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Abstract

There are a wide range of applications that in-
volve multi-modal data, such as cross-modal re-
trieval, visual question-answering and image cap-
tioning. Such applications are primarily depen-
dent on aligned distributions of the different con-
stituent modalities. Existing approaches generate
latent embeddings for each modality in a joint fash-
ion by representing them in a common manifold.
However these joint embedding spaces fail to suf-
ficiently reduce the modality gap, which affects the
performance in downstream tasks. We hypothesize
that these embeddings retain the infra-class rela-
tionships but are unable to preserve the inter-class
dynamics. In this paper, we present a novel frame-
work COBRA that aims to train two modalities
(i.e., image and text) in a joint fashion inspired by
the Contrastive Predictive Coding (CPC) and Noise
Contrastive Estimation (NCE) paradigms which
preserve both inter-class and intra-class relation-
ships. We have conducted extensive experiments
on two downstream tasks spanning across three
benchmark cross-modal datasets. These show that
our proposed framework achieves state-of-the-art
results and outperforms existing work, as it gen-
erates a robust and task agnostic joint-embedding
space.

1 Introduction

Systems built on multi-modal data have been shown to per-
form better than systems that solely use uni-modal data [Bal-
trusaitis et al., 2019; Shah and Zimmermann, 2017]. Due
to this, multi-modal data is widely used in and generated by
different large-scale applications. These applications often
utilize this multi-modal data for tasks such as information re-
trieval [Feng et al., 2014], classification [Tran et al., 2016],
and question-answering [Liu ef al., 2019; Peng et al., 2019].
It is therefore important to represent such multi-modal data in
a meaningful and interpretable fashion to enhance the perfor-
mance of these large-scale applications. In this work, we fo-
cus on learning the joint cross-modal representations for im-
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ages and text. Learning meaningful representations for multi-
modal data is challenging because there exists a distributional
shift between different modalities [Peng and Qi, 2019; Hu et
al., 2019]. The lack of consistency in representations across
modalities further magnifies this shift [Arya et al.,2019]. Due
to such difficulties, any similarity metric between the repre-
sentations across modalities is intractable to compute [Peng
and Qi, 2019]. The reduction of this distributional shift boils
down to two challenges: (1) projecting the representations of
data belonging to different modalities to a common manifold
(also referred to as the joint embedding space), and (2) re-
taining their semantic relationship with other samples from
the same class as well as different classes.

The need for a joint embedding space is emphasized by the
inability of uni-modal representations to align well with each
other. Over the last few years, literature [Peng et al., 2016; Hu
et al., 2019; Mai et al., 2019] has been presented where the
representations were modeled in the joint embedding space,
but existing methods perform less satisfactorily as signifi-
cant semantic gap still exists among the learnt representations
from different modalities.

We believe this is due to the fact that current work such as
[Hu et al., 2019; Peng et al., 2016] have focused on conserv-
ing the semantic relationship only between intra cross-modal
data, i.e., belonging to the same class. We surmise that along
with this, preserving inter cross-modal interactions will help
the model learn a more discriminatory boundary between dif-
ferent classes.

Motivation: We posit that preserving the relationship be-
tween representations of samples belonging to different
classes, in a modality invariant fashion, can improve the qual-
ity of joint cross-modal embedding spaces. We formulate this
hypothesis as it introduces a contrastive proximity between
data belonging to different semantic classes. This will al-
low the model to converge to a better generalizing decision
boundary. Similar contrastive learning paradigms based on
information gain have been performing very well in the self-
supervised learning problem settings [van den Oord et al.,
2018; Tian et al., 2019; Hénaff et al., 2019]. To the best of
our knowledge, we are the first to propose a method to learn
Jjoint cross-modal embeddings based on contrastive learning
paradigms.

Contributions: Our contributions are as follows:

e We propose a novel joint cross-modal embedding
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Figure 1: Visualization of the working of contrastive and cross modal losses. The contrastive and cross modal losses enforce divergence across
samples of different classes but ensure that the samples of the same class are drawn together, regardless of their modality. This ascertains that
the joint embedding space is both modality invariant and class discriminative.

framework called COBRA (COntrastive Bi-modal
Representation Algorithm) which represents the data
across different modalities (text and image in this study)
in a common manifold.

o We formulate a combined loss function, which jointly pre-
serves not only the relationship between different intra
cross-modal data samples but also preserves the relation-
ship between inter cross-modal data samples (refer Figure
1).

e We empirically validate our model by achieving state-of-
the-art results on two downstream tasks: (1) finegrained
multi-modal sentiment classification, and (2) multi-modal
fake news detection.

