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Abstract – In recent works for high-performance computing, 
computation with DNA molecules, i.e. DNA computing, has 
considerable attention as one of non-silicon-based computing. 
Watson–Crick complementarity and massive parallelism are 
two important features of DNA. Using the features, one can 
solve an NP-complete problem, which usually needs 
exponential time on a silicon-based computer, in a polynomial 
number of steps with DNA molecules. In this paper, we 
consider a procedure for solving minimum β -vertex separator 
problems in the Adleman–Lipton model. The procedure  works 
in )( 2nO  steps for minimum β -vertex separator problems of 
an undirected graph with n vertices. 
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1 Introduction 
  As the first work for DNA computing, Adleman (1994) 
presented an idea of solving the Hamiltonian path problem of 
size n in  O(n) steps using DNA molecules. Lipton (1995) 
demonstrated that Adleman’s experiment could be used to 
determine the NP-complete satisfiability (SAT) problem (the 
first NP-complete problem). Ouyang et al. (1997) presented a 
molecule biology-based experimental solution to the maximal 
clique NP-complete problem. In recent years, lots of papers 
have occurred for designing DNA procedures and algorithms 
to solve various NP-complete problems. Moreover, 
procedures for primitive operations, such as logic or 
arithmetic operations, have been also proposed so as to apply 
DNA computing on a wide range of problems (Frisco, 2002; 
Fujiwara et al., 2004; Guarnieri et al., 1996; Gupta et al., 
1997; Hug and Schuler, 2001; and Kamio et al., 2003). 

In this paper, the DNA operations proposed by Adleman 
(1994) and Lipton (1995) are used for figuring out solutions 
of minimum β -vertex separator NP-complete problems: for a 

graph ),( EVG =  and a rational β , 
2
10 ≤≤ β . Find a 

partition of  V  into disjoint sets R , S  and T  such that 
||*|}||,max{| VSR β≤  and no edge has one endpoint in R  

and  one in S  and also the size of || T  is minimized.  

The graph G  in Fig. 1 defines such a problem. It is easy to 
see that },,{ 654 AAAR = , },{ 32 AAS = , },,{ 871 AAAT =   is a 
solution to the minimum β -vertex separator  problem with 

7
3

=β  for graph G  in Fig. 1 

The rest of this paper is organized as follows. In Section 2, 
the Adleman–Lipton model is introduced in detail. Section 3 
we present a DNA algorithm for solving the minimum β -
vertex separator problem and the complexity of the proposed 
algorithm is described. We give conclusions in Section 4. 

2 The Adleman–Lipton model 
 Bio-molecular computers work at the molecular level. 
Because biological and mathematical operations have some 
similarities, DNA, the genetic material that encodes for living 
organisms, is stable and predictable in its reactions and can be 
used to encode information for mathematical systems. 

A DNA (deoxyribonucleic acid) is a polymer which is strung 
together from monomers called deoxyribo-nucleotides (Pâun 
et al., 1998). Distinct nucleotides are detected only with their 
bases. Those bases are, respectively, abbreviated as A 
(adenine), G (guanine), C (cytosine) and T (thymine). Two 
strands of DNA can form (under appropriate conditions) a 
double strand, if the respective bases are the Watson-Crick 
complements of each other – A matches T and C matches G; 
also 3' -end matches 5' -end, e.g. the singled strands 5'-
ACCGGATGTCA-3' and 3' –TGGCCTACAGT-5' can form 
a double strand. We also call the strand  3'-
TGGCCTACAGT-5' as the complementary strand of 5'-
ACCGGATGTCA-3' and simply denote 3'-
TGGCCTACAGT-5' by A ACCGGATGTC . The length of a 
single stranded DNA is the number of nucleotides comprising 
the single strand. Thus, if a single stranded DNA includes 20 
nucleotides, it is called a 20 mer. The length of a double 
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                                       Fig. 1. Graph G. 

 
 stranded DNA (where each nucleotide is base paired) is 
counted in the number of base pairs. Thus, if we make a 
double stranded DNA from a single stranded 20 mer, then 
the length of the double stranded DNA is 20 base pairs, also 
written as 20 bp. 
The Adleman–Lipton model: A (test) tube is a set of 
molecules of DNA (i.e. a multi-set of finite strings over the 
alphabet {A, C, G, T}). Given a tube, one can perform the 
following operations: 
 
 (1) Merge (T1, T2): for two given test tubes T1, T2 it stores 
the union 21 TT ∪  in T1 and leaves T2 empty; 

(2) Copy (T1, T2): for a given test tube T1 it produces a test 
tube T2 with the same contents as T1; 

(3) Detect (T): Given a test tube T it outputs ‘‘yes’’ if T 
contains at least one strand, otherwise, outputs ‘‘no’’; 

(4) Separation (T1, X, T2): for a given test tube T1 and a 
given set of strings X it removes all single strands containing 
a string in X from T1 , and produces a test tube T2 with the 
removed strands; 

