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Abstract

Multi-turn interactions have frequently occurred
in the dialogue and question answering systems,
where the current query often refers to the con-
versation context. Thus modeling the context be-
comes a critical step for the task of multi-turn ma-
chine reading comprehension (MRC). To utilize the
context, traditional methods rely on modeling the
whole context as input, which may be confused by
the irrelevant parts that appeared in the dialogue
history. To alleviate the problem, in this paper, we
employ a reinforcement learning based method to
select the related conversation history to maximize
the MRC model performance. We conduct exten-
sive experiments on QuAC dataset, a large multi-
turn MRC dataset, to examine the efficiency and
effectiveness of our method.

1 Introduction
Multi-turn machine reading comprehension (MRC) has been
an important task for building conversational question an-
swering system. A key question for multi-turn MRC is to
model the context history. Recent state-of-the-art studies ap-
pend all dialogue history by using history answer embed-
ding [Qu et al., 2019a] or question attention [Qu et al.,
2019b], which can be viewed as a soft selection of the re-
lated history. However, considering the whole history in the
single model will inevitably face some challenges. 1) Re-
source Limitation. It requires more computation resources
to incorporate the representation of all the history, including
both the relevant and unrelated ones, which may be unneces-
sary for understanding the query. Moreover, this issue gets
even worse when we adopt a heavy model such as BERT
large, as the whole history needs to be maintained. 2) In-
formation Conflict. Existing works that modeling the whole
history usually employ attention or gating based mechanisms
to selectively attend to different history turns. However, those
methods may still cause confusion due to the irrelevant parts
that appeared in the dialogue history. In the other words, the
goal of the reading comprehension task is to minimize the
prediction loss, rather than finding the most relevant histories
to the current query.

To alleviate the above problems, in this paper we work
from a different perspective and try to make meaningful se-
lections of conversation history. The advantage of our method
is that it can avoid the negative impact of unimportant history
turns from the source by not considering them. We model the
multi-turn MRC task as two subtasks: a conversational QA
task using a neural MRC model and a conversation history se-
lection task with a reinforced selector. The reinforced selec-
tor is an agent that interacts with the environment constructed
by the multi-turn MRC. More specifically, for each query, we
view the process of finding the related history as a sequential
decision making process. The agent acts on the available con-
versation history and backtracks the history question-answer
pairs turn by turn to decide whether it is relevant/useful based
on the observations. The MRC model then uses the selected
history turns to help itself answer the current question and
generates a reward to evaluate the utility of the history se-
lection. As irrelevant history are filtered, the MRC model
can be better trained with more sophisticate mechanism and
concentrate on fitting the history turns with more confidence.
Moreover, as the reinforced selector is a separate module, it
can be flexibly adapted and further improved with techniques
such as transfer learning in the future.

We summarize our contributions as follows:
1. We propose a novel solution for modeling the conversa-

tion history in the multi-turn MRC setting. We incorpo-
rate a reinforced selector in the traditional MRC model
to filter the irrelevant history turns instead of evaluating
them as a whole. As a consequence, the MRC model
can concentrate more on the relevant history and obtain
better performance.

2. We model the conversation history selection problem
as a sequential decision making process, which can be
solved by reinforcement learning (RL). By interacting
with a pre-trained MRC model, the reinforced selector
is able to generate good selection policies. We further
propose a novel training scheme to address the sparse
reward issue.

3. We conduct extensive experiments on a large ques-
tion answering dataset QuAC, and the results show that
the learned conversation history selection policy by RL
could help boost answer prediction performance.

The rest of our paper is organized as follows. In Section 2



Dialogue History
Q1: what happened in 1983?
A1: In May 1983, she married Nikos Karvelas, a composer

Q2:did they have any children?
A2:in November she gave birth to her daughter Sofia.

Q3:did she have any other children?
A3:CANNOTANSWER"

Q4:what collaborations did she do with nikos?
A4:Since 1975, all her releases have become gold..