2 Related Work

In this section, we discuss the topics that inspire the architec-
ture and loss functions used in COBRA: Multi-modal Fusion
and Contrastive Learning Paradigms.

2.1 Multi-modal Fusion

Significant amount of work in the domain of multimedia re-
search has been based on fusion techniques for datasets of
multiple modalities. The type of fusion affects the dynam-
ics of the features produced. Early fusion techniques that are
based on simple concatenation [Wollmer et al., 2013; Poria et
al., 2016] do not capture the intra modal relations well. Late
fusion techniques [Nojavanasghari et al., 2016; Kampman et
al., 2018] on the other hand prioritize intra modal learning
abilities compromising on cross-modal differentiability. This
is because these models make decisions on a weighted aver-
age score of individual modality features. To solve both these
limitations, [Mai et al., 2019] used a hierarchical graph neu-
ral network to capture multi-modal interactions. Fusion net-
works have also shown great performance in application spe-
cific tasks. [Ding et al., 2019] proposed a fusion based DNN
for predicting popularity on social media. However, literature

suggests that cross modal tasks benefit more from learning
a joint embedding space than employing multi-modal fusion
techniques [Baltrusaitis ef al., 2019].

2.2 Contrastive Learning Paradigms

Contrastive Learning techniques have gained popularity re-
cently because of their success in unsupervised settings.
[van den Oord et al., 2018] were one of the first to pro-
pose a Contrastive Predictive Coding (CPC) technique that
could generate useful representations from high dimensional
data universally in an unsupervised fashion. Further, [Tian
et al., 2019] developed a compact representation that max-
imized mutual information between different views of the
same scene and hence improved performance on image and
video unsupervised learning tasks. SimCLR [Chen et al.,
2020] eliminated the requirement of specialized architectures
or memory banks for contrastive tasks and also gave state-
of-the-art results on self-supervised classification tasks. All
these techniques proposed so far have been employed only
for single modality tasks.

3 Methodology

In this section, we first explain the formulation of our prob-
lem statement in terms of the data we use. We then introduce
and explain the architecture of our model, along with the loss
functions used. We finally explain our optimization and train-
ing strategy.

3.1 Problem Formulation

Let us assume that we have two modalities, i.e. text and im-
age, we denote the j-th image sample as 27 € R% and the j-
th text sample as 27, € R?T. Here, d; and d7 represent the di-
mensionality of the image and text samples respectively. We
denote the image dataset as X; = {9, z},...,2" "'} and
the text dataset as X7 = {25, 2%, ..., 2% "}, where nr and
nr denote the total number of data samples in the image and
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Figure 2: The general architecture of our proposed COBRA model. The different shapes are present to help visualize the structure of the joint
embedding space with respect to the orthogonal projections of both image and text samples. The losses of our model are highlighted in the

grey boxes.

text datasets respectively. The corresponding labels for the

image and text modalities are represented as follows: Y; =
W, yt, o yr ' and Yr = [y%,yh, .. ,y?T 1. Assum-
ing there are C' distinct semantic classes in our multi-modal
dataset, the labels are: v’ ,yT e {0,1,...,C — 1}Vj; €

{0,1,..., 1},]'1“ S {0 1,. nT—l}.

3.2 Model Architecture

The overall architecture for our model is given in Figure 2.
Our goal is to represent the data in a common manifold, such
that the class-wise representations are modality invariant and
discriminatory. To this end, we use an autoencoder for each
modality to generate representations that are high fidelity
in nature. We utilize an orthogonal transform layer, which
takes as input the hidden space representations from the
encoders of each modality, and projects these representations
into a joint space that is modality invariant and discriminates
between classes well.

We denote the encoded representation as z; = f;(x],©;)
and the reconstructed sample as &/ = g;(z],®;) where
j€{0,1,...,np — 1} and j € {0,1,...,n; — 1} for text
and image respectively, and where ¢ € {T,I} for text
and image respectively. f; denotes the encoder of the i-th
modality parameterised by ©;. Similarly ¢; denotes the
decoder of the ¢-th modality parameterised by ®;. Given the
representations z% and z} which have dimensions Zr and
Z1, we project the representations to a joint subspace such
that the representation of each semantic class is orthogonal
to each other [Hu et al., 2019]. We call these projections O

and O , both of which have dimension Z.