(5) Selection (T1, L, T2): for a given test tube T1 and a given 
integer L it removes all strands with length L from T1, and 
produces a test tube T2 with the removed strands; 

(6) Cleavage (T, 10σσ ): for a given test tube T and a string 
of two (specified) symbols 10σσ  it cuts each double trend 
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(7) Annealing (T): for a given test tube T it produces all 
feasible double strands in T. The produced double strands 
are still stored in T after Annealing; 

(8) Denaturation (T): for a given test tube T it dissociates 
each double strand in T into two single strands; 

(9) Discard (T): for a given test tube T it discards the tube T; 

(10) Append (T, Z): for a given test tube T and a given short 
DNA singled strand Z it appends Z onto the end of every 
strand in the tube T; 

(11) Read (T): for a given tube T, the operation is used to 
describe a single molecule, which is contained in the tube T. 
Even if  T contains many different molecules each encoding 
a different set of bases, the operation can give an explicit 
description of exactly one of them. 

Since these eleven manipulations are implemented with a 
constant number of biological steps for DNA strands (Pâun 
et al., 1998), we assume that the complexity of each 
manipulation is )1(O steps. 

3 DNA algorithm for the minimum β -
vertex separator  problems 

 Let ),( EVG =  be a graph with the set of vertices being 
},,2,1|{ nkAV k K==   and the set of edges being  

},1|{ njisomeforeE ij ≤≤= . Let |E|=d. Then 

2
)1( −

≤
nnd . Note that ije  is in E  if the vertices iA and 

jA are connected by an edge.  

In the following, the symbols 
),,2,1(,,#,5,4,3,2,1,0 nkBA kk K=  denote distinct DNA 

singled strands with same length, say 10-mer. Obviously the 
length of the DNA singled strands greatly depends on the 
size of the problem involved in order to distinguish all above 
symbols and to avoid hairpin formation (Li et al., 2003). We 
choose DNA singled strands ijy  to encode the edges 

connecting the vertices iA  and jA  with length of 10-mer. 

Here, all these ijy  will be taken the same, say 11y , for our 
problem. For convenience of argument we still use a dummy 
symbol  ijy  of length 0-mer if the vertices iA and jA  is not 
connected by an edge or ji = . Let 
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We design the following algorithm to solve the minimum β -
vertex separator problems and give the corresponding DNA 
operations as follows: 
 

3.1 Represent each possible partition 
 For a graph with n vertices, each possible partition of 
the set V of  vertices into disjoint sets R , S  and T , is 
represented by an n-digit ternary number. A bit set to 2 
represents a vertex in the set R , a bit set to 1 represents a 
vertex in the set S , and a bit set to 0 represents a vertex in 
the set T . For example, the 
partition },,{ 654 AAAR = , },{ 32 AAS = , },,{ 871 AAAT =  in 
Fig. 1 is represented by the ternary number 00222110  . In 
this way, we transform all possible partition of V in an n-
vertex graph into an ensemble of all n-digit ternary numbers. 
We call this the data pool. 

Q);(P, Merge 1)-(1  

(P); Annealing 2)-(1  

(P);on Denaturati 3)-(1  

);T},#{A(P, Separation 4)-(1 tmp1  

(P); Discard 5)-(1  

P).},B{#,(T Separation 6)-(1 ntmp  

After above six steps of manipulation, singled strands in tube 
P will encode all n3  partitions of V  in the form of n-digit 
ternary numbers. For example, for the graph in Fig. 1 with n8 
we have, e.g. the singled 
strand

#01122200# 1122334455667788 ABABABABABABABAB , 
which denotes the partition },,{ 654 AAAR = , },{ 32 AAS = , 

},,{ 871 AAAT =   corresponding to the ternary number 
00222110 . 

Existence of ii kAB in a singled strand, where k is equal to 0, 1 
or 2 means vertex i is in T, S or R respectively.   

This operation can be finished in  1)O( steps since each 
manipulation above works in ) O(1 steps. 

 

3.2 Select invalid partition 
 For each element in the data pool that represents some 
partition },,{ TSR  of V , we count number of edges that have 
one endpoint in R  and have no  one in S and vice versa. Let 
the partition },,{ TSR  correspond the n-digit ternary 
number 1aaaa jin KKK . For each pair ),( ji aa  with 

1,2 == ji aa  or 2,1 == ji aa  we append the singled strand 

ijy  or jiy  to the end of the singled strand which encode the 

n-digit ternary number 1aaaa jin KKK . For example, the 
singled strands  

#22201011# 1122334455667788 ABABABABABABABAB  
(representing the ternary number 11010222  for the graph in 
Fig. 1) is transformed into 

1,71,82,81122334455667788 #22201011# yyyABABABABABABABAB
   where the singled strands 1,52,53,52,73,73,8 ,,,,, yyyyyy  do 
not appear since there are not corresponding edges in the 
graph shown in Fig. 1 and so they all have length 0-mer by 
the definition of jiy , . It means that if we take the partition 