Q5:what influences does he have in her music?
A5:CANNOTANSWER

Question
Q6:what were some of the songs?
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Figure 1: Overview of the our proposed MRC model with reinforced
selector for the ConvQA task.

& 3, we formulate the conversation history selection problem
in the multi-turn MRC setting and thoroughly elaborate our
proposed approach that uses reinforcement learning to train
backtracking policy for useful history-turn selection. In Sec-
tion 4, we conduct the detailed experiments on the QuAC
dataset. In Section 5, we present the related work regarding
machine comprehension, conversational question answering,
and reinforcement learning. Finally, we conclude the work in
Section 6.

2 Task Definition
We define the conversation history selection task on top of
the ConvQA task. We formulate our task into two subtasks:
a conversational QA task and a conversation history selec-
tion task. Given the current question Qk and dialogue history
H = {(Qi, Ai)|i=k−1i=0 }, our reinforced backtracker aims to
find a subset H ′ ∈ H of most relevant history turns, to maxi-
mize the performance of the ConvQA task.

3 Models
In this section, we first present an overview of our proposed
reinforced selecter, followed by detailed discussions on the
state representation, the Reinforcement Learning (RL) agent,
the environment and the reward.

3.1 Model Overview
As illustrated in Figure 1, we model the history selection
problem as a sequential decision making process. Given the
current query, the agent selects the history and obtains the
state representation in each dialogue turn through the state
network. The policy network takes the state representation
and the last action to decide whether this history turn is re-
lated to the query. Subsequently, the MRC model uses the
selected history turns and the passage as the inputs to predict
the answer span. The history selection quality has a direct im-
pact on the answer prediction performance. Thus, the MRC
model is able to generate a reward to evaluate the utility of
the history selection. Finally, the reward is used to update the

policy network. We now introduce the state, agent, environ-
ment, and reward in detail in the following sections.

3.2 State
The state of a given history turn (Qi, Ai) is denoted as a con-
tinuous real valued vector Si ∈ Rl, where l is the dimension
of the state vector. The state vector S in i-th selection is the
concatenation of the following features:

Si = [hi ⊕ V (ai−1)⊕ V (i)⊕ ω] (1)

• Sentence Vector hi. We adopt the average of the
word’s hidden representation generated by the vanilla
BERT model as the sentence vector, where the in-
put to the BERT is a sentence pair as follows:
[CLS]QiAi[SEP].
• Last Action’s Vector V (ai−1). We embed the last ac-

tion into an action vector with length 20.
• Position Vector V (i). We embed the current relative

step into this vector, which is designed to inject the po-
sition information.
• Segment Embedding ω. This vector is defined as the

average of past sentence embeddings whose correspond-
ing action is 1 (denotes being selected), formally:

ω =

i−1∑
m=1

hm, where am = 1. (2)

3.3 RL Agent
Policy Network. Given the state, our policy network is a
fully connected neural network, defined as follows:

P = softmax(W × S). (3)

At the training stage, we calculate the action distribution
and sample action from the distribution. At the evaluation
stage, we select the action according to the max probability.

The policy gradient is calculated as followings:

∇θJ(θ) = E
( L∑
t=1

(R− b(τ))∇θlog πθ(at|st)
)
, (4)

where b is the baseline, designed to reduce variance. We
adopt the average return in the batch as our baseline. R is the
cumulative reward, which will be discussed in the section 3.5.
Action. As our goal is to select the related history turns,
the agent has two options for each turn: 0 (ignored) or 1 (se-
lected).

3.4 Environment
Given the current question Qk, a subset of the dialogue his-
tory H ′ and passage P , the environment reformulates the
multi-turn ConvQA task to a unified single-turn machine
reading comprehension (MRC) task by prepending the dia-
logue history to the current question. Then the model predicts
the answer span and generates a reward to evaluate the utility
of the history selection for predicting the answer.

