Recommended problems
10/18/2005

CSCI 2670

4.6
Assume B is countable and that f:N(B is a functional correspondence. Let fi(j) denote the ith symbol in f(j). Consider the string s whose ith element differs from fi(i) – i.e. if fi(i) = 0, then the ith symbol in s is 1 and vice versa. Then s cannot be in the image of f since it differs from every string in the image of f by at least one symbol. Furthermore, s is in B since it is an infinite sequence over {0,1}. Therefore, no functional correspondence can exist between N and B – i.e., B is uncountable.

4.7
We begin by lexicographically arranging the elements of T according to the sum of the elements {(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1),…}. For each natural number i, let f(i) be the ith element in the list. Since the list never repeats, f is clearly one-to-one. Also, for every element t in T, the sum of the components of t is finite. Therefore, there is some natural number n such that f(n)=t. Thus, f is onto. This shows that there is a functional correspondence from N to T – i.e., T is countable.
[image: image1.png]

4.22

4.25
The intersection of a context-free language and a regular language is context free. Also, the language {w({0,1}* | w has more 1’s than 0’s} is generated by the following context-free grammar, G.
S (T1T

T (T0T1T | T1T0T | 1T | (
Consider the following Turing machine

M = “On input <D>, where D is a DFA

1. Construct a CFG H such that L(H) = L(D) ∩ L(G)

2. Submit <H> to the decider for ECFG

3. If it rejects, then accept

4. Else, reject.”

M is clearly a decider since every step of M halts. Also, M accepts iff the intersection of L(D) and L(G) is non-empty – i.e., iff D accepts some string with more 1’s than 0’s.

4.26
Consider the following Turing machine

M = “On input <G,x>, where G is a CFG

1. Let R be the following RE R = Σ*x Σ*

2. Create the CFG H such that L(H) = L(G) ∩ L(R)

2. Submit <G > to the decider for ECFG

3. If it accepts, then reject

4. Else, accept.”

M is clearly a decider since each step halts. Also, M rejects <G,x> iff G generates some string in Σ*x Σ* -- i.e., some string with x as a substring. Therefore CCFG is decidable.
The following TM also decides CCFG
T = “on input <G,x>, where G is a CFG

1. For i = 0 to len(x)

2.
Let y = x[i]:x[len(x)-1]

3.
For j = 0 : len(y)

4.

Submit <G,y[0]:y[j-1]> to the decider for A​CFG

5.

If it accepts, accept.

6.
Next j

7. Next i

8. reject
USELESSPDA = {<P> | P is a PDA with at least one useless state}.

First let’s consider the language EPDA = {<P> | P is a PDA with L(P)=(}. The following TM decides EPDA

M = “On input <P>

Convert P to a CFG G

Submit <G> to the TM that decides ECFG

If <G> is accepted, then accept

If <G> is rejected, the reject”

Notice that if P has exactly one accept state and L(P) = (, then the accept state is a useless state. We can use this to determine if a specific state qi of P is useless – let Pi be the PDA found by modifying P so that qi is its only accept state and submit <Pi> to the TM M described above. To determine if P has any useless states, do this for each state in P. More specifically, the following Turing machine decides USELESSPDA

N = “On input <P>

Let n = the number of states in P

For each i = 1, 2, … n

Let Pi be the PDA found by modifying P so that its only accept state is the ith state of P

Submit <Pi> to M (the TM that decides EPDA)

If M accepts, then accept (the ith is useless)

If M didn’t accept any <Pi>, then reject”

Note that is is not sufficient to just see if there is some sequence of transitions from the start state to every other state. The stack contents must also be considered. For example, consider the following PDA.

In this PDA, q3 is useless even though there is a transition to it. This is because there is no way to push a 1 onto the stack and q3 can only be reached by popping a 1 off of the stack.

