5%)

QUBIC 91 34(37.4%)

ISA 217 71(32.7%)

FABIA 80 22(27.5%)

CPB 96 34(35.4%)

Table 2. The results of GO enrichment analysis on eight GDS datasets.

www.nature.com/scientificreports/

7Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

biclusters hidden in a noisy and complex data matrix. The results on both synthetic and real data sets demonstrate
that UniBic is more promising in discovery of functionally correlated expression patterns in gene expression data,
and proves to be a powerful biclustering analysis tool for large microarray data.

Methods
In this section, we present our novel biclustering algorithm, which is capable of discovering all the significant
trend-preserving biclusters hidden in a data matrix. The basic idea behind the algorithm comes from the fol-
lowing observations: 1) there exists a column permutation of an order-preserving bicluster such that the entries
of each permuted row within the bicluster are increasingly (not necessarily strictly) arranged, and 2) the key to
biclustering is the accurate prediction of the columns of each to-be-identified bicluster. Motivated by these two
observations, we designed a novel algorithm by applying the LCS algorithm to selected pairs of rows of an index
matrix derived from the input data matrix.

The foundation of the algorithm is the fact that if two rows of the input matrix A belong to a significant
order-preserving bicluster, then the corresponding two rows of the index matrix Y will contain a significant com-
mon subsequence with a high probability, and vice versa. This elementary observation leads to a novel method
to identify a seed for each potential trend-preserving bicluster. To achieve this goal, we could calculate all the
significant common subsequences by applying the LCS algorithm to each pair of rows of Y. Instead, we identify
a number k (see Supplementary Section 1 online) such that every significant order-preserving bicluster B must
contain at least k + 1 rows. Now assume that B is such a bicluster, if we equally partition the set of rows of A into
k subsets of rows, then there must be at least two rows of B falling into one of these k subsets, and the two rows
are sufficient to locate a seed for B. Therefore, applying the LCS algorithm to each pair of rows in each of the k
subsets of Y would be sufficient to anchor a seed for each significant order-preserving bicluster of more than k
rows. This process identifies a seed for each potential bicluster hidden in the data matrix. The algorithm follows
the steps below in order:

Algorithm UniBic. Step 1. Index matrix creation. Let Y = {yij} be the index matrix derived from input
matrix A = {aij} by setting:

=y r a j iif andonly if isthe ’th smallest entry in row , (3)ij ir

where ties are broken based on the rule that the smaller column index has higher priority to be ranked (see
Supplementary Section 4 online).

Step 2. Index matrix partition. We calculate an integer k based on the significance (default set to 0.05) of the
to-be-identified trend-preserving biclusters using the techniques developed in19. We then equally partition Y into
k subsets of rows.

Step 3. Application of LCS. Apply the LCS algorithm to each pair of rows in each of the k subsets of Y to find all
the significant longest common subsequences. For each pair of rows having a significant longest common sub-
sequence, one such subsequence is chosen as a seed to which steps 4, 5 and 6 are to be applied. They are listed in
decreasing order in length with the longest one at the front.

2000 4000 6000 8000 10000
0

2

4

6

8

10

12

#Rows

R
un

ni
ng

 T
im

e
(lo

g
s)

CPB
FABIA
QUBIC
OPSM
UniBic
ISA
BicSPAM

Figure 3. Comparison of the distributions of running time for the seven algorithms versus the number of
rows on the matrices of 50 columns, with error bars. The time scale is logarithmic.

www.nature.com/scientificreports/

8Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

Step 4. Strict order-preserving bicluster development. We start with a longest seed at the front of the seed list
obtained from step 3. The LCS algorithm is then repeatedly applied to find a 3 × C order-preserving submatrix of
A, where two of the rows are from the seed and the value of C is as large as possible. We continue to add rows one
at a time in a greedy fashion until the order-preserving submatrix has more rows than columns, at which point
the submatrix from the previous stage is passed on to step 5.