In this paper, we adopt BERT [Devlin et al., 2018]
as our MRC model. The input for BERT is defined as



[CLS]Qk[SEP]H ′[SEP]P[SEP], where Qk and P re-
fer to the current k-th question and the passage, H ′ is the set
of the selected history turns. We denote the output of BERT
as Hrc ∈ RL×Dm , where L is the length of the input and Dm

is the dimension of the vector. Formally, we predict the start
and end positions of the answer as the following:

Ps = Softmax(WsH
T
rc + bs), (5)

Pe = Softmax(WeH
T
rc + be), (6)

where Ws, We ∈ R1×Dm , bs, be ∈ R1×L, and s stands for
the start and e stands for the end.

3.5 Reward
Our goal is to maximize the accuracy of the MRC model’s
prediction through the inputs selected by the agent. So an
intuitive way is to adopt the word-level F1 score between the
predicted answer and the ground-truth as our rewardR. If the
input information is not sufficient for the model to predict the
answer correctly, the F1 score can be low. Formally, the F1
score is defined as follows:

F1 =
2 ∗ P ∗R
P +R

(7)

where P is the overlap percentage of the gold answer that
counts in the predicted answer, R is the overlap percentage
that counts in the gold answer.

3.6 Algorithm
Details of the algorithm can be seen in Figure 1 and Algo-
rithm 3.6. The agent is comprised of two modules: a vanilla
BERT and policy network. The vanilla BERT aims to obtain
the sentence representation. Here we directly adopt the re-
leased pre-trained model from github and freeze its weights.
Given the current question Qk and the history H , the agent
repeatedly generates selection decisions. After the selecting
procedure, we use REINFORCE algorithm [Williams, 1992]
to update the policy.

Training Scheme
The idea of the training scheme is to gradually increase the
difficulty of learning. The agent firstly learns policy from the
episodes with only one history, which can be viewed as the
simplified selection procedure. Then we increase the length
of the episodes to make the agent learn more complicated
strategy. On the other hand, the normal strategy that ran-
domly selects an example from the dataset and can see the
simple and difficult situations simultaneously. This kind of
setting might confuse the agent.

4 Experiments
4.1 Datasets
We conduct experiments on the QuAC dataset. QuAC is a
machine reading comprehension task with multi-turn inter-
actions, where questions often refer to the dialogue history.
Some dialogue behaviors often occur such as topic shift, drill
down and topic return. There are mainly 100k questions and
10k dialogue in the dataset. The maximum round in the dia-
logue is 12.

Algorithm 1 RL Training Procedure

Require: Environment M: A pre-trained MRC model with
latest 8 history turns;
Sentence Representation Model: (Vanilla ) BERTs
Policy Network: Pn

1: for j in range(MAX History Turn) do
2: for Qk, H = {(Qi, Ai)|i=k−1i=0 } in training data do
3: Vq = BERTs(Qk)
4: if len(H) > j then
5: continue
6: end if
7: Actions=[1]
8: for (Qi, Ai) in H do
9: hi = BERTs(Qi ⊕Ai)

10: State = hi ⊕ ω ⊕ V (ai−1)⊕ Vi
11: ai = Pn(State)
12: Actions.append(ai)
13: end for
14: Obtain history subset H ′ according to Actions
15: end for
16: Obtain reward R according to Eq. 7
17: Using R to update the policy network Pn
18: end for

Also, we conduct reinforcement learning on a rewritten
dataset Canard, which partly selects around 31k questions
from the QuAC dataset and rewrite them to well-formed ques-
tions.

Evaluation Metrics
The QuAC challenge provides two evaluation metrics, the
word-level F1, and the human equivalence score (HEQ). The
word-level F1 evaluates the overlap of the prediction and the
ground truth answer span. It is a classic metric used in (con-
versational) machine comprehension tasks [Rajpurkar et al.,
2016; Reddy et al., 2018]. HEQ measures the percentage
of examples for which system F1 exceeds or matches human
F1. Intuitively, this metric judges whether a system can pro-
vide answers as good as an average human. This metric is
computed on the question level (HEQ-Q) and the dialog level
(HEQ-D).

