Homework 5
Solution

CSCI 2670

October 6, 2005

3.2 c)
New text

q11##1

xq3##1

x#q5#1

qreject

Old text

q11##1

~q3##1

~#q5#1

qreject
3.2 e)
New text

q110#10

xq30#10

x0q3#10

x0#q510

x0q​6#x0

xq70#x0

q7x0#x0

xq10#x0

xxq2#x0

xx#q4x0

xx#xq40

xx#q6xx

xxq6#xx

xq7x#xx

xxq1#xx

xx#q8xx

xx#xq8x

xx#xxq8~

xx#xxqaccept

Old text

q110#10

~q30#10

~0q3#10

~0#q510

~0#1q50

~0#10q5~

~0#1q70

~0#1q70

~0#q710

~0q7#10

~q70#10

q7~0#10

~q90#10

~0q9#10

~0#q1110

~0q12#x0

~q120#x0

q12~0#x0

~q130#x0

~xq8#x0

~x#q10x0

~x#xq100

~x#q12xx

~xq12#xx

~q12x#xx

q12~x#xx

~q13x#xx

~xq13#xx

~x#q14xx

~x#xq14x

~x#xxq14~

~x#xxqaccept~
3.6 The problem is that M may not halt on some string sk. If that is the case, then E will never enumerate any string si with i > k.

3.8 b)
If first symbol is a 0

Write $ and move right until the next 0

If end of string is reached reject

Write X and move left until $

Move right until there the next 1

If end of string is reached reject

Write X and move left until $

Else if first symbol is a 1

Write $ and move right until the next 0

If end of string is reached reject

Move right until there the next 0

If end of string is reached reject

Write X and move left until $

Else (first symbol must be ~) accept

Repeat

Move right until the next 1

If end of string is reached

Move left until $

Move right until next 0

If end of string is reached accept

Else reject

Write X and move left until $

Move right until next 0

If end of string is reached reject

Write X and move right until next 0

If end of string is reached reject

Move left until $
3.12) We need to simulate a {R,RESET} Turing machine using a standard Turing machine and vice versa. First, lets assume we have a {R,RESET} machine M and we want to simulate M using a Turing machine M1. In the descriptions below, whenever I say “mark,” I mean that the current symbol at the tape head will be replaced with another symbol – each symbol has a unique replacement variable (e.g., a, b, c may be replaced with A, B, C, respectively).
Given any input, w, M1 should do the following.
Shift all symbols right 1 space and mark tape head with some symbol not in the original tape alphabet (the “tape start marker”).

Run M on w
Whenever instructed to RESET, move left until tape start marker and move right one

Then M​1 can model M with R and RESET.

Now assume we have a standard Turing machine M1. We want to create a {R,RESET} Turing machine M, that mimics the behavior of M1.

Given an input w, M needs to keep track of the tape cell before the one the tape head currently points to by marking this tape cell. When the tape head is at the beginning of the tape, no cell will be marked. If we can create M1 to do this, then M1 will be able to move left one space (and thus mimic M1). Below, I will first show what M needs to do at each R command to keep the cell to the left of the head marked. I will then show how to move the tape head left one cell to the left of the head is marked (and mark the cell before the new tape head).

Implementing R

RESET

Move right to marked cell

If no marked cell

RESET

Mark tape head and move right

Else (some cell is marked

Unmark the current cell and move right

Mark the cell and move right

Implementing L

RESET

Move right to check for marked cell

If there is no marked cell, do nothing and return

If there is a marked cell do the following

RESET

Mark the first cell

Move right

If the tape head points to a marked cell, unmark it and RESET and return (this occurs if you were at the second tape cell and want to move to the first tape cell … in this case no cells should be marked)

Otherwise repeat the following loop

RESET

Move right to marked cell

Unmark the cell and move right one cell

Mark the cell

Move right one cell

If the current cell is not marked then loop

(You will only get to this point if you have two marked cells in a row … i.e., if you have marked the cell to the left of the originally marked cell)

Unmark current cell and RESET

Move right to marked cell

Move right one cell and return

Thus, you can implement L and R using R and RESET and vice versa. Therefore {L,R} Turing machines accept the same class of languages as {R,RESET} Turing machines.
3.13 To show a Turing machine with directions {R,S} is not equivalent to a standard Turing machine, we must show there is some language that is accepted by one of these models, but not the other. Since we cannot move backwards on the tape with the {R,S} machine, we have intuitively lost our memory. Therefore, it seems likely that the standard Turing machine is stronger than the {R,S} Turing machine.

Consider the language A = {0n1n | n > 0}. We have shown in class that this language is Turing recognizable. It is easy to see that there is no way to write a {R,S} Turing machine that recognizes A – we have to be able move backwards to remember how many 0’s we’ve read to ensure we read the same number of 1’s.
In fact, {R,S} Turing machines can only accept regular languages. We show this by construction. It is clear that any NFA can be simulated by a {R,S} Turning machine. The construction below illustrates than an {R,S} Turing machine can be simulated by an NFA.

 Given any {R,S} Turing machine M, we can construct an NFA N such that L(M)=L(N). Let M = (Q,Σ,(,(,q0,qaccept,qreject). Then N=(Q’,Σ,(’,qstart,F), where Q’ = {qstart}({(qiR,a) | qi (Q, a (Σ}({(qiS,a) | qi (Q, a ((}. The states of N (other than the start state) keep track of what the state of M would be and what symbol the tape head points to. The qiR states are the states that were arrived at by a R move in M and the q​iS states were arrived at by an S move. The NFA will read an input symbol a only if it is in some state (q​iR,a). The accept states of N are all the pairs (qaccept,a) for some a ((. Finally, the transition function mimics M’s transition function as follows:
· Let (’(qstart,() = {(q0R, a) | a (Σ }. The start state non-deterministically jumps to q0R with any possible input alphabet symbol at the tape head.
· For each non-halting state qi and each a (Σ, if ((qi,a) = (qj,b,R), then (’((qiR,a),a) = {(qjR,c) | c(Σ}. You can read the a and go to state qjR. After moving right, any input symbol may be at the tape head.
· For each non-halting state qi and each a (Σ, if ((qi,a) = (qj,b,S), then (’((qiR,a),a) = {(qjS,b)}. You can read the a and go to state qjS. The tape head will now be b.
· For each non-halting state qi and each a ((, if ((qi,a) = (qj,b,R), then (’((qiS,a),() = {(qjR,c) | c(Σ}. You do not read the a since you have already read the tape head at this cell – simply go to state qjR. After moving right, any input symbol may be at the tape head.

· For each non-halting state qi and each a ((, if ((qi,a) = (qj,b,S), then (’((qiS,a),() = {(qjS,b)}. You do not read the a since you have already read the tape head at this cell – simply go to state qjS. The tape head will now be b.
It is clear that N mimics the behavior of M.