Step 5. Extension to an approximately trend-preserving bicluster. From the strict order-preserving biclus-
ter obtained in step 4, we extend it by first repeatedly adding new columns one at a time with an error rate
r ≤ 0.3 until none is available. Up to now, the bicluster obtained is order-preserved. To identify a significant
trend-preserving bicluster, we have to get those remaining original rows and their negative ones involved in the
row extension process by repeatedly adding new rows (original or negative) one at a time with an error rate ≤ 0.15
until none is available. The row extension would be achieved by applying the LCS algorithm between the common
(consensus) sequence of the column extended order-preserving bicluster and the corresponding index row in Y
or its reverse row when we consider negative rows to be added. Then remove from the current seed list those with
two corresponding rows belonging to discovered biclusters. Repeat step 4 for the next potential trend-preserving
bicluster until the list is exhausted.

Step 6. Output as many trend-preserving biclusters as the user needs. We calculate the significance value for those
trend-preserving biclusters obtained in step 5. Those with p-values less than 0.05 are decreasingly ordered in
their significance. Then UniBic outputs first o trend-preserving biclusters, where o is a parameter which can be
pre-specified by users with a default set to 100.

Example 3: Illustrates how to locate an initial seed of a trend-preserving bicluster in the input matrix A.
Example 3: Illustration of locating an initial seed.
Example 3a: Input matrix A:with entries of two rows and eight columns.

row\column a.1 a.2 a.3 a.4 a.5 a.6 a.7 a.8

i 15 3 10 11 12 10 1 7

j 10 2 6 11 8 6 16 9

Example 3b: The index matrix Y of A: with entries being obtained based on eq. (3).

row\column y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8

i 7 2 8 3 6 4 5 1

j 2 3 6 5 8 1 4 7

Example 3c: Initial seed: obtained by the longest common subsequence (2, 3, 6, 5, 1) through applying the LCS
algorithm between rows i and j in Y.

row\column a.2 a.3 a.6 a.5 a.1

i 3 10 10 12 15

j 2 6 6 8 10

Data Preprocessing. When the algorithm UniBic is applied to real data matrices, especially gene expression
data, it is better to preprocess the input data to alleviate the adverse impacts to data entries since corresponding
genes are not activated under all conditions and there is noise interference from data approximation.

Data separation. The values of interest are usually hidden in a massive data matrix to be analyzed. Of inter-
est in gene expression microarray matrix are those entries representing genes up- or down-regulated under cor-
responding conditions, which are usually only a small portion of the whole data matrix. Biologically, up- (down-)
regulated expression values tend to be comparatively bigger (smaller). Those middle values which represent genes
being inactive under corresponding conditions are comparatively less important in the analysis of gene expres-
sion data. Therefore, it is helpful to distinguish the values of interest from others in gene expression microarray
data matrices. To do so, we chose a percentage parameter q with the default value set to 15/m (the value q = 0.5
is specially provided for data without separation preprocessing), where m is the number of columns of the input
matrix, and we selected entries with values significantly away from the median value in each row of input matrix
A as up- (down-) regulated values as follows:

1. Entries in each row i of A are increasing ordered: ai1, … ais, … ail, … ait, … aim, where s = qm, l = m/2 and
t = (1− q)m, d = min{ail − ais, ait − ail}.

2. For the values bigger than ail + d, they are treated as up-regulated values, and values smaller than ail–d are
treated as down-regulated values.

3. Set all the other entries in A to be zero, and denote by A’ the resultant matrix.

www.nature.com/scientificreports/

9Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

Data granulation. Data array, e.g. gene expression microarray data, generated from wet laboratory is
inevitably approximated, leading the algorithms, including UniBic, to be affected adversely to some extent. To
avoid suffering from this approximation, we further preprocessed the input data by equally partitioning all the
up-regulated decreasingly ordered entries in each row of A’ into r (a parameter which may be pre-specified by
user) intervals, then we set all the entries belonging to the i’th interval to be the integer i, while the down-regulated
increasingly ordered entries in each row of A’ were also separated into r intervals and entries belonging to the i’th
interval were set to be the integer −i, then we get a new integer matrix denoted by A”.

