
5.4 No.  For example, consider A = {0n1n | n = 0, 1, 2, 3, …} and let f be the function 
that maps 0n1n to 1n and maps all other string to -1.  Then f is a mapping reduction 
from A to 1*, which is regular even though A is not regular. 

 
5.5 Show that ATM is not mapping reducible to ETM.  I will be using the ¬ symbol to 

indicate complement instead of drawing a line over the language. We know that 
ATM is Turing recognizable, but not co-Turing recognizable.  The TM below 
recognizes ¬ETM, so ETM is co-Turing recognizable. 
 
M = “On input <M>, where M is a TM 
  1. For each i = 1, 2 3, … 
   1. Run M on all strings of length i for i steps 
   2. If any string is accepted, accept” 
This Turing machine will accept any Turing machine whose language is non-
empty. 
 
Now assume ATM is mapping reducible to ETM.  Then ¬ATM is mapping reducible 
to ¬ETM.  But, ¬ETM is Turing recognizable and ¬ATM is not, which contradicts 
Theorem 5.22.  This is a contradiction.  Therefore, ATM is not mapping reducible 
to ETM. 
 

5.7 A ≤m ¬A implies ¬A  ≤m A.  By Theorem 5.16, we can conclude that  ¬A is 
Turing recognizable since we know A is Turing recognizable.  By Theorem 4.16, 
we can conclude A is decidable since it is both TR and co-TR. 

5.3 Let A be any Turing recognizable language and let M be a Turing machine such 
that L(M) = A.  Let f be the function that maps any string w to the string <M.w>.  
Then w is in A if and only if f(w) is in ATM – i.e., f is a mapping reduction from A 
to ATM. 

6.3 Since A ≤T B, there is a Turing machine M1 that calls an oracle for B and decides 
A.  Similarly, since B ≤T C, there is a Turing machine M2 that calls an oracle for C 
and decides B.  Now, consider the Turing machine M that does exactly what M1 
does except instead of calling the oracle for B, it calls M2.  Since M2 decides B, it 
will give the same answer as the oracle did, so M will decide A.  Also, M2 uses an 
oracle for C, so M also uses and oracle for C to decide A.  Therefore, A ≤T C. 