We define the loss function in COBRA as a weighted sum
of the reconstruction loss, cross-modal loss, supervised loss
and contrastive loss, the details of which are introduced be-
low. To preserve the inter-class dynamics, we innovatively
introduce the Contrastive Loss that has never been used in
representing multi-modal data.

Reconstruction Loss

Given the decoder output ﬁf and the input mz , we define the
reconstruction loss shown in Eq. 1 as:
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Cross-Modal Loss

The projected representations O} and O7. align class repre-
sentations within each modality. The cross-modal loss aims
to align representations of the same class across different
modalities. Given the projected representations O and Ok,
we define the cross-modal loss shown in Eq. 2 as:

min{np,n;}—1

D
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We use the min function because the dataset may not have
equal text and image samples. We only take those pairs in
which the corresponding text and image samples are present.



Supervised Loss

As we try to model an orthogonal latent space having the joint
embeddings, we utilize the one-hot labels of the data samples
to reinforce those samples belonging to the same class but
different modalities to be grouped together in the same sub-
space. Let ¢ be the one-hot encoded label for the j-th sample

of the i-th modality, and Og be the projected representation,
we then define the supervised loss shown in Eq. 3 as:
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Contrastive Loss

As stated in recent literature [Tian et al., 2019; Arora et
al., 2019], to implement the contrastive loss [Gutmann and
Hyvérinen, 2010; Sohn, 2016], the definitions of positive
samples and negative samples of representations are of ut-
most importance. We will first define the positive and neg-
ative samples pertaining to our model. Given the projected
representations O} and O, a positive pair is defined as the
representations of data samples belonging to the same modal-
ity and class. A negative pair is defined as the representations
of two data samples belonging to same or different modality
of different classes. To define the contrastive loss, a scor-
ing function is required, which yields high values for positive
samples and low values for negative values. Here we define
the scoring function by taking the dot product of the represen-
tations in the joint embedding space. Following recent works
[van den Oord et al., 2018; Chen et al., 2020], our loss func-
tion enforces the model to select the positive sample from a
fixed sized set S = {p,n1,ng,...,nx} containing one pos-
itive and N negative samples. Thereafter we formulate our
contrastive loss shown in Eq. 4 as:

a’p
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where a is the anchor point, p is its corresponding positive
sample, I is an expectation operator over all possible permu-
tations of S and n; iterates over all the negative samples. The
anchor, positive and negative samples are randomly drawn
from each mini-batch. We minimize the above expectation
running over all samples. Since fetching negative samples
from the entire dataset is computationally infeasible, we sam-
ple the negative points only from each mini-batch locally.
Since, we sample only a finite sized set of negative sam-
ples, the model can miss out on characteristics of the distri-
bution of the joint embeddings. To avoid this, we implement
another loss called the Noise Contrastive Estimation (NCE)
loss [Gutmann and Hyvirinen, 2010], which is an effective
method for estimating unnormalized models. NCE helps to
model the distribution of the negative samples by leveraging
a proxy noise distribution. It does so by estimating the proba-
bility of a sample coming from a joint distribution rather than
it coming from a noise distribution. The noise distribution is
assumed to be a uniform distribution. Denoting the joint dis-
tribution of positive samples as p s, the noise distribution as

Lo =—FEg |log

“

PN, the anchor sample as a and every other sample (can be ei-
ther positive or negative) as s, the probability of data sample
s coming from the joint distribution p is:

p.(sla)
p.(sla) + Npn(sla)
where N is the number of samples from the noise distribution.

Instead of using Eq. 4, now we can estimate the contrastive
loss more accurately based on Eq. 6 as follows:

P(X =1|s;a) =

(&)

Lo = —Ea{Ep, (o5 [[P(X = 1]s7a)]
+ N x Espr(o\s)[l — P(X = 1|s;a)]} (6)

where F, is an expectation over all possible anchor samples,
E,.p, is an expectation over all possible positive samples
(corresponding to anchor a) from the joint distribution p,
and F.,, is an expectation over all samples from the noise
distribution py.

3.3 Optimization and Training Strategy

The overall loss of our network is defined to be a weighted
sum of the reconstruction loss, cross-modal loss, supervised
loss and contrastive loss. The weights are treated as hyperpa-
rameters.