Obviously, the trend-preserving biclusters in A” equivalently correspond to those in A. Therefore, we may
apply the UniBic on A” to discover all the significant trend-preserving biclusters hidden in A. This approach has
been experimentally proved to be helpful in reducing adverse impacts on performance.

References
1. Sokal, R. R. A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38, 1409–1438 (1958).
2. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C

(Applied Statistics) 28, 100–108, doi: 10.2307/2346830 (1979).
3. Morgan, J. N. & Sonquist, J. A. Problems in the analysis of survey data, and a proposal. Journal of the American statistical association

58, 415–434 (1963).
4. Cheng, Y. & Church, G. M. In Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology.

93–103.
5. Madeira, S. C. & Oliveira, A. L. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM transactions on

computational biology and bioinformatics 1, 24–45, doi: 10.1109/tcbb.2004.2 (2004).
6. Wang, H., Wang, W., Yang, J. & Yu, P. S. In Proceedings of the 2002 ACM SIGMOD international conference on Management of

data. 394–405 (ACM).
7. Getz, G., Levine, E. & Domany, E. Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy

of Sciences 97, 12079–12084 (2000).
8. Prelić, A. et al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22,

1122–1129, doi: 10.1093/bioinformatics/btl060 (2006).
9. Hartigan, J. A. Direct clustering of a data matrix. Journal of the american statistical association 67, 123–129 (1972).

10. Yang, J., Wang, W., Wang, H. & Yu, P. In Data Engineering, 2002. Proceedings. 18th International Conference on. 517–528 (IEEE).
11. Murali, T. M. & Kasif, S. Extracting conserved gene expression motifs from gene expression data. Pac Symp Biocomput. 77–88

(2003).
12. Tanay, A., Sharan, R. & Shamir, R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, S136–

S144 (2002).
13. Liu, J., Yang, J. & Wang, W. In Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE.

182–193 (IEEE).
14. Kluger, Y., Basri, R., Chang, J. T. & Gerstein, M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome

research 13, 703–716 (2003).
15. Lazzeroni, L. & Owen, A. Plaid models for gene expression data. Statistica sinica 12, 61–86 (2002).
16. Sheng, Q., Moreau, Y. & De Moor, B. Biclustering microarray data by Gibbs sampling. Bioinformatics 19, ii196–ii205 (2003).
17. Eren, K., Deveci, M., Küçüktunç, O. & Çatalyürek, Ü. V. A comparative analysis of biclustering algorithms for gene expression data.

Briefings in bioinformatics 14, 279–292 (2013).
18. Aguilar-Ruiz, J. S. Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840–3845, doi: 10.1093/

bioinformatics/bti641 (2005).
19. Ben-Dor, A., Chor, B., Karp, R. & Yakhini, Z. Discovering local structure in gene expression data: the order-preserving submatrix

problem. Journal of computational biology 10, 373–384 (2003).
20. Chui, C. K., Kao, B., Yip, K. Y. & Lee, S. D. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. 133-142 (IEEE).
21. Fang, Q., Ng, W., Feng, J. & Li, Y. Mining bucket order-preserving submatrices in gene expression data. Knowledge and Data

Engineering, IEEE Transactions on 24, 2218–2231 (2012).
22. Fang, Q., Ng, W., Feng, J. & Li, Y. Mining order-preserving submatrices from probabilistic matrices. ACM Transactions on Database

Systems (TODS) 39, 6 (2014).
23. Jiang, T. et al. In Database and Expert Systems Applications. 129–144 (Springer).
24. Li, G., Ma, Q., Tang, H., Paterson, A. H. & Xu, Y. QUBIC: a qualitative biclustering algorithm for analyses of gene expression data.