4.2 Environment
We test our method on the following varied environments. We
adopt the same model architecture but with different inputs
and training corpus.

Env-ConvQA We denote the method of appending the lat-
est k historical question-answer pairs to its current question
as Env-ConvQA. Formally, the current question Qk and its
latest 8 history turns H8 = {(Qk− i, Ak− i)|i=min(8,k)i=1 } are
concatenated to be a new long question then accepted as the
input of the model. This method is a strong baseline as shown
in [Zhu et al., 2018; Ju et al., 2019].

Env-ST (Single Turn) We denote the method of training a
single turn MRC model on the first turn of dialogues in QuAC
dataset as Env-ST. This is to avoid the negative impact caused
by introducing dialogue history for the MRC model. Note the



Table 1: ConvQA means we append the past k history question an-
swer pairs to the current question. Here we report the averaged re-
sults on development dataset for k in {0,4,8,12} in 5 runs.

Models F1 HEQ-Q HEQ-D Total

ConvQA w/ no history 55.93 49.43 3.3 108.66
ConvQA w/ 4 avg 63.84 59.29 5.8 128.93
ConvQA w/ 8 avg 64.02 59.59 6.3 129.91
ConvQA w/ 12 avg 63.12 58.37 5.5 126.99

number of examples is the same with the number of dialogues
in QuAC. The training dataset has 11,567 examples.

Env-Canard (Canard Dataset)) As the Canard dataset has
re-written questions based on the history turns, it can serve as
a perfect environment to examine different history modeling
policies. We denote the method of training the MRC model
on the re-written questions from Canard as Env-Canard. It
has about 31k training examples.

4.3 Baselines
We consider to compare our method with rule based methods.

Rule Based Methods We define the rule-based policy
where latest k history question-answer pairs are selected.
This setting is adopted as baselines in recent studies [Choi
et al., 2018; Qu et al., 2019b; Qu et al., 2019a].

4.4 The Necessity of the Selection
As shown in this study [Yatskar, 2019], as topic shift and
topic-return are common in conversations, thus it is neces-
sary to prepend history turns in the model. However, there
still remains an important question, the more history turns
appended, the better the performance will be?

As shown in Table 1, we conduct experiments on training
PQA model with various history turns, the performance will
increase when we append 8 history turns instead of 4, but
decrease when we append the latest 12 turns. The potential
reasons behind this are: 1) Information conflict. It is hard for
the model to automatically capture the dependices between
related parts. 2) Length limitation. The more turns we ap-
pended, the less the passage words are included due to the
length limitation of the BERT, which makes the model diffi-
cult to extract the key information in the input.

4.5 Reinforcement Learning vs Rule Policy
In this section we aim to examine the benefits of our rein-
forcement learning method. We conduct reinforcement learn-
ing on three environments Env-ConvQA, Env-ST and Env-
Canard as discussed in Section 4.2.

As shown in Table 2, we compare the performance of dif-
ferent setting of our agent learning and rule policy. For Env-
Canard obtained by training model on manually rewritten
questions, it can be viewed as an good environment which can
judge how good the selected history pairs are. We can see that
the policy with no history can achieve the best performance.
But with more histories appended, the performance start to
drop dramatically. This means more history turns bring more

Table 2: The performance of Env-Canard environment.

Env-Canard Reward F1 HEQQ HEQD Total
Rule-0 - 48.61 41.43 2.2 92.24
Rule-4 - 44.26 36.92 0.9 82.08
Rule-8 - 44.25 36.91 0.9 82.06
Rule-12 - 44.25 36.91 0.9 82.06
Agent F1 49.90 42.89 2.3 95.09

Table 3: The reinforcement learning on single-turn environment.

