

Elastic Computing Crash Course CSCI 8360 Data Science Practicum

• From Google and Amazon, respectively

Google Cloud

Google Cloud Platform

GCP: New "customers"

- If you've never used GCP before, you are entitled to a one-time \$300 credit!
- Look into this before you redeem your class credits

\$300 free credit

New customers also get \$300 to fully explore and conduct an assessment of Google Cloud Platform. You won't be charged until you choose to upgrade.

GCP Product Lineup

Google Cloud products

Overview

Featured products

AI and Machine Learning

API Management

Compute

Containers Data Analytics Databases Developer Tools Healthcare and Life Sciences Hybrid and Multi-cloud Internet of Things (IoT)

Management Tools
Media and Gaming
Migration
Networking
Operations

Security and Identity Serverless Computing Storage More Google Cloud products Product launch stages Take the next step

Google Dashboard

- Heads-up display of your active projects and their usage, billing, and associated resources
- Sidebar for *all* GCP products, quicklinkable

A	Home		>	OMMENDATIONS	
	Storage		>		
ß	Dataproc		>	:	RPI APIs :
۲	Compute Engine		>		nequests (requests/sec)
PROD	ucts 🔨				0.018/s
<u>)</u>	Marketplace				
	Billing				0.016/s
API	APIs & Services		>		9:30 9:45 10 AM 10:15 0.015/s
Ť	Support		>		Requests: 0.017/s
Θ	IAM & Admin		>	÷	→ Go to APIs overview
۲	Getting started				
٢	Security		>	:	
ft,	Compliance				
\land	Anthos		>		
COMP	PUTE				
. <u></u> .	App Engine		>	:	
۲	Compute Engine	Ŧ	>		
٢	Kubernetes Engine		>		
				cation	

- This is your generic "virtual compute instances" product
- Different VM templates optimized for different tasks (and priced accordingly)
- General-purpose compute
- Compute-optimized (high CPU count)
- Memory-optimized (high RAM)
- Storage-optimized (large SSD/HDD)
- GPU instances

- Each compute instance has a (1) region, and an (2) hourly rate
- **Region** denotes the physical geographic location of the VM
 - Probably want to stick with east coast VMs; latency is better
- Rate denotes hourly cost of running the VM
 - 60 minutes and 1 second is billed as 2 hours
 - Billed as long as the VM is on; does not need to be doing anything! Shut down your VMs when you are done to avoid extra charges

E2 standard machine types

lowa (us-central1) 🔻				Monthly Mourly
Machine type	Virtual CPUs	Memory	Price (USD)	Preemptible price (USD)
e2-standard-2	2	8GB	\$0.067006	\$0.020102
e2-standard-4	4	16GB	\$0.134012	\$0.040204
e2-standard-8	8	32GB	\$0.268024	\$0.080408
e2-standard-16	16	64GB	\$0.536048	\$0.160816
e2-standard-32	32	128GB	\$1.072096	\$0.321632
Custom machine type	, ,	d save you as m		ned types, using a custom E2 ore information, see E2 custom

- Note: GPUs are not cheap!
- Keep this in mind for projects when you're training deep learning models

NVIDIA® Tesla® V100	1 GPU	16 GB HBM2	\$2.48 per GPU	\$0.74 per GPU	
	2 GPUs	32 GB HBM2			
	4 GPUs	64 GB HBM2			
	8 GPUs	128 GB HBM2			
NVIDIA® Tesla® P100	1 GPU	16 GB HBM2	\$1.46 per GPU	\$0.43 per GPU	
	2 GPUs	32 GB HBM2			
	4 GPUs	64 GB HBM2			
NVIDIA® Tesla® K80	1 GPU	12 GB GDDR5	\$0.45 per GPU	\$0.135 per GPU	
	2 GPUs	24 GB GDDR5			
	4 GPUs	48 GB GDDR5			
	8 GPUs	96 GB GDDR5			

Build a VM

Create a virtual machine instance

1. In the Cloud Console, go to the **VM instances** page.

Go to VM instances

- 2. Click Create instance.
- 3. In the **Boot disk** section, click **Change** to begin configuring your boot disk.
- 4. On the **Public images** tab, choose **Ubuntu 20.04 LTS**.
- 5. Click Select.
- 6. In the Firewall section, select Allow HTTP traffic.
- 7. Click Create to create the instance.