Nucleic acids research 37, e101–e101 (2009).
25. Wikipedia contributors. Longest common subsequence problem. Available at: http://en.wikipedia.org/w/index.php? title= Longest_

common_subsequence_problem&oldid= 627149016. (Accessed: 18th November 2014).
26. Bergmann, S., Ihmels, J. & Barkai, N. Iterative signature algorithm for the analysis of large-scale gene expression data. Physical review

E 67, 031902 (2003).
27. Hochreiter, S. et al. FABIA: factor analysis for bicluster acquisition. Bioinformatics 26, 1520–1527 (2010).
28. Bozdağ, D., Parvin, J. D. & Catalyurek, U. V. In Bioinformatics and Computational Biology 151–163 (Springer, 2009).
29. Henriques, R. & Madeira, S. C. BicSPAM: flexible biclustering using sequential patterns. BMC bioinformatics 15, 130 (2014).
30. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

Nucleic acids research 30, 207–210 (2002).
31. Wikipedia contributors. Jaccard index. Available at: http://en.wikipedia.org/w/index.php? title= Jaccard_index&oldid= 634979038.

(Accessed: 18th November 2014).
32. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).
33. Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Statistics in medicine 9, 811–818 (1990).
34. Rui, H. & Madeira, S. C. BicNET: Efficient Biclustering of Biological Networks to Unravel Non-Trivial Modules. (Springer Berlin

Heidelberg, 2015).
35. Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a bioconductor package providing PCA methods for

incomplete data. Bioinformatics 23, 1164–1167 (2007).

Acknowledgements
This work was partially supported by the grants from NSFC with codes 61432010, 61272016 and 31571354, and
also partially supported by National Science Foundation with number 1553680, and the National Institute of
Health grants from the National Center for Research Resources (P20RR016460) and the National Institute of
General Medical Sciences (P20GM103429), and the support from Arkansas Soybean Promotion Board.

http://en.wikipedia.org/w/index.php? title=Longest_common_subsequence_problem&oldid=627149016
http://en.wikipedia.org/w/index.php? title=Longest_common_subsequence_problem&oldid=627149016
http://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=634979038

www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:23466 | DOI: 10.1038/srep23466

Author Contributions
G.L. conceived and designed the study, Z.W. implemented the software, performed the analysis and evaluation,
and helped G.L. writing the manuscript. R.R. and X.H. revised the manuscript. G.L. and X.H. oversaw the project.

Additional Information
Data Availability: The source code as well as all datasets and results are available at: http://sourceforge.net/
projects/unibic/files/?source= navbar.
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, Z. et al. UniBic: Sequential row-based biclustering algorithm for analysis of gene
expression data. Sci. Rep. 6, 23466; doi: 10.1038/srep23466 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the material. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/

http://sourceforge.net/projects/unibic/files/?source=navbar
http://sourceforge.net/projects/unibic/files/?source=navbar
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data
	Results
	Algorithm Validation.
	Validation on synthetic data.
	Validation on GDS data.
	Testing on Synthetic Datasets.
	Comparison on six types of biclusters.
	Comparison on overlapping biclusters.
	Testing on Real Datasets.
	Utilization of Computing Resources.

	Discussion
	Methods
	Algorithm UniBic.
	Step 1. Index matrix creation.
	Step 2. Index matrix partition.
	Step 3. Application of LCS.
	Step 4. Strict order-preserving bicluster development.
	Step 5. Extension to an approximately trend-preserving bicluster.
	Step 6. Output as many trend-preserving biclusters as the user needs.

	Data Preprocessing.
	Data separation.
	Data granulation.

	Acknowledgements
	Author Contributions
	Figure 1.  Relevance and recovery scores of the seven algorithms on six types of biclusters, with error bars.
	Figure 2.  Relevance and recovery scores of the seven algorithms on synthetic matrices with overlapping biclusters, including error bars.
	Figure 3.  Comparison of the distributions of running time for the seven algorithms versus the number of rows on the matrices of 50 columns, with error bars.
	Table 1.  Description of GDS datasets.
	Table 2.  The results of GO enrichment analysis on eight GDS datasets.

 application/pdf

 UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data

 srep , (2016). doi:10.1038/srep23466

 Zhenjia Wang
 Guojun Li
 Robert W. Robinson
 Xiuzhen Huang

 doi:10.1038/srep23466

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 Macmillan Publishers Limited
 10.1038/srep23466
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep23466

 doi:10.1038/srep23466

 srep , (2016). doi:10.1038/srep23466

 True