Env-ST Reward F1 HEQQ HEQD Total
Rule-0 - 33.60 27.58 1.0 62.18
Rule-4 - 31.00 21.89 0.5 53.39
Rule-8 - 31.05 21.92 0.5 53.47
Rule-12 - 31.05 21.92 0.5 53.47
Agent F1 33.62 27.49 1.1 62.21

Table 4: The reinforcement learning on Env-ConvQA with 8 history
question answer pairs on the full corpus.

Env-ConvQA Reward F1 HEQQ HEQD Total
Rule-0 - 46.98 38.14 1.8 86.92
Rule-4 - 66.05 61.89 7.3 135.24
Rule-8 - 66.09 61.97 7.3 135.36
Rule-12 - 66.09 61.97 7.3 135.36
Agent F1 66.09 61.97 7.3 135.36

Table 5: Different learning procedure of reinforcement learning on
Env-Canard on the full corpus.

Methods F1 HEQQ HEQD Total
Scheme 47.69 40.48 2.5 90.67
No scheme 43.26 35.98 1.1 80.34

noise information instead of useful information. When ap-
plied our method, the performance increases greatly. This
shows our agent can help to backtrack helpful history turns
to achieve better performance, i.e. dig out useful information
from history turns.

We also test our method on Env-ST to examine the effec-
tiveness if no rewritten dataset is provided. As shown in Ta-
ble 3, all model performance drops drastically. The reason
is that without perfect environment, the RL and rule-based
agent have less satisfactory performance. But, our method
can still boost the performance over all the rule-based agents,
which shows the effectiveness of our policy.

We also report the results of our agent on Env-ConvQA.
Note that for fair comparison, Env-ConvQA is trained on the
same number of training datasets as Canard’s but with no
rewritten questions. As shown in Table 4, the more history
turns are appended, the better performance the rule policy
can obtain. But it stops increasing when we append 8 his-
tory turns. When applied our reinforcement learning scheme,
the metrics can be further boosted.



Table 6: Comparison between our method and the state-of-art Con-
vQA methods.

Methods F1 HEQQ HEQD Total
BiDAF++ 51.8 45.3 2.0 99.1
BiDAF++ w/ 2-C 60.6 55.7 5.3 121,6
BERT+HAE 63.9 59.7 5.9 129.5
BERT+PosHAE 64.7 60.7 6.0 131.4
HAM 65.7 62.1 7.3 135.1
Our method 66.1 62.1 7.3 135.5

4.6 The Comparison of Training Scheme Learning
and Episode Learning

Recall that our training scheme is to learn the policy from ex-
amples with only one history, followed by learning from ex-
amples with two history turns and so on so forth. As shown
in Table 5, we conduct experiments with different learning
methods. The agent with Episode learning interacts with en-
vironment with examples in the natural order appeared in
datasets. We can see that training scheme performs much
better than episode learning. A potential reason is that the
training scheme can provide a warm start stage, as it firstly
learns the policy from examples with less history turns, fol-
lowed by learning from examples with more history turns. It
can be viewed as a student learning from easy courses to the
hard courses.

4.7 The Comparison of Our Method and other
ConvQA Methods

We compare our method on Env-ConvQA with several state-
of-the-art ConvQA methods, including: BiDAF++ [Choi
et al., 2018], BERT+HAE from [Qu et al., 2019b],
BERT+PosHAE and a strong baseline with history attention
called HAM from [Qu et al., 2019c]. Note that those meth-
ods consider transfer learning or data augmentation are not
compared here as they used external data.

As shown in Table 6, our method can obtain the best per-
formance in F1, HEQD and wins the first place in total score.
Our method can exceed a recent history attended model called
HAM method 0.5 scores in F1. Given the task is very chal-
lenging, this improvement is not small. This further shows
our policy of selecting related history turns is better than other
methods.

5 Related Work
Our method is related to the tasks of machine reading com-
prehension and conversational question answering. In this
section, we briefly review the related works in these areas.