L=ArLr+ AsLs+ ALy + AcLc (7

The objective function in Eq. 7 is optimized using stochastic
gradient descent. The loss is summed over all modalities, and
the corresponding gradient is propagated through all the com-
ponents in the model. We adopted the PyTorch framework for
implementation, and trained all our models for 200 epochs on
an Nvidia RTX 2080Ti GPU.

4 Experiments

To evaluate our proposed method, we test our model on two
tasks, namely, multi-modal fake news detection and multi-
modal sentiment classification. We compare the performance
of our model against state-of-the-art models of corresponding
tasks.

In the following sections, we describe the datasets and
evaluation metrics adopted, followed by the results achieved
on each downstream task mentioned above.

4.1 Multi-modal Fake News Detection

In the task of multi-modal fake news detection, we use CO-
BRA to determine whether a given bi-modal query (text and
image) corresponds to a real or fake news sample.

Datasets

For this multi-modal task, we utilize the FakeNewsNet
Repository [Shu, 2019].  This repository contains two
datasets, namely, Politifact and Gossipcop. These datasets
contain news content, social context, and dynamic informa-
tion. We pre-process the data similar to Singhal et al. 2020.
Each dataset contains two semantic classes, namely, Real and
Fake.



Table 1: Accuracy on the FakeNewsNet dataset

Method Politifact (%) Gossipcop (%)
Wang et al. [2018] 74 86
Khattar et al. [2019] 67.3 77.5
Singhal ef al. [2019] 72.1 80.7
Singhal et al. [2020] 84.6 85.6
COBRA! 86 86.7

e The Politifact dataset contains 1056 text-image pairs.
We get 321 Real and 164 Fake text-image pairs after pre-
processing. We use a training, validation and test set of
381, 50 and 54 text-image pairs [Singhal et al., 2020]
respectively.

e The Gossipcop dataset contains 22140 text-image pairs.
We get 10259 Real and 2581 Fake text-image pairs after
pre-processing. We use a training, validation and test set
of 10010, 1830 and 1000 text-image pairs Singhal et al.
[2020] respectively.

Evaluation metrics

We compare our performance against existing state-of-the-art
models based on number of correctly classified queries (ac-
curacy). For the purpose of our evaluation, we ensure that
we use the same features that were used across other existing
state-of-the-art models.

To visualize the purity of the joint embedding space for dif-
ferent classes and modality samples, we plot the joint embed-
dings of COBRA trained on both the Gossipcop and Poltifact
datasets. We plot the embeddings (Figure 3a and 3b) by em-
ploying the t-SNE transformation to reduce the high dimen-
sional joint embeddings (O; and Or) to 2 dimensional data
points. The figures clearly exhibit the high discrimination
between samples of different classes in the joint embedding
space. This provides further empirical validation for the high
class divergence across the joint embedding space, irrespec-
tive of the modalities of the data points.

Results

We achieve a 1.4% and a 1.1% improvement over the pre-
vious state-of-the-art (SpotFake+ [Singhal et al., 2020]) on
the Politifact and Gossipcop dataset respectively (Table 1).
On observing the t-SNE plots in Figure 3, we discern a high
intra-class variability in the Gossipcop dataset. We believe
that there is only a small improvement because of the high
class imbalance in these two datasets.

4.2 Multi-modal Fine-grained Sentiment
Classification

In the task of multi-modal fine-grained sentiment classifica-

tion, we use COBRA to perform ten tasks of classifying a

given bi-modal query (text and image) into a sentiment cate-

gory.

1Comparison with contemporary work [Zhou et al., 2020] is left
for future work as their current results are on a different data split.

(a) Politifact

(b) Gossipcop

Figure 3: t-SNE visualizations of the joint embedding spaces of the
models trained on Gossipcop and Politifact datasets. The different
colours correspond to the various class labels in the dataset.

Datasets

For this task, we analyze the performance of our model on
the MeTooMA dataset [Gautam et al., 2019]. This dataset
contains 9973 tweets that have been manually annotated into
10 classes. We use a training, validation and test set of 4500,
1000 and 1000 text-image [Gautam et al., 2019] respectively,
across all models that we test.

Evaluation Metrics

We report the number of correctly classified queries (accu-
racy). To the best of our knowledge, we are the first to test a
multi-modal classification model on this dataset. To this end,
we evaluate our model against a Text-only and Image-only
baseline, and Early Fusion. For the baselines, we use a Fully
Connected network.

