
Spark and Dask
CSCI 8360: Data Science Practicum

Lecture 2



Quick Reference

• Need help with learning git?
https://try.github.io/

• Specifically, need help with git branching?
https://learngitbranching.js.org/

• Web-based, interactive, highly-visual walkthroughs
• Highly recommend, even if you’ve used git before

https://try.github.io/
https://learngitbranching.js.org/


Apache 
Spark



Apache Spark

• Out of the UC Berkeley AMPLab in 2014
• Born out of frustration with the only open source distributed 

programming paradigm / implementation at the time: Hadoop 
MapReduce
• Too much Hadoop boilerplate
• Too many serialization / deserialization operations
• Map-reduce paradigm is inflexible (graph analytics? real-time processing?

iterative algorithms?)
• Focused on bringing data to code
• Assumed the absolute worst in terms of hardware reliability



Initial Workaround: Specialization



Along Came Spark

• Spark’s goal was to generalize MapReduce to support new 
applications within the same engine
• Two additions:
• Fast data sharing
• General DAGs (directed acyclic graphs)

• Best of both worlds: easy to program & more efficient engine in 
general



More on Spark

• More general
• Supports map/reduce paradigm
• Supports vertex-based paradigm
• Supports streaming algorithms
• General compute engine (DAG)

• More API hooks
• Scala, Java, Python, R

• More interfaces



Spark APIs

• Two main APIs: DataSets and DataFrames
• Both DataSets and DataFrames are high-level abstractions on RDDs, 

or Resilient Distributed Datasets
• You can directly operate on RDDs if you want
• (in fact, this was the default behavior until Spark 2.x)

• DataSets
• Benefits of RDDs (next slide) + benefits of SparkSQL’s execution engine
• Not available in Python or R (wtf m8)

• DataFrames
• Just a DataSet, but with named columns
• Conceptually equivalent to a table in a database or dataframe in R/Python



Resilient Distributed Datasets (RDDs)

• Resilient Distributed Datasets (RDDs) are primary data abstraction in 
Spark
• Fault-tolerant
• Strongly-typed (within the JVM)
• Immutable
• Can be operated on in parallel

1. Parallelized Collections
2. Hadoop datasets

• Two types of RDD operations
1. Transformations (lazy)
2. Actions (immediate)



Resilient Distributed Datasets (RDDs)

• Can create RDDs from any file stored in HDFS
• Local filesystem
• Amazon S3
• HBase

• Text files, SequenceFiles, or any other Hadoop InputFormat
• Any directory or glob
• /data/201414*



Resilient Distributed Datasets (RDDs)

• Transformations
• Create a new RDD from an existing one
• Lazily evaluated: results are not immediately computed

• Pipeline of subsequent transformations can be optimized
• Lost data partitions can be recovered



Resilient Distributed Datasets (RDDs)

• Actions
• Create a new RDD from an existing one
• Eagerly evaluated: results are immediately computed

• Applies previous transformations
• (cache results?)



Resilient Distributed Datasets (RDDs)

• Spark can persist / cache an RDD in memory across operations
• Each slice is persisted in memory and reused in subsequent actions 

involving that RDD
• Cache provides fault-tolerance: if partition is lost, it will be 

recomputed using transformations that created it



Introduction / Demo



Spark Operations



Step by step



Step by step



Step by step



API Hooks

• Scala / Java
• All Java libraries
• *.jar
• http://www.scala-lang.org

• Python
• Anaconda: 

https://www.anaconda.com/dow
nload/

• …R?
– If	you	really	want	to
– http://spark.apache.or
g/docs/latest/sparkr.ht
ml

http://scala-lang.org
https://www.anaconda.com/download/
http://spark.apache.org/docs/latest/sparkr.html


Example: WordCount



Example: WordCount



Interactive Shells

• Spark creates a SparkSession
object (cluster information)
• For either shell: spark
• External programs use a static 

constructor to instantiate the 
context
• Pull the SparkContext out via 

spark.SparkContext



Interactive Shells
• spark-shell --master



Interactive Shells
• Master connects to the cluster manager, which allocates resources across 

applications
• Acquires executors on cluster nodes: worker processes to run computations 

and store data
• Sends app code to executors
• Sends tasks for executors to run



Resilient Distributed Datasets (RDDs)



Resilient Distributed Datasets (RDDs)



Resilient Distributed Datasets (RDDs)



Resilient Distributed Datasets (RDDs)



Resilient Distributed Datasets (RDDs)



Resilient Distributed Datasets (RDDs)



Broadcast Variables

• Spark’s version of Hadoop’s DistributedCache
• Read-only variable cached on each node
• Spark [internally] distributed broadcast variables in such a way to 

minimize communication cost



Broadcast Variables



Accumulators

• Spark’s version of Hadoop’s Counter
• Variables that can only be added through an associative operation
• Native support of numeric accumulator types and standard mutable 

collections
• Users can extend to new types

• Only driver program can read accumulator value



Accumulators



Key/Value Pairs



Dask



Dask

• Exclusive to the Python ecosystem (sorry JVM / R folks)
• First released in 2018
• Tight integration with the SciPy ecosystem
• NumPy
• pandas
• scikit-learn
• matplotlib / bokeh
• RAPIDS (more recently)



Dask

• Philosophy: parallel computing with minimal fanfare
• Distributed computing is almost an accidental byproduct

• Uses a sophisticated but lightweight task scheduler
• Builds a dependency graph of tasks (kind of like a compiler)



Task Scheduler

• Dask has three primary data structures:
• Array (modeled after NumPy)
• DataFrame (modeled after pandas)
• Bag (modeled after lists)

• Uses delayed and futures to perform lazy evaluation while building a 
dependency graph of tasks
• The scheduler then executes the task graph—in sequence,

multithreaded, multiprocessed, or distributed.



Dask APIs

• Major, major effort to make APIs as seamless as possible
• Array follows NumPy
• DataFrame follows pandas
• Bag follows map/filter/groupby/reduce common in Spark and Python lists
• Dask-ML follows scikit-learn
• Delayed wraps generic Python code
• Futures follow concurrent.futures from standard library



Comparisons to Spark

• Entire write-up on the Dask website
• https://docs.dask.org/en/latest/spark.html

https://docs.dask.org/en/latest/spark.html


Want to learn more?

• The documentation on the dask website is second to none

• https://docs.dask.org/

https://docs.dask.org/


Fun Fact

• Both Spark and Dask have pre-built VMs available on Google Cloud



Project 0

• Out later today!
• Due Tuesday, January 26 at 11:59pm
• Can’t use nltk, breeze, or other NLP-specific packages
• Really, you won’t need them

• Spark / Dask, & “NLP”
• Count words in documents (term frequencies)
• Incorporate stopword filtering (will need broadcast variables for this)
• Truncate out punctuation
• Implement TF-IDF for improved word counting
• CANNOT STORE VOCABULARY LOCALLY. Need to distribute / parallelize!



Project 0

• Pay attention to the requirements of the deliverables
• Incorrectly-named or formatted JSON files will cause autograder to fail
• Name GitHub repo correctly
• Include README and CONTRIBUTORS files
• Practice using git (commit, push, branch, merge) and GitHub functionality 

(issues, milestones, pull requests)



Questions?