5.1 Machine Reading Comprehension (MRC) and
Conversations.

MRC is at the central part of natural language understand-
ing. Many high-quality challenges and datasets [Rajpurkar
et al., 2016; Rajpurkar et al., 2018; Nguyen et al., 2016;
Joshi et al., 2017; Kwiatkowski et al., 2019] have greatly
boosted the research progress in this field, resulting in a wide
range of model architectures [Seo et al., 2016; Hu et al., 2018;

Wang et al., 2017; Huang et al., 2017; Clark and Gardner,
2018]. The MRC task is typically conducted in a single-turn
QA manner. The goal is to answer the question by predict-
ing an answer span in the given passage. The ConvQA task
formulated in CoQA [Reddy et al., 2018] and QuAC [Choi
et al., 2018] is closely related to the MRC task. A major
difference is that the questions in ConvQA are organized in
conversations. Thus we need to incorporate the conversation
history to better understand the current question. Most meth-
ods seek to incorporate modeling the dialogue history into
the process of the passage representation. FlowQA [Huang
et al., 2018] adopts RNN to convert the passage representa-
tion from the past. FlowDelta [Yeh and Chen, 2019] seek to
employ delta operation to model the change in relative turns.
GraphFlow [Chen et al., 2019] views each word in the pas-
sage as node and use the attention score as their connections.
Then it adopts a gating mechanism to fuse the representation
of the past and the current. MC2 [Zhang, 2019] propose to use
CNN in multiple perspectives to capture the semantic changes
based on FlowQA. In the other hand, methods that adopt his-
tory answer embedding is also competitive. HAE [Qu et al.,
2019a] employs answer embedding to indicate the position
the history answers. HAM [Qu et al., 2019b] further adopts
attention mechanism to select related history questions.

5.2 Reinforcement Learning.
Reinforcement Learning is a series of goal-oriented algo-
rithms that has been studied for many decades in many dis-
ciplines [Sutton and Barto, 1998; Arulkumaran et al., 2017;
Li, 2017]. The recent development in deep learning has
greatly contributed to this area and has delivered amaz-
ing achievements in many domains, such as playing games
against humans [Mnih et al., 2013; Silver et al., 2017].
There are two lines of work in RL: value based methods
and policy based methods. Value based methods, including
SARSA [Rummery and Niranjan, 1994] and the Deep Q Net-
work [Mnih et al., 2015], take actions based on estimations
of expected long-term return. On the other hand, policy based
methods optimize for a strategy which can map states to ac-
tions that promise for the highest reward. Finally, hybrid
methods, such as the actor-critic algorithm [Konda and Tsit-
siklis, 2003], integrate a trained value estimator into policy
based methods to reduce variance in rewards and gradients.
We mainly experiment with hybrid methods in our work.

The nature of RL problems is making a sequence of actions
based on certain observations in order to achieve a long-term
goal. This nature has made RL suitable to deal with data se-
lection problems in many areas [Fang et al., 2017; Wu et al.,
2018; Fan et al., 2017; Patel et al., 2018; Wang et al., 2018;
Feng et al., 2018]. The study in [Takanobu et al., 2018]
adopts reinforcement learning in the topic segmentation task.
The study in [Buck et al., 2018] adopts reinforcement learn-
ing to generate better quality of the question. It freeze the QA
model and regard the seq2seq model as the agent.

Our proposed method does not make selections on the
training data but aims to identify helpful conversation history
to construct a better training data.

To the best of our knowledge, our work is the first research
to study the problem of backtracking the helpful dialgoue his-



tories by reinforcement learning in ConvQA setting. Our pro-
posed method is an end-to-end trainable approach that shows
better results than the competitive baselines.

6 Conclusion
We proposed an unsupervised method using reinforcement
learning to select related history turns for multi-turn machine
reading comprehension model. Compared with modeling his-
tory in one single model, our reinforcement learning can se-
lect helpful history turns to boost the performance of MRC
model. For each question in the dialogue, the learned policy
can select the related history turns and performs better than
rule based and episode learning policies. Extensive experi-
ments on public datasets show our method yields consistently
better performance than the competing methods.
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