Results

We obtain an average classification accuracy of 88.32%
across all classes on the MeTooMA Dataset. This is a 1.2%
improvement over Early Fusion (Table 2). We observe a low
increase in Text only and Image only informative tasks due to
the fact that 53.2% of our training data had text-image pairs
with conflicting labels, i.e., from a given text-image pair, the
text may be labelled as “relevant” whereas the correspond-
ing image may be labelled as “irrelevant”. Furthermore, for
classes under the Hate Speech, Sarcasm, and Dialogue Acts
categories, we observe that there are less than 600 samples
for each class. In categories such as Stance, where the ‘Sup-
port’ class has over 3000 samples, we observe much larger
improvements in performance.

4.3 Ablation Study

Role of the Loss Functions.

To robustly evaluate the importance of each loss function in
our training objective, we conduct a simple ablation study. In
Table 3, we take our best performing models trained on the
Politifact and the Gossipcop datasets and dissect each of the
loss functions. To ensure an unbiased setup, we decouple the
task in this ablation study from the previous tasks. We con-
duct a simple cross-modal retrieval task on the two datasets,
wherein given a text query we retrieve an image and vice-
versa, and use mAP (mean average precision) as our evalua-
tion metric. It is immediately evident that supervision plays a
very important role for the model to perform well. We further
see that the contrastive and cross-modal losses help us gain



Table 2: Accuracy on the MeTooMA Dataset

Label COBRA (%) Text-only baseline (%) Image-only baseline (%) Early Fusion (%)
Text only informative 73.77 73.43 63.39 72.15
Image only informative 67.36 63.21 67.74 66.97
Directed Hate 96.43 95.12 94.67 95.85
Generalized Hate 97.77 96.19 95.89 96.88
Sarcasm 98.55 96.94 96.45 97.16
Allegation 93.75 92.67 92.40 93.19
Justification 98.44 96.23 95.66 97.34
Refutation 98.54 96.90 96.81 97.37
Support 66.29 61.60 59.93 63.28
Opposition 92.3 90.1 89.5 91.1
Average 88.32 86.23 85.24 87.12

the best performing models. Further, we see that the model is
especially sensitive to the reconstruction loss without which
performance drops significantly.

Table 3: Ablation Study of loss functions. (-) indicates that particu-
lar loss is removed from the overall loss function.

Model  Politifact Gossipcop
COBRA 79.07 76.793
) Lo 78.63 76.37
() Lpr 77.51 71.05
) Lgr 75.68 69.92
() Ls 74.95 69.46
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Figure 4: Hyperparameter Selection study on the Politifact dataset.
The labels are: C - contrastive loss, M - cross-modal loss, S - super-
vised loss, R - reconstruction loss.

Hyperparameter Selection.

We evaluate the significance of the individual weights of each
loss function in our overall objective. To ensure a consistent
setting, for each loss term, we vary its corresponding weight
from O to 1 with intervals of 0.1 while keeping the weights
of the other loss terms as 1 (refer Figure 4). We ensure the
same cross-modal retrieval task setup as in 4.3 to ensure fair-
ness across experiments. It is clear that the contrastive, cross-
modal and reconstruction loss terms are robust to large vari-
ations in their weight hyperparameter. However, we see that
the supervised loss requires a higher weight (> 0.2) for the

model to perform well. This again highlights the major sig-
nificance of supervision required for our method to accom-
plish effective results.

5 Conclusion

In this paper, we propose a novel approach (COBRA) to
jointly learn bi-modal representations in an orthogonal space.
We show that our proposed method learns better representa-
tions which allows the model to generalize across tasks in a
much more robust fashion. This enables us to achieve state-
of-the-art results on two downstream tasks. The representa-
tions learnt are high-fidelity in nature, containing sufficient
information for reconstruction as well as tasks such as re-
trieval and classification. Different from other models, CO-
BRA, along with preserving the intra-class relationship of
samples in the embedding space, also preserves the inter-
class relationships. This ensures that the samples belonging
to the same class are clustered together, and that the distance
between clusters of samples belonging to different classes (ir-
respective of the modality) is maximized in the joint embed-
ding space. In the future, we would like to extend our method
to a self-supervised/semi-supervised problem setting, and to
complex tasks such as image captioning.
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