},,{ TSR  of vertices of the graph in Fig. 1 to 
be },,{ 654 AAAR = , },{ 32 AAS = , },,{ 871 AAAT = , then 
there are totally three edges  

152535273738 ,,,,, AAAAAAAAAAAA  which have one vertex 
in R  and one in S . Every partition },,{ TSR  with an edge, 
has one endpoint in R  and one in S is an invalid partition.  

nk to 1k For ==  
)T},1A{B(P, Separation 1)-(2 1kk  

ni  to1iFor ==  
)T},2A{B,(T Separation 2)-(2 2ii1  

)y,(T Append 3)-(2 ik,2  
)T,(T Merge 4)-(2 21  

For End  
)T(P, Merge 5)-(2 1  

For End  
)T},{y(P, Separation 6)-(2 111  

)(T Discard 7)-(2 1  

In the above operation we use two “For” clauses. Thus this 
operation can be finished in )( 2nO  steps since each single 
manipulation above works in )1(O steps. 
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3.3 Counting number of vertices of each subset          
and select invalid partition 

 
 For each element in the data pool that represents some 
partition },,{ TSR  of V , we count the vertices number of 
R , S and T . Let the partition },,{ TSR  correspond the n-
digit ternary number 1aaaa jin KKK . For each element ia  

with 2=ia   we append the singled strand 5   to the end of 
the singled strand which encode the n-digit ternary 
number 1aaaa jin KKK .and also For each element ia  with 

1=ia   we append the singled strand 4  and For each element 

ia  with 0=ia   we append the singled strand 3  to the end of 
the singled strand which encode the n-digit ternary 
number 1aaaa jin KKK . For example, the singled strands  

#01122220# 1122334455667788 ABABABABABABABAB  
(representing the ternary number 02222110  for the graph in 
Fig. 1) is transformed into 

#01122220# 1122334455667788 ABABABABABABABAB
55554433 .Every partition  that |||| VR β≥  or |||| VS β≥  is 
invalid. Let [ ] 1|| += VL β  

ni  to1iFor ==  
)T},2A{B(P, Separation 1)-(3 1ii  

,5)(T Append 2)-(3 1  
)T(P, Merge 3)-(3 1  

For End  
ni  to1iFor ==  

)T},1A{B(P, Separation 4)-(3 1ii  
,4)(T Append 5)-(3 1  
)T(P, Merge 6)-(3 1  

For End  
ni  to1iFor ==  

)T},0A{B(P, Separation 7)-(3 1ii  
,3)(T Append 8)-(3 1  
)T(P, Merge 9)-(3 1  

For End  
)T},55...55{(P, Separation 10)-(3 1

 timesL
321

 
)T},44...44{(P, Separation 11)-(3 2

 timesL
321

 

3.4 Finding the minimum size of subset T 
 Now, among all (valid) partitions, we separate the 
partitions in which the size of  T is minimum. 

ni  to1iFor ==  
)T},33...33{(P, Separation 1)-(4 1

 timesi
321  

)T},33...33{,(T Separation 2)-(4 2
 times1i

1 321
+

 

n.circulatio  thecontinue else , 
separator vertex  - β minimum  toingcorrespond vertex 

ofnumber   theis i  andFor  End then  , “yes”  is  )(TDetect   If 2
 

)TMerge(P, 3)-(4 2  

For End  
 

3.5 Giving the exact solutions 
 Finally the Read operation is applied to giving the exact 
solutions to the minimum β -vertex separator problems.  

).(T Read)15( 2−  

  

4 Conclusions 
 As the first work for DNA computing, (Adleman, 1994) 
presented an idea to demonstrate that deoxyribonucleic acid 
(DNA) strands can be applied to solving the Hamiltonian 
path NP-complete problem of size n in O(n)  steps using 
DNA molecules. Adleman’s work shows that one can solve 
an NP-complete problem, which usually needs exponential 
time on a silicon-based computer, in a polynomial number of 
steps with DNA molecules. From then on, Lipton (1995) 
demonstrated that Adleman’s experiment could be used to 
determine the NP-complete satisfiability (SAT) problem (the 
first NP-complete problem). Ouyang et al. (1997) showed 
that restriction enzymes could be used to solve the NP-
complete clique problem. In recent years, lots of papers have 
occurred for designing DNA procedures and algorithms to 
solve various NP-complete problems. As Guo et al. (2005) 
pointed out, it is still important to design DNA procedures 
and algorithms for solving various NP-complete problems 
since it is very difficult to use biological operations for 
replacing mathematical operations. 

In this paper, we propose a procedure for minimum β -vertex 
separator NP-complete problems in the Adleman–Lipton 
model. The procedure works in )( 2nO steps for minimum 
β -vertex separator   problems of an undirected graph with n 
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vertices. All our results in this paper are based on a 
theoretical model. However, the proposed procedures can be 
implemented practically since every DNA manipulation used 
in this model has been already realized in lab level. 
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