Build a VM

- Once your VM is running, it should show up in your VM Instances dashboard
- You can connect directly to it via SSH by clicking the icon
- Once you're done with the VM, delete it

□ 🤡 instance-1 us-east1-b 10.142.0.2 (nic0) 35.231.114.114 🖾 SSH -	Name ^	Zone	Recommendation	Internal IP	External IP	Connect
	🧭 instance-1	us-east1-b		10.142.0.2 (nic0)	35.231.114.114 🖄	SSH -

VM Images

- There is an entire library of public pre-built Compute Engine images available!
 - Look into these before you try to install Tensorflow / PyTorch from scratch!
- Involves simply attaching an existing "image" in the form of a storage disk to a brand-new VM

DataProc

- O This is where **clusters** are spun up and down
 - Also where jobs are executed on those clusters
- "Hadoop-based clusters" this is where Spark clusters are born!

Command line utilities

gcloud

- O Interacting directly with GCP products
- Spin up VM or cluster, manage instances
- O Delete clusters
- Can do everything the web UI can **and then some**, but definitely harder to use

gsutil

- Low-level file management, permissions, access control
- O Useful for moving files around

pip-installable with easy environment integration and autocomplete

Need command line utility spin up dask clusters on DataProc

gcloud dataproc clusters create \${CLUSTER_NAME} \

- --region \${REGION} \
- --zone \${ZONE} \
- --master-machine-type n1-standard-16 \setminus
- --worker-machine-type n1-standard-16 \setminus
- --image-version preview-ubuntu \setminus
- --optional-components JUPYTER \setminus

--initialization-actions gs://goog-dataproc-initialization-actions- \REGION /dask/dask.sh $\$

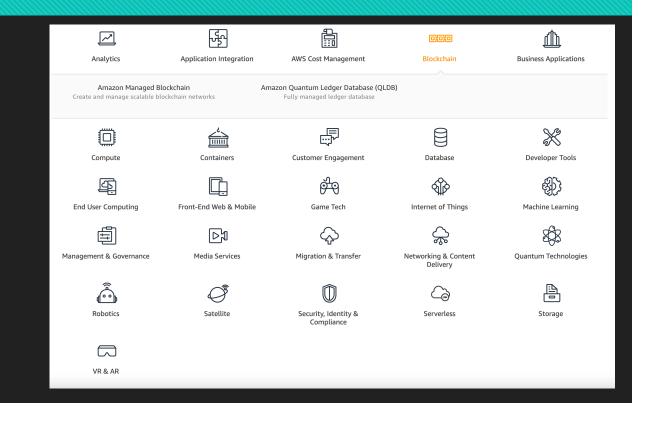
- --metadata dask-runtime=yarn \
- --enable-component-gateway

https://cloud.google.com/blog/products/data-analytics/improve-datascience-experience-using-scalable-python-data-processing

Amazon Web Services

aws

Amazon Web Services


- Home to CSCI 8360 in fall 2016
- Moved to GCP after that, following some high-profile AWS key thefts from GitHub project repos O_O

O DON'T PUT YOUR AUTH KEYS IN CODE THAT IS COMMITTED TO PUBLIC REPOS

O Also moved to GCP because AWS places considerably less emphasis on education vs research $^{-}_(\nu)_{/}$

AWS Product Lineup

• Comparable to GCP

AWS and GCP

O Plenty of equivalencies between the two

- GCP Compute Engine == AWS EC2 (Elastic Compute Cloud)
- GCP DataProc == AWS EMR (Elastic MapReduce)
- GCP Storage == AWS S3 (Simple Storage Solution)
- GCP gcloud + gsutil == AWS awscli (also pip installable!)

CSCI 8360 GCP Storage

• All datasets for DSP spring 2021 projects will be stored here:

gs://uga-dsp/